Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T21:27:42.649Z Has data issue: false hasContentIssue false

Part III - Spatial and Temporal Variations of the Geomagnetic Field

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 113 - 206
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Arneitz, P., Leonhardt, R., Schnepp, E., Heilig, B., Mayrhofer, F., Kovacs, P., Hejda, P., Valach, F., Vadasz, G., Hammerl, C. et al. The histmag database: combining historical, archaeomagnetic and volcanic data. Geophys. J. Int., 210(3):1347–59, 2017.CrossRefGoogle Scholar
Aubert, J.. Earth’s core internal dynamics 1840–2010 imaged by inverse geodynamo modelling. Geophys. J. Int., 197(3):1321–34, 2014.CrossRefGoogle Scholar
Aubert, J.. Geomagnetic forecasts driven by thermal wind dynamics in the Earth’s core. Geophys. J. Int., 203(3): 1738–51, 2015.CrossRefGoogle Scholar
Aubert, J., Amit, H., Hulot, G. and Olson, P.. Thermochemical flows couple the Earth’s inner core growth to mantle heterogeneity. Nature, 454(7205):758, 2008.Google Scholar
Aubert, J., Finlay, C. C. and Fournier, A.. Bottom-up control of geomagnetic secular variation by the Earth’s inner core. Nature, 502(7470):219, 2013.Google Scholar
Aubert, J., Gastine, T. and Fournier, A.. Spherical convective dynamos in the rapidly rotating asymptotic regime. J. Fluid Mech., 813:558–93, 2017.CrossRefGoogle Scholar
Baerenzung, J., Holschneider, M. and Lesur, V.. The flow at the Earth’s core-mantle boundary under weak prior constraints. J. Geophys. Res., 121(3): 1343–64, 2016.Google Scholar
Baerenzung, J., Holschneider, M., Wicht, J., Sanchez, S. and Lesur, V.. Modeling and predicting the short term evolution of the geomagnetic field. arXiv preprint arXiv:1710.06188, 2017.Google Scholar
Bardsley, O. and Davidson, P. A.. Inertial–Alfvén waves as columnar helices in planetary cores. J. Fluid Mech., 805, 2016.CrossRefGoogle Scholar
Barrois, O., Gillet, N. and Aubert, J.. Contributions to the geomagnetic secular variation from a reanalysis of core surface dynamics. Geophys. J. Int., 211(1):5068, 2017.Google Scholar
Barrois, O., Hammer, M., Finlay, C., Martin, Y., & Gillet, N., 2018. Assimilation of ground and satellite magnetic measurements: inference of core surface magnetic and velocity field changes, Geophys. J. Int., 215(1), 695712.Google Scholar
Beggan, C. and Whaler, K.. Forecasting secular variation using core flows. Earth Planets Space, 62(10):11, 2010.Google Scholar
Bloxham, J.. Simple models of fluid flow at the core surface derived from geomagnetic field models. Geophys. J. Int., 99(1):173–82, 1989.Google Scholar
Bloxham, J. and Jackson, A.. Time-dependent mapping of the magnetic field at the core-mantle boundary. J. Geophys. Res., 97(B13):19537–63, 1992.Google Scholar
Bouligand, C., Gillet, N., Jault, D., Schaeffer, N., Fournier, A. and Aubert, J.. Frequency spectrum of the geomagnetic field harmonic coefficients from dynamo simulations. Geophys. J. Int., 2016.Google Scholar
Braginsky, S. I.. Torsional magnetohydrodynamic vibrations in the Earth’s core and variations in day length. Geomag. Aeron., 10:18, 1970.Google Scholar
Braginsky, S. I.. MAC-oscillations of the hidden ocean of the core. J. Geomag. Geoelec., 45(11–12):1517–38, 1993.Google Scholar
Braginsky, S. I.. Dynamics of the stably stratified ocean at the top of the core. Phys. Earth Planet. Int., 111(1): 2134, 1999.Google Scholar
Brodholt, J. and Badro, J.. Composition of the low seismic velocity E’ layer at the top of Earth’s core. Geophys. Res. Lett., 2017.Google Scholar
Brown, M. C., Donadini, F., Korte, M., Nilsson, A., Korhonen, K., Lodge, A., Lengyel, S. N. and Constable, C. G.. GEOMAGIA50. v3: 1. general structure and modifications to the archeological and volcanic database. Earth Planets Space, 67(1):83, 2015.Google Scholar
Buffett, B.. Geomagnetic fluctuations reveal stable stratification at the top of the Earth’s core. Nature, 507(7493): 484, 2014.CrossRefGoogle ScholarPubMed
Buffett, B. and Matsui, H.. A power spectrum for the geomagnetic dipole moment. Earth Planet. Sci. Lett., 411: 2026, 2015.Google Scholar
Buffett, B., Mathews, P. and Herring, T.. Modeling of nutation and precession: Effects of electromagnetic coupling. J. Geophys. Res.: Solid Earth, 107(B4), 2002.Google Scholar
Buffett, B., Knezek, N. and Holme, R.. Evidence for MAC waves at the top of Earth’s core and implications for variations in length of day. Geophys. J. Int., 204(3): 17891800, 2016.Google Scholar
Calkins, M. A., Julien, K. and Marti, P.. Three-dimensional quasi-geostrophic convection in the rotating cylindrical annulus with steeply sloping endwalls. J. Fluid Mech., 732:214–44, 2013.Google Scholar
Canet, E., Fournier, A. and Jault, D.. Forward and adjoint quasi-geostrophic models of the geomagnetic secular variation. J. Geophys. Res., 114(B11), 2009.CrossRefGoogle Scholar
Canet, E., Finlay, C. and Fournier, A.. Hydromagnetic quasi-geostrophic modes in rapidly rotating planetary cores. Phys. Earth Planet. Inter., 229:115, 2014.Google Scholar
Cardin, P. and Olson, P.. Experiments on core dynamics. In Treatise on Geophysics, 2nd edn. Elsevier BV, Amsterdam, pages 317–39, 2015.Google Scholar
Chao, B. F., Chung, W., Shih, Z. and Hsieh, Y.. Earth’s rotation variations: A wavelet analysis. Terra Nova, 26 (4):260–64, 2014.Google Scholar
Christensen, U. R. and Wicht, J.. Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn. Icarus, 196(1):1634, 2008.Google Scholar
Christensen, U. R., Aubert, J. and Hulot, G.. Conditions for Earth-like geodynamo models. Earth Planet. Sci. Lett., 296(3):487–96, 2010.Google Scholar
Chulliat, A. and Maus, S.. Geomagnetic secular acceleration, jerks, and a localized standing wave at the core surface from 2000 to 2010. J. Geophys. Res., 119(3):1531–43, 2014.Google Scholar
Chulliat, A., Alken, P. and Maus, S.. Fast equatorial waves propagating at the top of the Earth’s core. Geophys. Res. Lett., 42(9):3321–9, 2015.Google Scholar
Constable, C. G. and Johnson, C.. A paleomagnetic power spectrum. Phys. Earth Planet. Inter., 153:6173, 2005.Google Scholar
Constable, C. G. and Korte, M.. Centennial to millennialscale geomagnetic field variations. In Treatise on Geophysics, 2nd edn., Elsevier BV, Amsterdam, pages 309–41. 2015.Google Scholar
De Santis, A., Barraclough, D. and Tozzi, R.. Spatial and temporal spectra of the geomagnetic field and their scaling properties. Phys. Earth Planet. Inter., 135:125–34, 2003.Google Scholar
Dormy, E., Oruba, L. and Petitdemange, L.. Three branches of dynamo action. Fluid Dyn. Res., 2017.CrossRefGoogle Scholar
Finlay, C., Lesur, V., Thèbault, E., Vervelidou, F., Morschhauser, A. and Shore, R.. Challenges handling magnetospheric and ionospheric signals in internal geomagnetic field modelling. Space Sci. Rev., 206(1–4):157–89, 2017.CrossRefGoogle Scholar
Finlay, C. C.. Course 8 waves in the presence of magnetic fields, rotation and convection. Les Houches, 88:403–50, 2008.Google Scholar
Finlay, C. C. and Jackson, A.. Equatorially dominated magnetic field change at the surface of Earth’s core. Science, 300(5628):2084–6, 2003.Google Scholar
Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N. and Tøffner-Clausen, L.. Recent geomagnetic secular variation from Swarm. Earth Planets Space, 68(1):118, 2016.CrossRefGoogle Scholar
Fournier, A., Hulot, G., Jault, D., Kuang, W., Tangborn, A., Gillet, N., Canet, E., Aubert, J. and Lhuillier, F.. An introduction to data assimilation and predictability in geomagnetism. Space Sci. Rev., 155(1–4):247–91, 2010.CrossRefGoogle Scholar
Fournier, A., Aubert, J. and Thèbault, E.. Inference on core surface flow from observations and 3-D dynamo modelling. Geophys. J. Int., 186(1):118–36, 2011.Google Scholar
Fournier, A., Nerger, L. and Aubert, J.. An ensemble Kalman filter for the time-dependent analysis of the geomagnetic field. Geophys. Geochem. Geosyst., 14(10): 4035–43, 2013.Google Scholar
Fournier, A., Aubert, J. and Thèbault, E.. A candidate secular variation model for IGRF-12 based on swarm data and inverse geodynamo modelling. Earth Planets Space, 67(1):117, 2015.Google Scholar
Garcia, F., Oruba, L. and Dormy, E.. Equatorial symmetry breaking and the loss of dipolarity in rapidly rotating dynamos. Geophys. Astrophys. Fluid Dyn., 1–14, 2017.Google Scholar
Genevey, A., Gallet, Y., Jesset, S., Thèbault, E., Bouillon, J., Lefèvre, A. and Le Goff, M.. New archeointensity data from french early medieval pottery production (6th–10th century ad). Tracing 1500 years of geomagnetic field intensity variations in Western Europe. Phys. Earth Planet. Inter., 257:205–19, 2016.Google Scholar
Gillet, N., Jault, D., Canet, E. and Fournier, A.. Fast torsional waves and strong magnetic field within the Earth’s core. Nature, 465(7294):74, 2010.Google Scholar
Gillet, N., Schaeffer, N. and Jault, D.. Rationale and geophysical evidence for quasi-geostrophic rapid dynamics within the Earth’s outer core. Phys. Earth Planet. Inter., 187:380–90, 2011.Google Scholar
Gillet, N., Jault, D., Finlay, C. C. and Olsen, N.. Stochastic modelling of the Earth’s magnetic field: inversion for covariances over the observatory era. Geophys. Geochem. Geosyst., 14:766–86, 2013.Google Scholar
Gillet, N., Barrois, O. and Finlay, C. C.. Stochastic forecasting of the geomagnetic field from the COV-OBS.x1 geomagnetic field model, and candidate models for IGRF-12. Earth Planets Space, 67(1):71, 2015a.Google Scholar
Gillet, N., Jault, D. and Finlay, C.. Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth’s core surface. J. Geophys. Res., 120(6):39914013, 2015b.Google Scholar
