Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T14:23:30.587Z Has data issue: false hasContentIssue false

7 - Modelling Internal and External Geomagnetic Fields Using Satellite Data

from Part II - Geomagnetic Field

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Earth’s magnetic field as it is measured by satellite missions is mainly generated by the dynamo process in the liquid outer core of the Earth. Other sources that are also regarded as internal are the static lithospheric field due to crustal magnetisation, the induced field in the mantle, lithospheric and Oceanic induced fields. The latter are generated by secondary dynamo processes, where the motion of conductive seawater in an ambient magnetic field induces a magnetic field. External fields originate in Earth’s magnetosphere and ionosphere. All these individual source fields differ in their strength, they spatially overlap and vary on similar time scales. These characteristics are challenging in resolving the processes that are related to these sources. The aim of this article is to provide a brief review of current geomagnetic field modelling techniques, which are based on measurements of Earth’s magnetic field at satellite altitude. Furthermore, we discuss different applications of the field modelling techniques and their limitations.

Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 84 - 97
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubert, J. & Fournier, A., 2011. Inferring internal properties of Earth’s core dynamics and their evolution from surface observations and a numerical geodynamo model, Nonlinear Process. Geophys., 18, 657–74.Google Scholar
Backus, G., 1970. Inference from Inadequate and Inaccurate Data, I, Proc. Natl. Acad. Sci. USA, 65, 17.Google Scholar
Backus, G. E., 1988a. Bayesian inference in geomagnetism, Geophys. J. R. Astron. Soc., 92, 125–42.Google Scholar
Backus, G. E., 1988b. Comparing hard and soft prior bounds in geophysical inverse problems, Geophys. J. R. Astron. Soc., 94, 249–61.Google Scholar
Backus, G. E., 1989. Confidence set interference with a prior quadratic bound, Geophys. J. R. Astron. Soc., 97, 119–50.Google Scholar
Baerenzung, J., 2018. Sequential assimilation of the Earths magnetic field, 16. Symposium on Study of the Earth’s Deep Interior.Google Scholar
Baratchart, L. & Gerhards, C., 2017. On the recovery of core and crustal components of geomagnetic potential fields. Unpublished manuscript.Google Scholar
Beggan, C. D., Saarimäki, J., Whaler, K. A. & Simons, F. J., 2013. Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions, Geophys. J. Int., 193, 136–48.Google Scholar
Cain, J. C., Wang, Z., Kluth, C. & Schmitz, D. R., 1989. Derivation of a geomagnetic model to n = 63, Geophys. J. R. Astron. Soc., 97, 431–41.Google Scholar
Calderwood, A., Roberts, P. & Jones, C., 2003. Energy fluxes and ohmic dissipation in the Earth’s core, in Earth’s Core and Lower Mantle, pp. 100129, ed. Zhang, K., Soward, A. & Jones, C., CRC Press, Boca Raton, FL.Google Scholar
Chambodut, A., Panet, I., Mandea, M., Diament, M., Holschneider, M. & Jamet, O., 2005. Wavelet frames: An alternative to spherical harmonic representation of potential fields, Geophys. J. Int., 163, 875–99.CrossRefGoogle Scholar
Chapman, S. & Ferraro, V. C. A., 1940. The theory of the first phase of a geomagnetic storm, J. Geophys. Res., 45, 245.Google Scholar
Chapman, S. & Ferraro, V. C. A., 1941. The geomagnetic ring current: I. Its radial stability, J. Geophys. Res., 46, 1.Google Scholar
Chiao, L.-Y., Chen, Y.-N. & Gung, Y., 2014. Constructing empirical resolution diagnostics for kriging and minimum curvature gridding, J. Geophys. Res., 119, 3939–54.Google Scholar
Donoho, D. L., 1988. One-sided inference about functionals of a density, Ann. Stat., 16, 13901420.Google Scholar
Finlay, C. C., Lesur, V., Thébault, E., Vervelidou, F., Morschhauser, A. & Shore, R., 2017. Challenges handling magnetospheric and ionospheric signals in internal geomagnetic field modelling, Space Sci. Rev., 206, 157–89.Google Scholar
Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N. & Tøffner-Clausen, L., 2016. Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model, Earth Planets Space, 68, 112.Google Scholar
Fournier, A., Aubert, J. & Thebault, E., 2011. Inference on core surface flow from observations and 3-D dynamo modelling, Geophys. J. Int., 186, 118–36.Google Scholar
Fournier, A., Aubert, J. & Thébault, E., 2015. A candidate secular variation model for IGRF-12 based on Swarm data and inverse geodynamo modelling, Earth Planets Space, 67, 81.CrossRefGoogle Scholar
Fournier, A., Hulot, G., Jault, D., Kuang, W., Tangborn, A., Gillet, N., Canet, E., Aubert, J. & Lhuillier, F., 2010. An introduction to data assimilation and predictability in geomagnetism, Space Sci. Rev., 155, 247–91.Google Scholar
Franklin, J. N., 1970. Well-posed stochastic extension of ill-posed problems, Geophys. J. R. Astron. Soc., 23, 125–8.Google Scholar
Gauss, C. F., 1839. Allgemeine Theorie des Erdmagnetismus, in Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838, pp. 157, ed. Gauss, C. F. & Weber, W., Leipzig.Google Scholar
Goossens, S., 2010. Applying spectral leakage corrections to gravity field determination from satellite tracking data, Geophys. J. Int., 181, 1459–72.Google Scholar
Gubbins, D., 1975. Can the Earth’s magnetic field be sustained by core oscillations?, Geophys. Res. Lett., 2, 409–12.Google Scholar
Gubbins, D., 1983. Geomagnetic field analysis – I. Stochastic inversion, Geophys. J. R. Astron. Soc., 73, 641–52.Google Scholar
Gubbins, D., 2004. Time Series Analysis and Inverse Theory for Geophysicists, Cambridge University Press, Cambridge.Google Scholar
Gubbins, D. & Bloxham, J., 1985. Geomagnetic field analysis – III. Magnetic fields on the core-mantle boundary, Geophys. J. R. Astron. Soc., 80, 695713.Google Scholar
Helffrich, G. & Kaneshima, S., 2010. Outer-core compositional stratification from observed core wave speed profiles, Nature, 468, 807–10.Google Scholar
Holme, R. & Bloxham, J., 1995. Alleviation of the Backus effect in geomagnetic field modelling, Geophys. Res. Lett., 22, 1641–4.Google Scholar
Holme, R. & Bloxham, J., 1996. The magnetic fields of Uranus and Neptune: Methods and models, J. Geophys. Res., 101, 21772200.Google Scholar
Holschneider, M., Lesur, V., Mauerberger, S. & Baerenzung, J., 2016. Correlation-based modeling and separation of geomagnetic field components, J. Geophys. Res., 121, 3142–60.Google Scholar
Jackson, A., Jonkers, A. R. T. & Walker, M. R., 2000. Four centuries of geomagnetic secular variation from historical records, Philos. Trans. R. Soc. London, Ser. A, 358, 957–90.Google Scholar
Jackson, D. D., 1979. The use of a priori data to resolve nonuniqueness in linear inversion, Geophys. J. R. Astron. Soc., 57, 137–57.Google Scholar
Jekeli, C., 1996. Spherical harmonic analysis, aliasing, and filtering, J. Geod., 70, 214–23.Google Scholar
Kaneshima, S. & Matsuzawa, T., 2015. Stratification of Earth’s outermost core inferred from SmKS array data, Prog. Earth Planet. Sci., 2, 15.Google Scholar
Khokhlov, A., Hulot, G. & Le Mouel, J.-L., 1999. On the Backus effect – II, Geophys. J. Int., 137, 816–20.Google Scholar
Korte, M. & Constable, C. G., 2005. Continuous geomagnetic field models for the past 7 millennia: 2. CALS7 K, Geochem. Geophys. Geosyst., 6, Q02H16, doi: 10.1029/2004GC000801.Google Scholar
Kotsiaros, S., Finlay, C. C. & Olsen, N., 2015. Use of along-track magnetic field differences in lithospheric field modelling, Geophys. J. Int., 200, 878–87.CrossRefGoogle Scholar
Langel, R. A., 1987. The main geomagnetic field, in Geomagnetism, vol. 1, ed. Jacobs, J. A., chapter 4, Academic, San Diego, CA.Google Scholar
Langel, R. A. & Estes, R. H., 1985. Large-scale, near-field magnetic fields from external sources and the corresponding induced internal field, J. Geophys. Res., 90, 2487–94.Google Scholar
Lesur, V., Hamoudi, M., Choi, Y., Dyment, J. & Th´ebault, E., 2016. Building the second version of the World Digital Magnetic Anomaly Map (WDMAM), Earth Planets Space, 68, 27.CrossRefGoogle Scholar
Lesur, V., Rother, M., Vervelidou, F., Hamoudi, M. & Th´ebault, E., 2013. Post-processing scheme for modelling the lithospheric magnetic field, Solid Earth, 4, 105–18.Google Scholar