Gillet, N., Jault, D. and Canet, E.. Excitation of traveling torsional normal modes in an Earth’s core model. Geophys. J. Int., 2017.Google Scholar
Gubbins, D., Willis, A. P. and Sreenivasan, B.. Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure. Phys. Earth Planet. Inter., 162(3):256–60, 2007.CrossRefGoogle Scholar
Helffrich, G. and Kaneshima, S.. Outer-core compositional stratification from observed core wave speed profiles. Nature, 468(7325):807, 2010.Google Scholar
Hellio, G. and Gillet, N.. Geomagnetic field changes over the past three millennia, and their uncertainties. Geophys. J. Int., submitted, 2018.Google Scholar
Hide, R.. Free hydromagnetic oscillations of the Earth’s core and the theory of the geomagnetic secular variation. Philos. Trans. R. Soc. London A, 259(1107):615–47, 1966.Google Scholar
Holme, R.. Electromagnetic core-mantle coupling II: Probing deep mantle conductance. In The Core-Mantle Boundary Region, American Geophysical Union, Washington, DC, pages 139–51, 1998.Google Scholar
Holschneider, M., Lesur, V., Mauerberger, S. and Baerenzung, J.. Correlation-based modeling and separation of geomagnetic field components. J. Geophys. Res., 121(5):3142–60, 2016.Google Scholar
Hori, K., Teed, R. and Jones, C.. The dynamics of magnetic Rossby waves in spherical dynamo simulations: A signature of strong-field dynamos? Phys. Earth Planet. Inter., 2017.CrossRefGoogle Scholar
Jackson, A. and Finlay, C.. Geomagnetic secular variation and its applications to the core. In Treatise on Geophysics, 2nd edn., Elsevier BV, Amsterdam, pages 137–84, 2015.Google Scholar
Jackson, A., Jonkers, A. R. T. and Walker, M. R.. Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. London A, 358:957–90, 2000.CrossRefGoogle Scholar
Jault, D.. Axial invariance of rapidly varying diffusionless motions in the Earth’s core interior. Phys. Earth Planet. Inter., 166(1):6776, 2008.Google Scholar
Jault, D.. Illuminating the electrical conductivity of the lowermost mantle from below. Geophys. J. Inter., 202:482–96, 2015.CrossRefGoogle Scholar
Jault, D. and Finlay, C.. Waves in the core and mechanical core-mantle interactions. In Treatise on Geophysics, 2nd edn., Elsevier BV, Amsterdam, pages 225–45, 2015.Google Scholar
Jones, C.. Thermal and compositional convection in the outer core. In Treatise on Geophysics, 2nd edn., Elsevier BV, Amsterdam, pages 115–59, 2015.Google Scholar
Jonkers, A. R., Jackson, A. and Murray, A.. Four centuries of geomagnetic data from historical records. Rev. Geophys., 41(2), 2003.Google Scholar
Kageyama, A., Miyagoshi, T. and Sato, T.. Formation of current coils in geodynamo simulations. Nature, 454(7208):1106, 2008.Google Scholar
Konȏpková, Z., McWilliams, R. S., Gómez-Pèrez, N. and Goncharov, A. F.. Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature, 534:99101, 2016.Google Scholar
Korte, M. and Constable, C.. Improving geomagnetic field reconstructions for 0–3 ka. Phys. Earth Planet. Inter., 188:247–59, 2011.CrossRefGoogle Scholar
Kuang, W. and Tangborn, A.. Dynamic responses of the Earth’s outer core to assimilation of observed geomagnetic secular variation. Prog. Earth Planet. Sci., 2(1):40, 2015.Google Scholar
Kuang, W., Tangborn, A., Wei, Z. and Sabaka, T.. Constraining a numerical geodynamo model with 100 years of surface observations. Geophys. J. Int., 179(3):1458–68, 2009.CrossRefGoogle Scholar
Kuang, W., Wei, Z., Holme, R. and Tangborn, A.. Prediction of geomagnetic field with data assimilation: a candidate secular variation model for IGRF-11. Earth Planets Space, 62(10):7, 2010.Google Scholar
Labbé, F., Jault, D. and Gillet, N.. On magnetostrophic inertialess waves in quasi-geostrophic models of planetary cores. Geophys. Astrophys. Fluid Dyn., 109(6):587610, 2015.Google Scholar
Le Bars, M., Cèbron, D. and Le Gal, P.. Flows driven by libration, precession, and tides. Ann. Rev. Fluid Mech., 47:163–93, 2015.Google Scholar
Lesur, V., Wardinski, I., Hamoudi, M. and Rother, M.. The second generation of the GFZ reference internal magnetic model: GRIMM-2. Earth Planets Space, 62(10):6, 2010.Google Scholar
Lesur, V., Heumez, B., Telali, A., Lalanne, X. and Soloviev, A.. Estimating error statistics for Chambonla-Forêt observatory definitive data. Ann. Geophys., 35:939, 2017a.CrossRefGoogle Scholar
Lesur, V., Wardinski, I., Baerenzung, J. and Holschneider, M.. On the frequency spectra of the core magnetic field gauss coefficients. Phys. Earth Planet. Inter., 2017b.Google Scholar
Lhuillier, F., Aubert, J. and Hulot, G.. Earth’s dynamo limit of predictability controlled by magnetic dissipation. Geophys. J. Int., 186(2):492508, 2011.Google Scholar
Licht, A., Hulot, G., Gallet, Y. and Thèbault, E.. Ensembles of low degree archeomagnetic field models for the past three millennia. Phys. Earth Planet. Inter., 224:3867, 2013.Google Scholar
Liu, D., Tangborn, A. and Kuang, W.. Observing system simulation experiments in geomagnetic data assimilation. J. Geophys. Res., 112(B8), 2007.Google Scholar
Livermore, P. W., Ierley, G. and Jackson, A.. The evolution of a magnetic field subject to taylor s constraint using a projection operator. Geophys. J. Int., 187(2):690704, 2011.Google Scholar
Macmillan, S. and Olsen, N.. Observatory data and the Swarm mission. Earth Planets Space, 65(11):15, 2013.Google Scholar
Maffei, S. and Jackson, A.. Kinematic validation of a quasigeostrophic model for the fast dynamics in the Earth’s outer core. Geophys. J. Int., 2017.Google Scholar
Malkus, W. V.. Hydromagnetic planetary waves. J. Fluid Mech., 28(4):793802, 1967.Google Scholar
Mandea, M. and Olsen, N.. A new approach to directly determine the secular variation from magnetic satellite observations. Geophys. Res. Lett., 33(15), 2006.Google Scholar
Mandea, M., Holme, R., Pais, A., Pinheiro, K., Jackson, A. and Verbanac, G.. Geomagnetic jerks: Rapid core field variations and core dynamics. Space Sci. Rev., 155(1):147–75, 2010.Google Scholar
Meduri, D. G. and Wicht, J.. A simple stochastic model for dipole moment fluctuations in numerical dynamo simulations. Frontiers Earth Sci., 4:38, 2016.Google Scholar
Nataf, H.-C. and Schaeffer, N.. Turbulence in the core. In Treatise on Geophysics, 2nd edn., Elsevier BV, Amsterdam, pages 161–81. 2015.Google Scholar
Nilsson, A., Muscheler, R. and Snowball, I.. Millennial scale cyclicity in the geodynamo inferred from a dipole tilt reconstruction. Earth Planet. Sci. Lett., 311(3):299305, 2011.Google Scholar
Ohta, K., Kuwayama, Y., Hirose, K., Shimizu, K. and Ohishi, Y.. Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature, 534(7605):95–8, 2016.Google Scholar
Oke, P. R., Sakov, P. and Corney, S. P.. Impacts of localisation in the enkf and enoi: experiments with a small model. Ocean Dyn., 57(1):3245, 2007.Google Scholar
Olsen, N. and Kotsiaros, S.. The geomagnetic field gradient tensor, properties and parametrization in terms of spherical harmonics. Int. J. Geomath., 2012.CrossRefGoogle Scholar
Olsen, N., Glassmeier, K.-H. and Jia, X.. Separation of the magnetic field into external and internal parts. Space Sci. Rev., 152(1–4):135–57, 2010.Google Scholar
Olsen, N., Lühr, H., Finlay, C. C., Sabaka, T. J., Michaelis, I., Rauberg, J. and Tøffner-Clausen., L. The CHAOS-4 geomagnetic field model. Geophys. J. Int., 197(2):815–27, 2014.Google Scholar
Olson, P., Christensen, U. and Driscoll, P.. From superchrons to secular variation: A broadband dynamo frequency spectrum for the geomagnetic dipole. Earth Planet. Sci. Lett., 319–20:7582, 2012.Google Scholar
Olson, P., Landeau, M. and Reynolds, E.. Dynamo tests for stratification below the core-mantle boundary. Phys. Earth Planet. Inter., 271:118, 2017.Google Scholar
Pais, M. and Jault, D.. Quasi-geostrophic flows responsible for the secular variation of the Earth’s magnetic field. Geophys. J. Int., 173(2):421–43, 2008.Google Scholar
Panovska, S., Finlay, C. and Hirt, A.. Observed periodicities and the spectrum of field variations in Holocene magnetic records. Earth Planet. Sci. Lett., 379:8894, 2013.Google Scholar
Panovska, S., Korte, M., Finlay, C. and Constable, C.. Limitations in paleomagnetic data and modelling techniques and their impact on holocene geomagnetic field models. Geophys. J. Int., 202(1):402–18, 2015.Google Scholar
Pavón-Carrasco, F. J., Osete, M. L., Torta, J. M. and De Santis, A.. A geomagnetic field model for the holocene based on archaeomagnetic and lava flow data. Earth Planet. Sci. Lett., 388:98109, 2014.Google Scholar
Pozzo, M., Davies, C., Gubbins, D. and Alfe`, D.. Thermal and electrical conductivity of iron at Earth’s core conditions. Nature, 485(7398):355–58, 2012.Google Scholar
Roberts, P. H. and Wu, C.-C.. On the modified taylor constraint. Geophys. Astrophys. Fluid Dyn., 108(6):696715, 2014.Google Scholar
Sabaka, T. J., Olsen, N. and Purucker, M. E.. Extending comprehensive models of the earth’s magnetic field with Ørsted and CHAMP data. Geophys. J. Int., 159(2): 521–47, 2004.Google Scholar
Sabaka, T. J., Hulot, G. and Olsen, N.. Mathematical properties relevant to geomagnetic field modeling. In Handbook of Geomathematics, Springer, pages 503–38, 2010.Google Scholar
Sabaka, T. J., Olsen, N., Tyler, R. H. and Kuvshinov, A.. Cm5, a pre-swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data. Geophys. J. Int., 200(3):15961626, 2015.Google Scholar
Sakuraba, A. and Roberts, P. H.. Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nat. Geosci., 2(11):802–5, 2009.Google Scholar
Sanchez, S.. Assimilation of geomagnetic data into dynamo models, an archeomagnetic study. PhD thesis, Institut de Physique du Globe de Paris, 2016.Google Scholar