Lesur, V., Wardinski, I., Baerenzung, J. & Holschneider, M., 2017. On the frequency spectra of the core magnetic field Gauss coefficients, Phys. Earth Planet. Inter., 2, 164–8.Google Scholar
Lesur, V., Wardinski, I. & Hamoudi, M., 2011. Third Version of the GFZ Reference Internal Magnetic Model: GRIMM-3, 25th IUGG General Assembly, Melbourne, Australia.Google Scholar
Lesur, V., Wardinski, I., Hamoudi, M. & Rother, M., 2010. The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2, Earth Planets Space, 62, 765–73.CrossRefGoogle Scholar
Lesur, V., Whaler, K. A. & Wardinski, I., 2015. Are geomagnetic data consistent with stably stratified flow at the core-mantle boundary?, Geophys. J. Int., 201, 929–46.CrossRefGoogle Scholar
Levenberg, K., 1944. A method for the solution of certain non-linear problems in least squares, Q. Appl. Math., 2, 164–8.Google Scholar
Livermore, P. W., Hollerbach, R. & Finlay, C. C., 2017. An accelerating high-latitude jet in Earth’s core, Nat. Geosci., 10, 62–8.CrossRefGoogle Scholar
Lowes, F. J., 1966. Mean-square values on sphere of spherical harmonic vector fields, J. Geophys. Res., 71, 2179.Google Scholar
Lowes, F. J. & Olsen, N., 2004. A more realistic estimate of the variances and systematic errors in spherical harmonic geomagnetic field models, Geophys. J. Int., 157, 1027–44.Google Scholar
Mauersberger, P., 1956. Das Mittel der Energiedichte des geomagnetischen Hauptfeldes an der Erdoberfläche und seine säkulare Änderung, Gerlands Beiträge Geophys., 65, 207–15.Google Scholar
Maus, S. & Haak, V., 2003. Magnetic field annihilators: Invisible magnetization at the magnetic equator, Geophys. J. Int., 155, 509–13.Google Scholar
Maus, S. & Kuvshinov, A., 2004. Ocean tidal signals in observatory and satellite magnetic measurements, Geophys. Res. Lett., 31, 15313.CrossRefGoogle Scholar
Maus, S., Rother, M., Hemant, K., Stolle, C., Lühr, H., Kuvshinov, A. & Olsen, N., 2006. Earth’s lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements, Geophys. J. Int., 164, 319–30.Google Scholar
Maus, S., Yin, F., Lühr, H., Manoj, C., Rother, M., Rauberg, J., Michaelis, I., Stolle, C. & Müller, R. D., 2008. Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements, Geochem. Geophys. Geosyst., 9, Q07021.CrossRefGoogle Scholar
McLeod, M. G., 1986. Stochastic processes on a sphere, Phys. Earth Planet. Inter., 43, 283–99.Google Scholar
McLeod, M. G., 1996. Spatial and temporal power spectra of the geomagnetic field, J. Geophys. Res., 101, 2745–64.Google Scholar
Menke, W., 1989. Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, New York.Google Scholar
Olsen, N., Glassmeier, K.-H. & Jia, X., 2010a. Separation of the magnetic field into external and internal parts, Space Sci. Rev., 152, 135–57.Google Scholar
Olsen, N., Hulot, G., Lesur, V., Finlay, C. C., Beggan, C., Chul- liat, A., Sabaka, T. J., Floberghagen, R., Friis-Christensen, E., Haagmans, R., Kotsiaros, S., Lühr, H., Tøffner-Clausen, L. & Vigneron, P., 2015. The swarm initial field model for the 2014 geomagnetic field, Geophys. Res. Lett., 42, 1092–8.Google Scholar
Olsen, N., Lühr, H., Finlay, C. C., Sabaka, T. J., Michaelis, I., Rauberg, J. & Tøffner-Clausen, L., 2014. The CHAOS-4 geomagnetic field model, Geophys. J. Int., 197, 815–27.Google Scholar
Olsen, N., Mandea, M., Sabaka, T. J. & Tøffner-Clausen, L., 2010b. The CHAOS-3 geomagnetic field model and candidates for the 11th generation IGRF, Earth Planets Space, 62, 719–27.Google Scholar
Olsen, N., Sabaka, T. J. & Lowes, F., 2005. New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005, Earth Planets Space, 57, 1141–9.Google Scholar
Ou, J., Du, A. & Finlay, C. C., 2017. Quasi-biennial oscillations in the geomagnetic field: Their global characteristics and origin, J. Geophys. Res., 122, 5043–58.CrossRefGoogle Scholar
Sabaka, T. J., Olsen, N. & Langel, R. A., 2002. A comprehensive model of the quiet-time, near-Earth magnetic field: Phase 3, Geophys. J. Int., 151, 3268.Google Scholar
Sabaka, T. J., Olsen, N. & Purucker, M. E., 2004. Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data, Geophys. J. Int., 159, 521–47.Google Scholar