Sanchez, S., Fournier, A., Aubert, J., Cosme, E. and Gallet, Y.. Modelling the archaeomagnetic field under spatial constraints from dynamo simulations: a resolution analysis. Geophys. J. Int., 207:9831002, 2016.Google Scholar
Schaeffer, N. and Jault, D.. Electrical conductivity of the lowermost mantle explains absorption of core torsional waves at the equator. Geophys. Res. Lett., 43(10):4922–8, 2016.Google Scholar
Schaeffer, N., Jault, D., Nataf, H.-C. and Fournier, A.. Turbulent geodynamo simulations: A leap towards Earth’s core. Geophys. J. Int., 211(1):129, 2017.Google Scholar
Soderlund, K. M., King, E. M. and Aurnou, J. M.. The influence of magnetic fields in planetary dynamo models. Earth Planet. Sci. Lett., 333:920, 2012.CrossRefGoogle Scholar
Soloviev, A., Chulliat, A. and Bogoutdinov, S.. Detection of secular acceleration pulses from magnetic observatory data. Phys. Earth Planet. Inter., 270:128–42, 2017.Google Scholar
Sreenivasan, B. and Jones, C. A.. Helicity generation and subcritical behaviour in rapidly rotating dynamos. J. Fluid Mech., 688:5, 2011.CrossRefGoogle Scholar
Takehiro, S.-I.. Penetration of Alfn waves into an upper stably-stratified layer excited by magnetoconvection in rotating spherical shells. Phys. Earth Planet. Inter., 241:3743, 2015.Google Scholar
Takehiro, S.-I. and Lister, J. R.. Penetration of columnar convection into an outer stably stratified layer in rapidly rotating spherical fluid shells. Earth Planet. Sci. Lett., 187(3):357–66, 2001.Google Scholar
Takehiro, S.-I. and Sasaki, Y.. Penetration of steady fluid motions into an outer stable layer excited by MHD thermal convection in rotating spherical shells. Phys. Earth Planet. Inter., 2017.Google Scholar
Tangborn, A. and Kuang, W.. Geodynamo model and error parameter estimation using geomagnetic data assimilation. Geophys. J. Int., 200(1):664–75, 2015.Google Scholar
Taylor, J.. The magneto-hydrodynamics of a rotating fluid and the Earth’s dynamo problem. Proc. R. Soc. London A, 274(1357):274–83, 1963.Google Scholar
Teed, R. J., Jones, C. A. and Tobias, S. M.. The transition to Earth-like torsional oscillations in magnetoconvection simulations. Earth Planet. Sci. Lett., 419:2231, 2015.Google Scholar
Thomson, A. W. and Lesur, V.. An improved geomagnetic data selection algorithm for global geomagnetic field modelling. Geophys. J. Int., 169(3):951–63, 2007.Google Scholar
Tøffner-Clausen, L., Lesur, V., Olsen, N. and Finlay, C. C.. In-flight scalar calibration and characterisation of the Swarm magnetometry package. Earth Planets Space, 68(1):129, 2016.Google Scholar
Turner, G., Rasson, J. and Reeves, C.. Observation and measurement techniques. In Treatise on Geophysics, 2nd edn., Elsevier BV, Amsterdam, pages 91135, 2015.Google Scholar
Velímskỳ, J.. Electrical conductivity in the lower mantle: Constraints from CHAMP satellite data by time-domain em induction modelling. Phys. Earth Planet. Inter., 180(3):111–17, 2010.Google Scholar
Vidal, J. and Schaeffer, N.. Quasi-geostrophic modes in the Earth’s fluid core with an outer stably stratified layer. Geophys. J. Int., 202(3):2182–93, 2015.Google Scholar
Walker, M., Barenghi, C. and Jones, C.. A note on dynamo action at asymptotically small ekman number. Geophys. Astrophys. Fluid Dyn., 88(1–4):261–75, 1998.Google Scholar
Yadav, R. K., Gastine, T., Christensen, U. R., Wolk, S. J. and Poppenhaeger, K.. Approaching a realistic force balance in geodynamo simulations. Proc. Natl. Acad. Sci. USA, 113(43):12065–70, 2016.Google Scholar

References

Besse, J. & Courtillot, V. (2002), ‘Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 myr’, J. Geophys. Res. B11(107).Google Scholar
Blakely, R. (1995), Potentiel Theory in Gravity and Magnetic Applications, Cambridge University Press, Cambridge.Google Scholar
Bouligand, C., Glen, J. & Blakely, R. (2009), ‘Mapping curie temperature depth in the western united states with a fractal model for crustal magnetization’, J. Geophys. Res. 114, B11104.Google Scholar
Catalán, M., Dyment, J., Lesur, V., Thébault, E., Hamoudi, M., Choi, Y., Santis, A. D., Takemi, I., Korhonen, J., Litvinova, T., Luís, J., Meyer, B., Milligan, P., Masao, N., Okuma, S., Pilkington, M., Purucker, M., Ravat, D., Gaina, C., Maus, S., Quesnel, Y., Saltus, R. & Taylor, P. (2016), ‘Making a better magnetic map’, EOS 97.Google Scholar
Counil, J.-L., Cohen, Y. & Achache, J. (1991), ‘A global continent-ocean magnetization contrast: spherical harmonic analysis’, Earth Planet. Sci. Lett. 103, 354–64.Google Scholar
Dyment, J. & Arkani-Hamed, J. (1998), ‘Contribution of lithospheric remanent magnetization to satellite magnetic anomalies over the world’s oceans’, J. Geophys. Res. 103, 15423–42.Google Scholar
Dyment, J., Choi, Y., Hamoudi, M., Lesur, V. & Thébault, E. (2015), ‘Global equivalent magnetization of the oceanic lithosphere’, Earth Planet. Sci. Lett. 430, 5465.Google Scholar
Fox Maule, C., Purucker, M. E., Olsen, N. & Mosegaard, K. (2005), ‘Heat flux anomalies in Antarctica revealed by satellite magnetic data’, Science 309, 464‒67.Google Scholar
Fox Maule, C., Purucker, M. & Olsen, N. (2005), ‘The magnetic crustal thickness of Greenland’, in Reigber, C., Lhr, H., Schwintzer, P. & Wickert, J., eds., Earth Observation with CHAMP, Results from Three Years in Orbit, Springer.Google Scholar
Gubbins, D., Ivers, D., Masterton, S. M. & Winch, D. E. (2011), ‘Analysis of lithospheric magnetization in vector spherical harmonics’, Geophys. J. Int. 187, 99117.Google Scholar
Gubbins, D., Ivers, D. & Williams, S. (2017), ‘Analysis of regional crustal magnetization in vector cartesian harmonics’, Geophys. J. Int. 211, 1285–95.Google Scholar
Hamoudi, M., Thébault, E., Lesur, V. & Mandea, M. (2007), ‘Geoforschungszentrum anomaly magnetic map (gamma): A candidate model for the world digital magnetic anomaly map’, Geochem Geophys. Geosyst. 8.Google Scholar
Hemant, K., Thébault, E., Mandea, M., Ravat, D. & Maus, S. (2007), ‘Magnetic anomaly map of the world: merging satellite, airborne, marine and ground-based magnetic data sets’, Earth Planet Sci. Lett. 260, 5671.Google Scholar
Jackson, A. (1994), ‘Statistical treatment of crustal magnetization’, Geophys. J. Int. 119, 991–8.Google Scholar
Korhonen, J., Fairhead, J., Hamoudi, M., Hemant, K., Lesur, V., Mandea, M., Maus, S., Purucker, M., Ravat, D., Sazonova, T. & Th_ebault, E. (2007), Magnetic Anomaly Map of the World/Carte des anomalies magnetiques du monde, 1st edn., Commission for the Geological Map of the World, Paris.Google Scholar
Lesur, V. (2006), ‘Introducing localized constraints in global geomagnetic field modelling’, Earth Planets Space 58, 477–83.Google Scholar
Lesur, V., Hamoudi, M., Choi, Y., Dyment, J. & Thébault, E. (2016), ‘Building the second version of the world digital magnetic anomaly map (WDMAM)’, Earth Planets Space 68, 27.Google Scholar
Lesur, V., Rother, M., Vervelidou, F., Hamoudi, M. & Thébault, E. (2013), ‘Post-processing scheme for modeling the lithospheric magnetic field’, Solid Earth 4, 105–18.Google Scholar
Maus, S., Lühr, H., Hemant, K., Balasis, G., Ritter, P. & Stolle, C. (2007), ‘Fifth generation lithospheric magnetic field model from CHAMP satellite measurements’, Geochem. Geophys. Geosys. 8, Q05013, doi: 10.1029/2006GC001521.Google Scholar
Maus, S., Sazonova, T., Hemant, K., Fairhead, J. & Ravat, D. (2007), ‘National geophysical data center candidate for the world digital magnetic anomaly map’, Geochem. Geophys. Geosyst. 8, Q06017.Google Scholar
Mayhew, M. (1979), ‘Inversion of satellite magnetic anomaly data’, J. Geophys. 45, 119–28.Google Scholar
Parker, R. L., Shure, L. & Hildebrand, J. A. (1987), ‘The application of inverse theory to seamount magnetism’, Rev. Geophys. 25, 1740.Google Scholar
Purucker, M., Langlais, B., Olsen, N., Hulot, G. & Mandea, M. (2002), ‘The southern edge of cratonic north america: Evidence from new stallite magnetometer observations’, Geophys. Res. Lett. 29(15), 8000.Google Scholar
Quesnel, Y., Cataláan, M. & Ishihara, T. (2009), ‘A new global marine magnetic anomaly data set’, J. Geophys. Res. 114, B04106.Google Scholar
Ravat, D., Finn, C., Hill, P., Kucks, R., Phillips, J., Blakely, R., Bouligand, C., Sabaka, T., Elshayat, A., Aref, A. & Elawadi, E. (2009), A preliminary, full spectrum, magnetic anomaly grid of the united states with improved long wavelengths for studying continental dynamics, Open-File Report 2009 1258, US Geological Survey.Google Scholar
Ravat, D., Hildenbrand, T. & Roest, W. (2003), ‘New way of processing near-surface magnetic data: the utility of the comprehensive model of the magnetic field’, Leadind Edge 22, 784–5.Google Scholar
Ravat, D., Wang, B., Wildermuth, E. & Taylor, P. (2002), ‘Gradients in the interpretation of satellite-altitude magnetic data: An example from central Africa’, J. Geodyn. 33(1–2), 131–42.Google Scholar
Runcorn, S. K. (1975), ‘On the interpretation of lunar magnetism’, Phys. Earth Planet. Inter. 10, 327–35.Google Scholar
Sabaka, T. J., Olsen, N. & Purucker, M. E. (2004), ‘Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data’, Geophys. J. Int. 159, 521–47.Google Scholar
Spector, A. & Grant, F. (1970), ‘Statistical models for interpreting aeromagnetic data’, Geophysics 35, 293302.Google Scholar
Thébault, E. & Vervelidou, F. (2015), ‘A statistical spatial power spectrum of the Earth’s lithospheric magnetic field’, Geophys. J. Int. 201(2), 605–20.Google Scholar
Thébault, E., Vigneron, P., Langlais, B. & Hulot, G. (2016), ‘A swarm lithospheric magnetic field model to SH degree 80’, Earth Planets Space 68(1), 126.Google Scholar
Vervelidou, F., Lesur, V., Grott, M., Morschhauser, A. & Lillis, R. J. (2017b), ‘Constraining the date of the martian dynamo shutdown by means of craters’ magnetization signatures’, J. Geophys. Res. Planets 122.Google Scholar
Vervelidou, F., Lesur, V., Morschhauser, A. & Grott, M. (2017a), ‘On the accuracy of paleopole estimations from magnetic measurements’, Geophys. J. Int. 211, 1669–78.Google Scholar
Vervelidou, F. & Thébault, E. (2015), ‘Global maps of the magnetic thickness and magnetization of the earth’s lithosphere’, Earth Planets Space 67(1), 119.Google Scholar
Voorhies, C. V., Sabaka, T. & Purucker, M. (2002), ‘On magnetic spectra of Earth and Mars’, J. Geophy. Res. 107 (E6), 5034.Google Scholar
Wonik, T., Trippler, K., Geipel, H., Greinwald, S. & Pashkevitch, I. (2001), ‘Magnetic anomaly map for northern, western, and eastern Europe’, Terra Nova 13(3), 203–13.Google Scholar

References

Abdu, M. A., et al. (2008), ‘Abnormal evening vertical plasma drift and effects on ESF and EIA over Brazil-South Atlantic sector during the 30 October 2003 superstorm’, J. Geophys. Res., 113, A07313, doi: 10.1029/2007JA012844.Google Scholar
Anderson, B. J., Korth, H., Waters, C. L., Green, D. L., Merkin, V. G., Barnes, R. J. and Dyrud, L. P. (2014), ‘Development of large-scale Birkeland currents determined from the Active Magnetosphere and Planetary Electrodynamics Response Experiment’, Geophys Res. Lett., 41, 3017–25, doi: 10.1002/2014GL059941.Google Scholar
Anderson, D. N. (1973), ‘A theoretical study of ionospheric F region equatorial anomaly – I. Theory’, Planet. Space Sci., 21, 409.Google Scholar
Anderson, D. N. (1981), ‘Modelling the ambient low latitude F region ionosphere – A review’, J. Atmos. Terr. Phys., 43, 753.Google Scholar
Appleton, E. V. (1946), ‘Two anomalies in the ionosphere’, Nature, 157, 691.Google Scholar
Astafyeva, Elvira, Zakharenkova, Irina and Matthias, Forster (2015), ‘Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrument overview’, J. Geophys. Res., 120, 9023–37, doi: 10.1002/2015JA021629.Google Scholar
Bahair, Siti Aminah, Abdullah, Mardina and Yatim, Baharuding (2011), ‘The response of TEC at quasi-conjugate point GPS stations during solar flares’, Acta Geophys., 59, 407–27, doi: 10.2478/s11600-010-0054-1.Google Scholar
Bailey, G. J. and Balan, N. (1996), ‘A low latitude Ionosphere-plasmasphere model’, in STEP Hand Book of Ionospheric Models, ed. R. W. Schunk, Utah State University, Logan.Google Scholar
Bailey, G. J., Balan, N. and Su, Y. Z. (1997), ‘The Sheffield University plasmasphere-ionosphere model – a review’, J. Atmos. Terr. Phys., 59, 1541.Google Scholar
Balan, N, Bailey, G. J., Abdu, M. A., Oyama, K. I., Richards, P. G., MacDougall, J. and Batista, I. S. (1997), ‘Equatorial plasma fountain and its effects over three locations: Evidence for an additional layer, the F3 layer’, J. Geophys. Res., 102, 2047–56.Google Scholar
Balan, N., Shiokawa, K., Otsuka, Y., Watanabe, S. and Bailey, G. J. (2009), ‘Super plasma fountain and equatorial ionization anomaly during penetration electric field’, J. Geophys. Res., 114, A03310, doi: 10.1029/2008JA013768.Google Scholar
Balan, N. and Bailey, G. J. (1995), ‘Equatorial plasma fountain and its effects – possibility of an additional layer’, J. Geophys. Res., 100, 21421.Google Scholar
Balan, N., Shiokawa, K., Otsuka, Y., Kikuchi, T., Vijaya Lekshmi, D., Kawamura, S., Yamamoto, M. and Bailey, G. J. (2010), ‘A physical mechanism of positive ionospheric storms at low and mid latitudes through observations and modeling’, J. Geophys. Res., 115, A02304, doi: 10.1029/2009JA014515.Google Scholar
Balan, N., Yamamoto, M., Liu, J. Y., Otsuak, Y., Liu, H. and Lühr, H. (2011), ‘New aspects of thermospheric and ionospheric storms revealed by CHAMP’, J. Geophys. Res., 116, A07305, doi: 10.1029/2010JA0160399.Google Scholar
Balan, N., Otsuka, Y., Nishioka, M., Liu, J. Y. and Bailey, G. (2013), ‘Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during MP and RP of geomagnetic storms’, J. Geophys. Res., 118, 2660–69, 2012JA018557.Google Scholar
Banks, P. M. and Kockarts, G. (1973), Aeronomy, Part B, Academic Press, New York.Google Scholar
Brambles, O. J., Lotko, W., Zhang, B., Wiltberger, M., Lyon, J. and Strangeway, R. J. (2011), ‘Magnetosphere sawtooth oscillations induced by ionospheric outflow’, Science, 332, 1183–6, doi: 10.1126/science.1202869.Google Scholar
Burke, W. J., Kilcommons, L. M. and Hairston, M. R. (2017), ‘Storm time coupling between the magnetosheath and the polar ionosphere’, J. Geophys. Res., 122, doi: 10.1002/2017JA024101.Google Scholar
Carlson, H. C., Oksavik, K. and Moen, J. I. (2013), ‘Thermally excited 630.0 nm O(1D) emission in the cusp: A frequent high-altitude transient signature’, J. Geopphys. Res., 118(9), 5842–52.Google Scholar
Chaston, C. C., Bonnell, J. W., Carlson, C. W., McFadden, J. P., Ergun, R. E. and Strangeway, R. J. (2003), ‘Properties of small-scale Alfvén waves and accelerated electrons from FAST’, J. Geophys. Res., 108, 8003, doi: 10.1029/2002JA009420.Google Scholar
Chen, C. H, Lin, C. H., Matsuo, T. and Chen, W. H. (2016b), ‘Ionospheric data assimilation modeling of the 2015 St. Patrick’s Day geomagnetic storm’, J. Geophys. Res., 121, 11549–59, doi: 10.1002/2016JA023346.CrossRefGoogle Scholar
Chen, C. H., Lin, C. H., Matsuo, T., Chen, W. H., Lee, I. T., Liu, J. Y., Lin, J. T. and Hsu, C. T. (2016a), ‘Ionospheric data assimilation with thermosphere-ionosphere-electrodynamics general circulation model and GPS-TEC during geomagnetic storm conditions’, J. Geophys. Res., 121, 5708–22, doi: 10.1002/2015JA021787.Google Scholar
Cherniak, Lurii and Zakharenkova, Irina (2017), ‘New advantages of the combined GPS and GLONASS observations for high-latitude ionospheric irregularities monitoring: case study of June 2015 geomagnetic storm’, Earth Planets Space, 69, doi: 10.1186/s40623-017-0652-0.Google Scholar
Cherniak, Luril and Zakharenkova, Irina (2016), ‘High-latitude ionospheric irregularities: differences between ground- and space-based GPS measurements during the 2015 St. Patrick’s Day storm’, Earth Planets Space, 68, doi: 10.1186/s40623-016-0506-1.Google Scholar
Chisham, G. (2017), ‘A new methodology for the development of high-latitude ionospheric climatologies and empirical models’, J. Geophys. Res., 122, 932–47, doi: 10.1002/2016JA023235.Google Scholar
Clauer, C. Robert, Xu, Zhonghua, Maimaiti, M, Ruohoneimi, J. Michael, Scales, Wayne, Hartinger, Michael D., Nicolls, Michael J., Kaeppler, Stephen, Wilder, Frederick D. and Lopez, Ramon E. (2016), ‘Investigation of a rare event where the polar ionospheric reverse convection potential does not saturate during a period of extreme northward IMF solar wind driving’, J. Geophys. Res., 121, 5422–35, doi: 10.1002/2016JA022557.Google Scholar
Cnossen, Ingrid and Förster, Matthias (2016), ‘North-south asymmetries in the polar thermosphere-ionosphere system: Solar cycle and seasonal influences’, J. Geophys. Res., 121, 612–27, doi: 10.1002/2015JA021750.CrossRefGoogle Scholar
Connor, H. K., Zesta, E., Ober, D. M. and Raeder, J. (2014), ‘The relation between transpolar potential and reconnection rates during sudden enhancement of solar wind dynamic pressure: OpenGGCM-CTIM results’, J. Geophys. Res., 119, 3411–29, doi: 10.1002/2013JA019728.Google Scholar
Cosgrove, R. B., Bahcivan, H., Chen, S., Strangeway, R. J., Ortega, J., Alhassan, M., Xu, Y., Van Welie, M., Rehberger, J., Musielak, S. and Cahill, N. (2014), ‘Empirical model of Poynting flux derived from FAST data and a cusp signature’, J. Geophys. Res., 119, 411–30, doi: 10.1002/2013JA019105.Google Scholar
Cousins, E. D. P., Matsuo, Tomoko and Richmond, A. D. (2015), ‘Mapping high-latitude ionospheric electrodynamics with SuperDARN and AMPERE’, J. Geophys. Res., 120, 5854–70, doi: 10.1002/2014JA020463.Google Scholar
Coxon, J. C., Milan, S. E., Carter, J. A., Clausen, L. B. N., Anderson, B. J. and Korth, H. (2016), ‘Seasonal and diurnal variations in AMPERE observations of the Birkeland currents compared to modeled results’, J. Geophys. Res., 121, 4027–40, doi: 10.1002/2015JA022050.Google Scholar
Crowley, G., Knipp, D. J., Drake, K. A., Lei, J., Sutton, E. and Lühr, H. (2010), ‘Thermospheric density enhancements in the dayside cusp region during strong BY conditions’, Geophys. Res. Lett., 37, L07110, doi: 10.1029/2009GL042143.Google Scholar
Datta-Barua, S., Su, Y., Deshpande, K., Maladinovich, D., Bust, G. S., Hampton, D. and Crowley, G. (2015), ‘First light from a kilometer-baseline scintillation auroral GPS array’, Geophys. Res. Lett., 42, 3639–46, doi: 10.1002/2015GL063556.Google Scholar
Deshpande, K., Bust, G. S., Clauer, C. R., Rino, C. L. and Carrano, C. S. (2014), ‘Satellite-beacon Ionospheric scintillation Global Model of the upper Atmosphere (SIGMA) I: High latitude sensitivity study of the model parameters’, J. Geophys. Res., 119, 4026–43, doi: 10.1002/2013JA019699.Google Scholar
Deshpande, K., Bust, G. S., Clauer, C. R., Scales, W. A., Frissell, N. A., Ruohoniemi, J. M., Spogli, L., Mitchell, C. and Weatherwax, A. T. (2016), ‘Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere (SIGMA)II: Inverse modeling with high-latitude observations to deduce irregularity physics’, J. Geophys. Res., 121, 91889203, doi: 10.1002/2016JA022943.Google Scholar
Durgonics, Tibor, Komjathy, Attila, Verkhoglyadova, Olga, Shume, Esayas B., Benzon, Hans-Henrik, Mannucci, Anthony J., Butala, Mark D., Høeg, Per and Langley, Richard B. (2017), ‘Multi-instrument observations of a geomagnetic storm and its effects on the Arctic ionosphere: A case study of the 19 February 2014 storm’, Radio Sci., 52, 146–65, doi: 10.1002/2016RS006106.Google Scholar