Sabaka, T. J., Olsen, N., Tyler, R. H. & Kuvshinov, A., 2015. CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data, Geophys. J. Int., 200, 15961626.Google Scholar
Sabaka, T. J., Tyler, R. H. & Olsen, N., 2016. Extracting ocean-generated tidal magnetic signals from Swarm data through satellite gradiometry, Geophys. Res. Lett., 43, 3237–45.CrossRefGoogle Scholar
Schott, J. J. & Thébault, E., 2011. Modelling the Earths magnetic field from global to regional scales, in Geomagnetic Observations and Models, vol. 1, pp. 229–64, Springer, Netherlands.Google Scholar
Schwarte, J., Lühr, H. & Holme, R., 2003. Improved parameterization of external magnetic field from CHAMP measurements, in First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, pp. 240–44, Springer, Berlin.Google Scholar
Silva, L., Jackson, L. & Mound, J., 2012. Assessing the importance and expression of the 6 year geomagnetic oscillation, J. Geophys. Res., 117, 10101.CrossRefGoogle Scholar
Spetzler, J. & Trampert, J., 2003. Implementing spectral leakage corrections in global surface wave tomography, Geophys. J. Int., 155, 532–8.Google Scholar
Stark, P. B., 1992. Inference in infinite-dimensional inverse problems: Discretization and duality, J. Geophys. Res., 97, 14055–82.Google Scholar
Stern, D. P., Langel, R. A. & Mead, G. D., 1980. Backus effect observed by Magsat, Geophys. Res. Lett., 7, 941–4.Google Scholar
Stockmann, R., Finlay, C. C. & Jackson, A., 2009. Imaging Earth’s crustal magnetic field with satellite data: A regularized spherical triangle tessellation approach, Geophys. J. Int., 179, 929–44.Google Scholar
Strang, G., 1988. Linear Algebra and Its Applications, Harbourt Brace Jovanovisch, San Diego.Google Scholar
Sugiura, M. & Kamei, T., 1991. Equatorial DST – index 1957–1986, IAGA Bull., 40.Google Scholar
Tarantola, A., 1987. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier, Amsterdam.Google Scholar
Thébault, E., Finlay, C. C., Alken, P., Beggan, C. D., Canet, E., Chulliat, A., Langlais, B., Lesur, V., Lowes, F. J., Manoj, C., Rother, M. & Schachtschneider, R., 2015. Evaluation of candidate geomagnetic field models for IGRF-12, Earth Planets Space, 67, 112.Google Scholar
Thébault, E., Langlais, B., Oliveira, J. S., Amit, H. & Leclercq, L., 2018. A time-averaged regional model of the Hermean magnetic field, Phys. Earth Planet. Inter., 276, 93105.Google Scholar
Thébault, E., Lesur, V., Kauristie, K. & Shore, R., 2017. Magnetic field data correction in space for modelling the lithospheric magnetic field, Space Sci. Rev., 206, 191223.Google Scholar
Thébault, E., Vervelidou, F., Lesur, V. & Hamoudi, M., 2012. The satellite along-track analysis in planetary magnetism, Geophys. J. Int., 188, 891907.Google Scholar
Thomson, A. W. P. & Lesur, V., 2007. An improved geomagnetic data selection algorithm for global geomagnetic field modelling, Geophys. J. Int., 169, 951–63.Google Scholar
Trampert, J. & Snieder, R., 1996. Model estimations biased by truncated expansions: Possible artifacts in seismic tomography, Science, 271, 1257–60.Google Scholar
Tyler, R. H., Maus, S. & Lühr, H., 2003. Satellite observations of magnetic fields due to ocean tidal flow, Science, 299, 239–41.Google Scholar
Wardinski, I. & Lesur, V., 2012. An extended version of the C3 FM geomagnetic field model: Application of a continuous frozen-flux constraint, Geophys. J. Int., 189, 1409–29.Google Scholar
Whaler, K. A., 1980. Does the whole of the Earth’s core convect?, Nature, 287, 528–30.Google Scholar
Whaler, K. A. & Gubbins, D., 1981. Spherical harmonic analysis of the geomagnetic field: An example of a linear inverse problem, Geophys. J., 65, 645–93.Google Scholar
Wiese, D. N., Killett, B., Watkins, M. M. & Yuan, D.-N., 2016. Antarctic tides from GRACE satellite accelerations, J. Geophys. Res., 121, 2874–86.Google Scholar
Zhang, H. & Thurber, C. H., 2007. Estimating the model resolution matrix for large seismic tomography problems based on Lanczos bidiagonalization with partial reorthogonalization, Geophys. J. Int., 170, 337–45.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×