Ebihara, Y. and Tanaka, T. (2015a), ’Substorm simulation: Insight into the mechanisms of initial brightening’, J. Geophys. Res., 120(9), 7270–88, doi: 10.1002/2015JA021516.Google Scholar
Ebihara, Y. and Tanaka, T. (2015b), ‘Substorm simulation: Formation of westward traveling surge’, J. Geophys. Res., 120(12), 10,46684, doi: 10.1002/2015JA021697.Google Scholar
Ebihara, Y. and Tanaka, T. (2016), ‘Substorm simulation: Quiet and N-S arcs preceding auroral breakup’, J. Geophys. Res., 121(2), 1201–18, doi: 10.1002/2015JA021831.Google Scholar
Fejer, B. G., Depaula, E. R., Gonzales, S. A. and Woodman, R. F. (1991), ‘Average vertical and zonal F region plasma drifts over Jicamarca’, J. Geophys. Res., 96, 13901.Google Scholar
Förster, M. and Haaland, S. (2015), ‘Interhemispheric differences in ionospheric convection: Cluster EDI observations revisited’, J. Geophys. Res., 120, 5805–23, doi: 10.1002/2014JA020774.Google Scholar
Fujii, R., Amm, O., Vanhamäki, H., Yoshikawa, A. and Ieda, A. (2012), ‘An application of the finite length Cowling channel model to auroral arcs with longitudinal variations’, J. Geophys. Res., 117, A11217, doi: 10.1029/2012JA017953.Google Scholar
Fujii, R., Amm, O., Yoshikawa, A., Ieda, A. and Vanhamäki, H. (2011), ‘Reformulation and energy flow of the Cowling channel’, J. Geophys. Res., 116, A02305, doi: 10.1029/2010JA015989.Google Scholar
Fukuda, Y., Kataoka, R., Uchida, H. A., Miyoshi, Y, Hampton, D., Shiokawa, K., Ebihara, Y., Whiter, D., Iwagami, N. and Seki, K. (2017), ‘First evidence of patchy flickering aurora modulated by multi-ion electromagnetic ion cyclotron waves’, Geophys. Res. Lett., 44(9), 3963–70, doi: 10.1002/2017GL072956.Google Scholar
Grandin, M., Aikio, A. T., Kozlovsky, A., Ulich, T. and Raita, T. (2017), ‘Cosmic radio noise absorption in the high latitude ionosphere during solar wind high-speed streams’, J. Geophys. Res., 122, 5203–23, doi: 10.1002/2017JA023923.Google Scholar
Han, D. S., Chen, X. C., Liu, J. J., Qiu, Q., Keika, K., Hu, Z. J., Liu, J. M., Hu, H. Q. and Yang, H. G. (2015), ‘An extensive survey of dayside diffuse aurora based on optical observations at Yellow River Station’, J. Geophys. Res., 120(9), 7447–65, doi: 10.1002/2015JA021699.Google Scholar
Hanson, W. B. and Moffett, R. J. (1966), ‘Ionization transport effects in the equatorial F region’, J. Geophys. Res., 71, 5559.Google Scholar
Hartinger, M. D., Xu, Z., Clauer, C. R., Yu, Y., Weimer, D., Kim, H., Pilipenko, V., Welling, D. T., Behlke, R. and Willer, A. N. (2017), ‘Associating ground magnetometer observations with current or voltage generators’, J. Geophys. Res., doi: 10.1002/2017JA0241402016.Google Scholar
Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. L., Avery, S. K., Clark, R. R., Fraser, G. J., Tsuda, T., Vial, F. and Vincent, R. (1995), ‘Empirical wind model for the upper, middle and lower atmosphere’, J. Atmos. Terr. Phys., 58, 1421–47.Google Scholar
Huba, J. D., Joice, G., Sazykin, S., Wolf, R. and Spiro, R. (2005), ‘Simulation study of penetration electric field effects on the low- to mid-latitude ionosphere’, Geophys. Res. Lett., 32, 123101, doi: 10.1029/2005GL024162.Google Scholar
Jaynes, A. N., Lessard, M. R., Rodriguez, J. V., Donovan, E., Loto’Aniu, T. M. and Rychert, K. (2013), ‘Pulsating auroral electron flux modulations in the equatorial magnetosphere’, J. Geophys. Res., 118(8), 4884–94, doi: 10.1002/jgra.50434.Google Scholar
Jaynes, A. N., Lessard, M. R., Takahashi, K., Ali, A. F., Malaspina, D. M., Michell, R. G., Spanswick, E. L. et al. (2015), ‘Correlated Pc4-5 ULF waves, whistler-mode chorus, and pulsating aurora observed by the Van Allen Probes and ground-based systems’, J. Geophys. Res., 120(10), 8749–61, doi: 10.1002/2015JA021380.Google Scholar
Kataoka, R., Miyoshi, Y., Hampton, D., Ishii, T. and Kozako, Y. (2012), ‘Pulsating aurora beyond the ultra-low-frequency range’, J. Geophys. Res., 117(A8), A08336, doi: 10.1029/2012JA017987.Google Scholar
Kelley, M. C., Vlasov, M. N., Foster, J. C. and Coster, A. J. (2004), ‘A quantitative explanation for the phenomenon known as storm-enhanced density’, Geophys. Res. Lett., 31, L19809, doi: 10.1029/2004GL020875.Google Scholar
Kepko, L., McPherron, R. L., Amm, O., Apatenkov, S., Baumjohann, W., Birn, W., Lester, M., Nakamura, R., Pulkkinen, T. I. and Sergeev, V. (2015), ‘Substorm current wedge revisited’, Space Sci. Rev., 190(1–4), 146, doi: 10.1007/s11214-014-0124-9.Google Scholar
Kikuchi, T. (2014), ‘Transmission line model for the near-instantaneous transmission of the ionospheric electric field and currents to the equator’, J. Geophys. Res., 119, 1131–56, doi: 10.1002/2013JA019515.Google Scholar
Kim, H., Clauer, C. R., Gerrard, A. J., Engebretson, M. J., Hartinger, M. D., Lessard, M. R., Matzka, J., Sibeck, D. G., Singer, H. J., Stolle, C., Weimer, D. R. and Xu, Z. (2017), ‘Conjugate observations of electromagnetic iono-cyclotron waves associated with traveling convection vortex events’, J. Geophys. Res., 122, 7336–52, doi: 10.1002/2017JA024108.Google Scholar
Kim, H., Clauer, C. R., Deshpande, K., Lessard, M. R., Weatherwax, A. T., Bust, G. S., Crowley, G. and Humphreys, T. E. (2014), ‘Ionospheric irregularities during a substorm event: Observations of ULF pulsations and GPS scintillations’, J. Atmos. Sol. Terr. Phys., 114, 18, doi: 10.1016/j.jastp.2014.03.006.Google Scholar
Kim, H., Clauer, C. R., Engebretson, M. J., Matzka, J., Sibeck, D. G., Singer, H. J., Stolle, C., Weimer, D. R. and Xu, Z. (2015), ‘Conjugate observations of traveling convection vortices associated with transient events at the magnetopause’, J. Geophys. Res., 120, 2015–35, doi: 10.1002/2014JA020743.Google Scholar
Kim, H., Cai, X., Clauer, C. R., Kunduri, B. S. R., Matzka, J., Stolle, C. and Weimer, D. R. (2013), ‘Geomagnetic response to solar wind dynamic pressure impulse events at high-latitude conjugate points’, J. Geophys. Res., 118, 6055–71, doi: 10.1002/jgra50555.Google Scholar
Kivelson, M. G. and Ridley, A. J. (2008), ‘Saturation of the polar cap potential: Inference from Alfvén wing arguments’, J. Geophys. Res., 113, doi: 10.1029/2007JA012,302.Google Scholar
Knipp, D., Eriksson, S., Kilcommons, L., Crowley, G., Lei, J., Hairston, M. and Drake, K. (2011), ‘Extreme Poynting flux in the dayside thermosphere: Examples and statistics’, Geophys. Res. Lett., 38, L16102, doi: 10.1029/2011GL048302.Google Scholar
Korte, M. and Stolze, S. (2016), ‘Variations in mid-latitude auroral activity during the Holocene’, Archaeometry, 58 (1), 159–76, doi: 10.1111/arcm.12152.Google Scholar
Kubota, Y., Nagatsuma, T., Den, M., Tanaka, T. and Fujita, S. (2017), ‘Polar cap potential saturation during the Bastille Day storm event using global MHD simulation’, J. Geophys. Res., 122, 43984409, doi: 10.1002/2016JA023851.Google Scholar
Laundal, K. M., Cnossen, I., Milan, S. E., Haaland, S. E., Coxon, J., Pedatella, N. M., Förster, M. and Reistad, J. P. (2017), ‘North-South asymmetries in Earth’s magnetic field. Effects on high-latitude geospace’, Space Sci. Rev., 206, 225–57, doi: 10.1007/s11214-016-0273-0.Google Scholar
Li, W., Bortnik, J., Thorne, R. M., Nishimura, Y., Angelopoulos, V. and Chen, L. (2011b), ‘Modulation of whistler mode chorus waves: 2. Role of density variations’, J. Geophys. Res., 116(A6), A06206, doi: 10.1029/2010JA016313.Google Scholar
Li, W., Thorne, R. M., Bortnik, J., Nishimura, Y. and Angelopoulos, V. (2011a), ‘Modulation of whistler mode chorus waves: 1. Role of compressional Pc4-5 pulsations’, J. Geophys. Res., 116(A6), A06205, doi: 10.1029/2010JA016312.Google Scholar
Liang, J., Donovan, E., Jackel, B., Spanswick, E. and Gillies, M. (2016), ‘On the 630 nm red-line pulsating aurora: Red-line emission geospace observatory observations and model simulations’, J. Geophys. Res., 121(8), 79888012, doi: 10.1002/2016JA022901.Google Scholar
Lin, C. H., Richmond, A. D., Heelis, R. A., Bailey, G. J., Lu, G., Liu, J. Y., Yeh, H. C. and Su, S. Y. (2005), ‘Theoretical study of the low and mid latitude ionospheric electron density enhancement during the October 2003 storm: Relative importance of the neutral wind and the electric field’, J. Geophys. Res., 110, A12312, doi: 10.1029/2005JA011304.Google Scholar
Lin, D., Zhang, B., Scales, W. A., Wiltberger, M., Clauer, C. R. and Xu, Z. (2017), ‘The role of solar wind density in cross polar cap potential saturation under northward interplanetary magnetic field’, Geophys. Res. Lett., doi: 10.1002/2017GL075275.Google Scholar
Liu, J., Hu, H., Han, D., Yang, H. and Lester, M. (2015), ‘Simultaneous ground-based optical and SuperDARN observations of the shock aurora at MLT noon’, Earth Planet. Space, 67, 120, doi: 10.1186/s40623-015-0291-2.Google Scholar
Lopez, R. E., Bruntz, R., Mitchell, E. J., Wiltberger, M., Lyon, J. G and Merkin, V. G. (2010), ‘Role of magnetosheath force balance in regulating the dayside reconnection potential’, J. Geophys. Res., 115, doi: 10.1029/2009JA014597.Google Scholar
Loucks, D., Palo, S., Pilinski, M., Crowley, G., Azeem, I. and Hampton, D. (2017), ‘High-latitude GPS phase scintillation from E region electron density gradients during the 20–21 December 2015 geomagnetic storm’, J. Geophys. Res. Space Phys., 122(7), 7473–90, doi: 10.1002/2016JA023839.Google Scholar
Lu, G., Goncharenko, L. P., Nicolls, M. J., Maute, A. I., Coster, A. J. and Paxton, L. J. (2012), ‘Ionospheric and thermospheric variations associated with prompt penetration electric fields’, J. Geophys. Res., 117, A08312, doi: 10.1029/2012JA017769.Google Scholar
Lühr, H., Rother, M., Köhler, W., Ritter, P. and Grunwaldt, L. (2004), ‘Thermospheric up-welling in the cusp region: Evidence from CHAMP observations’, Geophys. Res. Lett., 31, L06805, doi: 10.1029/2003GL019314.Google Scholar
Lysak, R. L. (1999), ‘Propagation of Alfvén waves through the ionosphere: Dependence on ionospheric parameters’, J. Geophys. Res., 104(10), 10017–30.Google Scholar
Lysak, R. L. (2004), ‘Magnetosphere–ionosphere coupling by Alfvén waves at midlatitudes’, J. Geophys. Res., 109, A07201, doi: 10.1029/2004JA010454.Google Scholar
Lysak, R. L. and Yoshikawa, A. (2006), ‘Resonant cavities and waveguides in the ionosphere and atmosphere’, in Magnetospheric ULF Waves: Synthesis and New Directions, ed. Takahashi, K., Chi, P. J., Denton, R. E. and Lysak, R. L., American Geophysical Union, Washington, DC, doi: 10.1029/169GM19.Google Scholar
Lysak, R. L., Waters, C. L. and Sciffer, M. D. (2013), ‘Modeling of the ionospheric Alfvén resonator in dipolar geometry’, J. Geophys. Res., 118, 1514–28, doi: 10.1002/jgra.50090.Google Scholar
Maimaiti, Maimaitirebike, Ruohoniemi, John Michael, Baker, J. B H., Clauer, Robert, Nicolls, Michael J. and Hairston, Marc R. (2017), ‘RISR-N observations of the IMF By influence on reverse convection during extreme northward IMF’, J. Geophys. Res., 122, doi: 10.1002/2016JA023612.Google Scholar
Mannucci, A. J., Tsurutani, B. T., Iijima, B. A., Komjathy, A., Saito, A., Gonzalez, W. D., Guarnieri, F. L., Kozyra, J. U. and Skoug, R. (2005), ‘Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 Halloween Storms’, Geophys. Res. Lett., 32, L12S02, doi: 10.1029/2004GL021467.Google Scholar
Marklund, G. T., Sadeghi, S., Li, B., Amm, O., Cumnock, J. A., Zhang, Y., Nilsson, H. et al. (2012), ‘Cluster multipoint study of the acceleration potential pattern and electrodynamics of an auroral surge and its associated horn arc’, J. Geophys. Res., 117(10), A10223, doi: 10.1029/2012JA018046.Google Scholar
Martyn, D. F. (1955), ‘Theory of height and ionization density changes at the maximum of a Chapman-like region, taking account of ion production, decay, diffusion and total drift’, in Proceedings, Cambridge Conference, p. 254, Physical Society, London.Google Scholar
McGranaghan, Ryan, Knipp, Delores J. and Matsuo, Tomoko (2016a), ‘High-latitude ionospheric conductivity variability in three dimensions’, Geophys. Res. Lett., 43, 7867–77, doi: 10.1002/2016GL070253.Google Scholar
McGranaghan, Ryan, Knipp, Delores J., Tomoko, Matsuo and Cousins, Ellen (2016b), ‘Optimal interpolation analysis of high-latitude ionospheric Hall and Pedersen conductivities: Application to assimilative ionospheric electrodynamics reconstruction’, J. Geophys. Res., 121, 48984923, doi: 10.1002/2016JA022486.Google Scholar
McGranaghan, Ryan, Knipp, Delores J., Tomoko, Matsuo, Godinez, Humberto, Redmon, Robert J., Solomon, Stanley C. and Morley, Steven K. (2015), ‘Modes of high-latitude auroral conductance variability derived from DMSP energetic electron precipitation observations: Empirical orthogonal function analysis’, J. Geophys. Res., 120, 11013–31, doi: 10.1002/2015JA021828.Google Scholar
Mende, S. B., Frey, H. U. and Angelopoulos, V. (2016), ‘Source of the dayside cusp aurora’, J. Geophys. Res., 121(8), 7728–38, doi: 10.1002/2016JA022657.Google Scholar
Mitra, S. K. (1946), ‘Geomagnetic control of region F2 of the ionosphere’, Nature, 158 , 668.Google Scholar
Miyoshi, Y., Oyama, S., Saito, S., Kurita, S., Fujiwara, H., Kataoka, R., Ebihara, Y. et al. (2015), ‘Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations’, J. Geophys. Res., 120(4), 2754–66, doi: 10.1002/2014JA020690.Google Scholar
Moffett, R. J. (1979), ‘The equatorial anomaly in the electron distribution of the terrestrial F region’, Fund. Cosmic Phys., 4, 313.Google Scholar
Moffett, R. J. and Hanson, W. B. (1965), ‘Effect of ionization transport on the equatorial F region’, Nature, 206, 705.Google Scholar
Motoba, T., Ebihara, Y., Kadokura, A. and Weatherwax, A. T. (2014), ‘Fine-scale transient arcs seen in a shock aurora’, J. Geophys. Res., 119(8), 6249–55, doi: 10.1002/2014JA020229.Google Scholar
Myllys, M., Kilpua, E. K. J., Lavraud, B. and Pulkkinen, J. I. (2016), ‘Solar wind–magnetosphere coupling efficiency during ejecta and sheath-driven geomagnetic storms’, J. Geophys. Res., 121, 4378–96, doi: 10.1002/2016JA022407.Google Scholar
Myllys, M., Kipua, E. K. J. and Lavraud, B. (2017), ‘Interplay of solar wind parameters and physical mechanisms producing the saturation of the cross polar cap potential’, Geophys. Res. Lett., 44, 3019–27, doi: 10.1002/2017GL072676.Google Scholar
Namba, S. and Maeda, K.-I. (1939), Radio Wave Propagation, report, Corona, Tokyo.Google Scholar
Newell, P. T., Liou, K., Zhang, Y., Sotirelis, T., Paxton, L. J. and Mitchell, E. J. (2014), ‘OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels’, Space Weather, 12(6), 368–79, doi: 10.1002/2014SW001056.Google Scholar
Nishimura, Y., Bortnik, J., Li, W., Thorne, R. M., Chen, L., Lyons, L. R., Angelopoulos, V. et al. (2011), ‘Multievent study of the correlation between pulsating aurora and whistler mode chorus emissions’, J. Geophys. Res, 116(A11), A11221, doi: 10.1029/2011JA016876.Google Scholar
Nishimura, Y., Lyons, L. R., Angelopoulos, V., Kikuchi, T., Zou, S. and Mende, S. B. (2011), ‘Relations between multiple auroral streamers, pre-onset thin arc formation, and substorm auroral onset’, J. Geophys. Res., 116(A9), A09214, doi: 10.1029/2011JA016768.Google Scholar
Nishiyama, T., Sakanoi, T., Miyoshi, Y., Katoh, Y., Asamura, K., Okano, S. and Hirahara, M. (2011), ‘The source region and its characteristic of pulsating aurora based on the Reimei observations’, J. Geophys. Res., 116(3), A03226, doi: 10.1029/2010JA015507.Google Scholar
Nomura, R., Shiokawa, K., Omura, Y., Ebihara, Y., Miyoshi, Y., Sakaguchi, K., Otsuka, Y. and Connors, M. (2016), ‘Pulsating proton aurora caused by rising tone Pc1 waves’, J. Geophys. Res., 121(2), 1608–18, doi: 10.1002/2015JA021681.Google Scholar
Ozaki, M., Shiokawa, K., Miyoshi, Y., Kataoka, R., Yagitani, S., Inoue, T., Ebihara, Y. et al. (2016), ‘Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes’, Geophys. Res. Lett., 43(15), 7859–66, doi: 10.1002/2016GL070008.Google Scholar
Park, Jaeheung, Lühr, Hermann, Kervalishvili, Gurarn, Rauberg, Jan, Stolle, Claudia, Kwak, Young-Sil, and Lee, Woo Kyoung (2017), ‘Morphology of high-latitude plasma density perturbations as deduced from the total electron content measurements onboard the Swarm constellation’, J. Geophys. Res., 122, 1338–59, doi: 10.1002/2016JA023086.Google Scholar
Parker, E. N. (1996), ‘The alternative paradigm for magnetospheric physics’, J. Geophys. Res., 101(10), 10587–625.Google Scholar
Picone, J. M., Hedin, A. E., Drob, D. and Aikin, A. C. (2002), ‘NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues’, J. Geophys. Res., 107(A12), A1468, doi: 10.1029/2002JA009430.Google Scholar
Prikryl, P., Ghoddousi-Fard, R., Weygand, J. M., Viljanen, A., Connors, M., Danskin, D. W., Jayachandran, P. T., Jacobsen, K. S., Andalsvik, Y. L., Thomas, E. G., ruohoniemi, J. M., Durgonics, T., Oksavik, K., Zhang, Y., Spanswick, E., Aquino, M. and Sreeja, V. (2016), ‘GPS phase scintillation at high latitudes during the geomagnetic storm of 17–18 March 2015’, J. Geophys. Res., 121, 10448–65, doi: 10.1002/2016JA023171.Google Scholar
Prikryl, Paul, Thayyil Jayachandran, P., Mushini, Sajan C. and Richardson, Ian G. (2014), ‘High-latitude GPS phase scintillation and cycle slips during high-speed solar wind streams and interplanetary coronal mass ejections: A superposed epoch analysis’, Earth Planets Space, 66, doi: 10.1186/1880-5981-66-62.Google Scholar
Rajaram, G. (1977), ‘Structure of the equatorial F region, topside and bottomside – A review’, J. Atmos. Terr. Phys., 39, 1125.Google Scholar
Reiff, P. H. and Luhmann, J. G. (1986), ‘Solar wind control of the polar cap voltage’, in Solar Wind–Magnetosphere Coupling, ed. Kamide, Y. and Slavin, J. A., p. 507, Terra Scientific, Tokyo.Google Scholar
Reiff, P., Spiro, R. and Hill, T. (1981), ‘Dependence of polar cap potential on interplanetary parameters’, J. Geophys. Res., 86(7), 639.Google Scholar
Richmond, A. D. (1995), ‘Ionospheric electrodynamics’, in Handbook of Atmospheric Electrodynamics, vol. II, ed. Volland, H., pp. 249–90, CRC Press, Boca Raton, FL.Google Scholar
Rishbeth, H., Lyon, A. J. and Peart, M. (1963), ‘Diffusion in the equatorial F layer’, J. Geophys. Res., 68, 2559.Google Scholar
Roble, R. G. and Ridley, E. C. (1994), ‘Thermosphere‐ionosphere‐mesosphere‐electrodynamics general circulation model (time‐GCM): Equinox solar cycle minimum simulations (300–500 km)’, Geophys. Res. Lett., 21, 417–20, doi: 10.1029/93GL03391.Google Scholar
Rodriguez, J. V., Carlson, H. C. and Heelis, R. A. (2012), ‘Auroral forms that extend equatorward from the persistent midday aurora during geomagnetically quiet periods’, J. Atmos. Sol. Terr. Phys., 86, 624, doi: 10.1016/j.jastp.2012.06.001.Google Scholar
Russell, C. T., Luhmann, J. G. and Strangeway, R. J. (2016), Space Physics, Cambridge University Press, Cambridge.Google Scholar
Samara, M., Michell, R. G. and Khazanov, G. V. (2017), ‘First optical observations of interhemispheric electron reflections within pulsating aurora’, Geophys. Res. Lett., 44(6), 2618–23, doi: 10.1002/2017GL072794.Google Scholar
Sandholt, P. E. and Farrugia, C. J. (2014), ‘Aspects of magnetosphere-ionosphere coupling in sawtooth substorms: A case study’, Ann. Geophys., 32, 1277–91, doi: 10.5194/angeo-32-1277-2014.Google Scholar
Sandholt, P. E., Farrugia, C. J. and Denig, W. F. (2015), ‘Transitions between states of magnetotail-ionosphere coupling and the role of solar wind dynamic pressure: the 25 July 2004 interplanetary CME case’, Ann. Geophys., 33, 427–36, doi: 10.5194/angeo-33-427-2015.Google Scholar
Siscoe, G. L., Erickson, G. M., Sonnerup, B. U. O., Maynard, N. C., Schoendorf, J. A., Siebert, K. D., Weimer, D. R., White, W. W. and Wilson, G. R. (2002a), ‘Hill model of transpolar potential saturation: Comparisons with MHD simulations’, J. Geophys. Res., 107(A6), doi: 10.1029/2001JA000109.Google Scholar
Siscoe, G. L., Crooker, N. U. and Siebert, K. D. (2002b), ‘Transpolar potential saturation: Roles of region 1 current system and solar wind ram pressure’, J. Geophys. Res., 107(A10), doi: 10.1029/2001JA009176.Google Scholar
Song, P., Vasyliũnas, V. M. and Ma, L. (2005), ‘A three-fluid model of solar wind–magnetosphere–ionosphere–thermosphere coupling’, in Multiscale Coupling of Sun-Earth Processes, ed. Lui, A. T. Y., Kamide, Y. and Consolini, G., pp. 447–56, Elsevier, Amsterdam, doi: 10.1016/B978-044451881-1/50033-2.Google Scholar
Souza, J. R., Asevedo, W. D. Jr, dos Santos, P. C. P., Petry, A., Bailey, G. J., Batista, I. S. and Abdu, M. A. (2013), ‘Longitudinal variation of the equatorial ionosphere: Modeling and experimental results’, Adv. Space Res., 51, 654–60, doi: 10.1016/j.asr.2012.01.023.CrossRefGoogle Scholar
Stening, R. J. (1992), ‘Modeling the low-latitude F region’, J. Atmos. Terr. Phys., 54, 1387.Google Scholar
Strangeway, R. J. (2009), ‘Space environment and scientific missions: Magnetic fields in space’, IEEE T. Magn., 45(10), 4486–92.Google Scholar
Strangeway, R. J. (2012), ‘The equivalence of Joule dissipation and frictional heating in the collisional ionosphere’, J. Geophys. Res., 117, A02310, doi: 10.1029/2011JA017302.Google Scholar
Strangeway, R. J. and Raeder, J. (2001), ‘On the transition from collisionless to collisional magnetohydrodynamics’, J. Geophys. Res., 106(A2), 1955–60, doi: 10.1029/2000JA900116.Google Scholar
Strangeway, R. J., Ergun, R. E., Su, Y.-J., Carlson, C. W. and Elphic, R. C. (2005), ‘Factors controlling ionospheric outflows as observed at intermediate altitudes’, J. Geophys. Res., 110, A03221, doi: 10.1029/2004JA010829.Google Scholar
Tanaka, T. (2015), ‘Substorm auroral dynamics reproduced by advanced global magnetosphere–ionosphere (M-I) coupling simulation’, in Auroral Dynamics and Space Weather, pp. 177–90, John Wiley, Hoboken, NJ, doi: 10.1002/9781118978719.ch13.Google Scholar
Tu, J., Song, P. and Vasyliũnas, V. M. (2011), ‘Ionosphere/thermosphere heating determined from dynamic magnetosphere-ionosphere/thermosphere coupling’, J. Geophys. Res., 116, A09311, doi: 10.1029/2011JA016620.Google Scholar
Tu, J., Song, P. and Vasyliũnas, V. M. (2014), ‘Inductive-dynamic magnetosphere-ionosphere coupling via MHD waves’, J. Geophys. Res., 119, 530–47, doi: 10.1002/2013JA018982.Google Scholar
Vorobjev, V. G., Yagodkina, O. I. and Katkalov, Yu. V. (2013), ‘Auroral precipitation model and its applications to ionospheric and magnetospheric studies’, J. Atmos. Sol. Terr. Phys., 102, 157–71, doi: 10.1016/j.jastp.2013.05.007.Google Scholar
Wahlund, J. E., Opgenoorth, H. J., Haggstrom, I., Winser, K. J. and Jones, G. O. L. (1992), ‘EISCAT observations of topside ionospheric ion outflows during auroral activity: revisited’, J. Geophys. Res., 97, 3019–37, doi: 10.1029/91JA02438.Google Scholar
Watson, Chris, Jayachandran, P. T. and MacDougall, John W. (2016), ‘Characteristics of GPS TEC variations in the polar cap ionosphere’, J. Geophys. Res., 121, 4748–68, doi: 10.1002/2015JA022275.Google Scholar
Weimer, D. R., Edwards, T. R. and Olsen, Nils (2017), ‘Linear response of field-aligned currents to the interplanetary electric field’, J. Geophys. Res., 122, 8502–15, doi: 10.1002/2017JA024372.Google Scholar
Wilder, F. D., Clauer, C. R., Baker, J. B. H., Cousins, E. P. and Hairston, M. R. (2011), ‘Inter-hemispheric observations of dayside convection under northward IMF’, J. Geophys. Res., 116, doi: 10.1029/2011JA016748.Google Scholar
Wilder, F. D., Crowley, G., Anderson, B. J. and Richmond, A. D. (2012), ‘Intense dayside Joule heating during the 5 April 2010 geomagnetic storm recovery phase observed by AMIE and AMPERE’, J. Geophys. Res., 117, doi: 10.1029/2011JA017262.Google Scholar
Wilder, F. D., Eriksson, S. and Wiltberger, M. (2015), ‘The role of magnetic flux tube deformation and magnetosheath plasma beta in the saturation of the Region 1 field-aligned current system’, J. Geophys. Res., 120, 2036–51, doi: 10.1002/2014JA020533.Google Scholar
Wilder, Frederick, Clauer, Robert and Baker, Joseph (2010), ‘Polar cap electric field saturation during IMF Bz north and south conditions’, J. Geophys. Res., 115, A10230, doi: 10.1029/2010JA015487.Google Scholar
Xiao, F., Zong, Q., Su, Z., Yang, C., He, Z., Wang, Y. and Gao, Z. (2013), ‘Determining the mechanism of cusp proton aurora’, Sci. Rep., 3, 1654, doi: 10.1038/srep01654.Google Scholar
Xiao, F., Zong, Q., Wang, Y., He, Z., Su, Z., Yang, C. and Zhou, Q. (2015), ‘Generation of proton aurora by magnetosonic waves’, Sci. Rep., 4, 5190, doi: 10.1038/srep05190.Google Scholar
Yoshikawa, A., Amm, O., Vanhamäki, H., Nakamizo, A. and Fujii, R. (2013), ‘Theory of Cowling channel formation by reflection of shear Alfven waves from the auroral ionosphere’, J. Geophys. Res., 118, 6416–25, doi: 10.1002/jgra.50514.Google Scholar
Zhou, X., Haerendel, G., Moen, J. I., Trondsen, E., Clausen, L., Strangeway, R. J., Lybekk, B. and Lorentzen, D. A. (2017), ‘Shock aurora: Field-aligned discrete structures moving along the dawnside oval’, J. Geophys. Res., 122(3), 3145–62, doi: 10.1002/2016JA022666.Google Scholar

References

Akasofu, S. I. (1964), ‘The development of the auroral substorm’, Planet. Space Sci., 12(4), 273–82. doi: 10.1016/0032-0633(64)90151-5Google Scholar
Akasofu, S. I., Chapman, S. and Meng, C. I. (1965), ‘Polar electrojet’, J. Atmos. Terr. Phys., 27(11–1), 1275. doi: 10.1016/0021-9169(65)90087-5Google Scholar
Anderson, B. J., and Hamilton, D. C. (1993), ‘Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions’, J. Geophys. Res., 98(A7). doi: 10.1029/93JA00605.Google Scholar
Angelopoulos, V. (2008), ‘The THEMIS mission’, Space Sci. Rev., 141(1–4), 534. doi: 10.1007/s11214-008-9336-1Google Scholar
Angelopoulos, V., et al. (2008), ‘Tail reconnection triggering substorm onset’, Science, 321(5891), 931–5. doi: 10.1126/science.1160495Google Scholar
Angelopoulos, V., et al. (2009), ‘Response to comment on “Tail reconnection triggering substorm onset”’, Science, 324(5933). doi: 10.1126/science.1168045Google Scholar
Baker, D. N., et al. (2013), ‘A long-lived relativistic electron storage ring embedded in Earth’s outer Van Allen belt’, Science, 6129, 186–90. doi: 10.1126/science.1233518Google Scholar
Baker, D. N., et al. (2014). ‘An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts’, Nat. Lett., 515, 531–4. doi: 10.1038/nature13956Google Scholar
Baker, D., Pulkkinen, T., Angelopoulos, V., Baumjohann, W. and McPherron, R. L. (1996), ‘Neutral line model of substorms: Past results and present view’, J. Geophys. Res., 101(A6), 1297513010. doi: 10.1029/95JA03753Google Scholar
Baker, D. N., et al. (2014), ‘An impenetrable barrier to ultra-relativistic electrons in the Van Allen radiation belts’, Nature, 515, 531–4.Google Scholar
Baker, D. N. (2014). ‘New twists in Earth’s radiation belts’, Am. Sci., 102(5), 374381.Google Scholar
Baker, D.N., Kanekal, S. G., Li, X., Monk, S. P., Goldstein, J. and Burch, J. L. (2004), ‘An extreme distortion of the Van Allen belt arising from the “Hallowe’en” solar storm in 2003’, Nature, 432, 878–81. doi: 10.1038/nature03116Google Scholar
Baker, D. N., Kanekal, S. G., Hoxie, V. C., Henderson, M. G., Li, X., Spence, H. E., Elkington, S. R., Friedel, R. H., Goldstein, J., Hudson, M. K., Reeves, G. D., Thorne, R. M., Kletzing, C. A. and Claudepierre, S. G. (2013), ‘A long-lived relativistic electron storage ring embedded within the Earth’s outer Van Allen Radiation Zone’, Science, 340, 186–90. doi: 10.1126/science.1233518Google Scholar
Balikhin, M. A., et al. (2015), ‘Observations of discrete harmonics emerging from equatorial noise’, Nat. Comm., 6, 7703. doi: 10.1038/ncomms8703Google Scholar
Bandic, M., Verbanac, G., Moldwin, M., Pierrard, V. and Piredda, G. (2016), ‘MLT dependence in the relationship between plasmapause, solar wind and geomagnetic activity based on CRRES: 1990–1991’, J. Geophys. Res., 121, 43974408. doi: 10.1002/2015JA022278Google Scholar
Bandic, M., Verbanac, G., Pierrard, V. and Cho, J. (2017), ‘Evidence of MLT propagation of the plasmapause inferred from THEMIS data’, J. Atmos. Sol. Terr. Phys., 161, 5563. doi: 10.1016/j.jastp.2017.05.005Google Scholar
Belian, R. D., Cayton, T. E. and Reeves, G. D. (1995), ‘Quasi-periodic, substorm associated, global flux variations observed at geosynchronus orbit’, in Space Plasmas: Coupling between Small and Medium Scale Processes, ed. Ashour-Abdalla, M., Chang, T. and Dusenbery, P., p. 143, American Geophysical Union, Washington, DC. doi: 10.1029/GM086p0143Google Scholar
Boardsen, S. A., et al. (2014), ‘Van Allen Probe observations of periodic rising frequencies of the fast magnetosonic mode’, Geophys. Res.Lett., 41, 8161–8. doi: 10.1002/2014GL062020Google Scholar
Burch, J. L., and Phan, T. D. (2016), ‘Magnetic reconnection at the dayside magnetopause: Advances with MMS’, Geophys. Res. Lett., 43, 16, 8327. doi: 10.1002/2016GL069787Google Scholar
Burch, J. L., et al. (2016), ‘Electron-scale measurements of magnetic reconnection in space’, Science, 352, aaf2939. doi: 10.1126/science.aaf2939Google Scholar
Caan, M. N., McPherron, R. L. and Russell, C. T. (1973), ‘Solar wind and substorm-related changes in the lobes of the geomagnetic tail’, J. Geophys. Res., 78(34), 8087–96. doi: 10.1029/JA078i034p08087Google Scholar
Cai, X., and Clauer, C. R. (2009), ‘Investigation of the period of sawtooth events’, J. Geophys. Res., 114, 9. doi: 10.1029/2008ja013764Google Scholar
Carpenter, D. L., and Lemaire, J. (2004). ‘The plasmasphere boundary layer’, Ann. Geophys., 22, 4291–8. doi: 10.5194/angeo-22-4291Google Scholar
Cassak, P. A., and Shay, M. A. (2007), ‘Scaling of asymmetric magnetic reconnection: General theory and collisional simulations’, Phys. Plasmas, 14, 102114.Google Scholar
Cassak, P. A., and Fuselier, S. A. (2016), ‘Reconnection at Earth’s dayside magnetopause’, in Magnetic Reconnection, ed. Gonzalez, W. and Parker, E., pp. 213–76, Springer, Switzerland. doi: 10.1007/978-3-319-26432-5Google Scholar
Chapman, S. (1962), ‘Earth storms: Retrospect and prospect’, J. Phys. Soc. Jpn., 17(A-I), 6.Google Scholar
Chapman, S., and Ferraro, V. C. A. (1931), ‘A new theory of magnetic storms, Part I, The initial phase’, Terr. Mag. Atmos. Elect., 36, 7.Google Scholar
Chappell, C. R. (1972), ‘Recent satellite measurements of the morphology and dynamics of the plasmasphere’, Rev. Geophys., 10(4), 951–79. doi: 10.1029/RG010i004p00951Google Scholar
Chaston, C. C., et al. (2015), ‘Extreme ionospheric ion energization and electron heating in Alfvén waves in the storm time inner magnetosphere’, Geophys. Res. Lett., 42, 10531–40. doi: 10.1002/2015GL066674Google Scholar
Coroniti, F. V., McPherron, R. L. and Parks, G. K. (1968), ‘Studies of magnetospheric substorm. 3. Concept of magnetospheric substorm and its relation to electron precipitation and micropulsations’, J. Geophys. Res., 73(5), 1715–22. doi: 10.1029/JA073i005p01715Google Scholar
Daglis, I. A., and Kozyra, J. U. (2002), ‘Outstanding issues of ring current dynamics’, J. Atmos. Sol. Terr. Phys., 64(2), 253–64. doi: 10.1016/S1364-6826(01)00087-6.Google Scholar
Daglis, I. A., Thorne, R. M., Baumjohann, W. and Orsini, S. (1999), ‘The terrestrial ring current: Origin, formation, and decay’, Rev. Geophys., 37(4), 407–38. doi: 10.1029/1999RG900009Google Scholar
Darrouzet, F., De Keyser, J. and Pierrard, V. (2009), The Earth’s Plasmasphere: Cluster and IMAGE – A Modern Perspective, Springer, New York.Google Scholar
Darrouzet, F., et al. (2009), ‘Plasmaspheric density structures and dynamics: Properties observed by the CLUSTER and IMAGE missions’, Space Sci. Rev., 145(55). doi: 10.1007/s11214-008-9438-9Google Scholar
Darrouzet, F., Pierrard, V., Benck, S., Lointier, G., Cabrera, J., Borremans, K., Ganushkina, N., and De Keyser, J. (2013), ‘Links between the plasmapause and the radiation belts boundaries as observed by the instruments CIS, RAPID and WHISPER on CLUSTER’, J. Geophys. Res., 118, 4176–88. doi: 10.1002/jgra.50239Google Scholar
De La Beaujardiere, O., Lyons, L. R., Ruohomemi, J. M., Friss-Christensen, E., Danielsen, C., Rich, F. and Newell, P. (1994), ‘Quiet-time intensifications along the poleward auroral boundary near midnight’, J. Geophys. Res., 99(A1), 287–98. doi: 10.1029/93JA01947Google Scholar
DeJong, A. D., Ridley, A. J., Cai, X. and Clauer, C. R. (2009), ‘A statistical study of BRIs (SMCs), isolated substorms, and individual sawtooth injections’, J. Geophys. Res., 114. doi: 10.1029/2008ja013870Google Scholar
DeJong, A. D., and Clauer, C. R. (2005), ‘Polar UVI images to study steady magnetospheric convection events: Initial results’, Geophys. Res. Lett, 32(24), 4. doi: 10.1029/2005gl024498Google Scholar
DeJong, A. D., Cai, X., Clauer, R. C. and Spann, J. F. (2007), ‘Aurora and open magnetic flux during isolated substorms, sawteeth, and SMC events’, Ann. Geophys., 25(8), 1865–76. doi: 10.5194/angeo-25-1865-2007Google Scholar
Dungey, J. W. (1961), ‘Interplanetary magnetic field and the auroral zones’, Phys. Res. Lett., 6, 47–8.Google Scholar
Eastman, T. E. (2003), ‘Historical review (pre-1980) of magnetospheric boundary layers and the low-latitude boundary layer’, in Earth’s Low-Latitude Boundary Layer, Geophys. Monograph 133, ed. Newell, P. T. and Onsager, T., pp. 112, American Geophysical Union, Washington, DC.Google Scholar
Elvey, C. T. (1957), ‘Problems of auroral morphology’, Proc. Natl. Acad. Sci. USA, 43(1), 6375.Google Scholar
Fairfield, D. H., and Cahill, L. J. Jr (1966), ‘Transition region magnetic field and polar magnetic disturbances’, J. Geophys. Res., 71(1), 155–69.Google Scholar
Fear, R. C., et al. (2014), ‘Direct observation of closed magnetic flux trapped in the high latitude magnetosphere’, Science, 346, 6216. doi: 10.1126/science.1257377Google Scholar
Fennell, J. F., et al. (2015), ‘Van Allen Probes show the inner radiation zone contains no MeV electrons: ECT/MagEIS data’, Geophys. Res. Lett., 42, 1283–9. doi: 10.1002/2014GL062874Google Scholar
Fennell, J. F., Claudepierre, S. G., Blake, J. B., O’Brien, T. P., Clemmons, J. H., Baker, D. N., Spence, H. E. and Reeves, G. D. (2015), ‘Van Allen Probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data’, Geophys. Res. Lett., 31(5), 1283–9. doi: 10.1002/2014GL062874Google Scholar
Ferrero, V. C. A. (1952), ‘On the theory of the first phase of a geomagnetic storm I the new illustrative calculation based on an idealized (plane not cylindrical) model field distribution’, J. Geophys. Res., 57(15), 1952.Google Scholar
Frank, L., Ackerson, K. and Lepping, R. (1976), ‘On hot tenuous plasmas, fireballs, and boundary layers in the Earth’s magnetotail’, J. Geophys. Res., 81(34), 5859–81. doi: 10.1029/JA081i034p05859Google Scholar
Friedrich, E., Samson, J., Voronkov, I. and Rostoker, G. (2001), ‘Dynamics of the substorm expansive phase’, J. Geophys. Res., 106(A7), 13145–63. doi: 10.1029/2000JA000292Google Scholar
Fuselier, S. A., Burch, J. L., Mukherjee, J., Genestreti, K. J., Vines, S. K., Gomez, R., Goldstein, J., Trattner, K. J., Petrinec, S. M., Lavraud, B. and Strangeway, R. J. (2017), ‘Magnetospheric ion influence at the dayside magnetopause’, J. Geophys. Res., 122, 8617–31. doi: 10.1002/2017JA02415Google Scholar
Gallagher, D. L., and Comfort, R. H. (2016), ‘Unsolved problems in plasmasphere refilling’, J. Geophys. Res., 121, 1447–51. doi: 10.1002/2015JA022279Google Scholar
Gkioulidou, M., Ukhorskiy, A. Y., Mitchell, D. G., Sotirelis, T., Mauk, B. H. and Lanzerotti, L. J. (2014), ‘The role of small-scale ion injections in the buildup of Earth’s ring current pressure: Van Allen Probes observations of the 17 March 2013 storm’, J. Geophys. Res., 119, 7327–42. doi: 10.1002/2014JA020096Google Scholar
Goldstein, J., Sandel, B. R., Forrester, W. T., Thomsen, M. F. and Hairston, M. R. (2005), ‘Global plasmasphere evolution 22–23 April 2001’, J. Geophys. Res., 110, A12218. doi: 10.1029/2005JA011282Google Scholar
Haerendel, G., Paschmann, G., Sckopke, N., Rosenbauer, H. and Hedgecock, P. C. (1978), ‘The frontside boundary layer of the magnetosphere and the problem of reconnection’, J. Geophys. Res., 83, 3195.Google Scholar
Hirshberg, J., and Colburn, D. S. (1969), ‘Interplanetary field and geomagnetic variations-A unified view’, Planet. Space Sci., 17, 11831206.Google Scholar
Hubert, B., Gerard, J. C., Milan, S. E. and Cowley, S. W. H. (2017), ‘Magnetic reconnection during steady magnetospheric convection and other magnetospheric modes’, Ann. Geophys., 35(3), 505–24. doi: 10.5194/angeo-35-505-2017Google Scholar
Hultqvist, B., Øieroset, M., Paschmann, G. and Treumann, R. (Eds.) (1999), Magnetospheric Plasma Source and Losses, Kluwer, Dordrecht.Google Scholar
Jacobs, J. A. (Ed.) (1987), Geomagnetism. 2 vols. Academic Press, New York.Google Scholar
Jelly, D., and Brice, N. (1967), ‘Changes In Van Allen radiation associated with polar substorms’, J. Geophys. Res., 72(23), 5919–31.Google Scholar
Keika, K., Kistler, L. M. and Brandt, P. C. (2013), ‘Energization of O+ ions in the Earth’s inner magnetosphere and the effects on ring current buildup: A review of previous observations and possible mechanisms’, J. Geophys. Res., 118, 4441–64. doi: 10.1002/jgra.50371Google Scholar
Kim, H.-J., and Chan, A. A. (1997), ‘Fully adiabatic changes in storm time relativistic electron fluxes’, J. Geophys. Res., 102(A10), 22107–16. doi: 10.1029/97JA01814Google Scholar
Kissinger, J., Wilder, F. D., McPherron, R. L., Hsu, T. S., Baker, J. B. H. and Kepko, L. (2013), ‘Statistical occurrence and dynamics of the Harang discontinuity during steady magnetospheric convection’, J. Geophys. Res., 118(8), 5127–35. doi: 10.1002/jgra.50503Google Scholar
Kissinger, J., McPherron, R. L., Hsu, T. S. and Angelopoulos, V. (2011b), ‘Steady magnetospheric convection and stream interfaces: Relationship over a solar cycle’, J. Geophys. Res., 116. doi: 10.1029/2010ja015763Google Scholar
Kissinger, J., McPherron, R. L., Hsu, T. S. and Angelopoulos, V. (2012b), ‘Diversion of plasma due to high pressure in the inner magnetosphere during steady magnetospheric convection’, J. Geophys. Res., 117(A5), A05206. doi: 10.1029/2012ja017579Google Scholar
Kissinger, J., McPherron, R. L., Hsu, T.-S. and Angelopoulos, V. (2011a), ‘Steady magnetospheric convection and stream interfaces: Relationship over a solar cycle’, J. Geophys. Res., 116(13), 111. doi: 10.1029/2010JA015763Google Scholar
Kissinger, J., McPherron, R. L., Hsu, T.-S., Angelopoulos, V. and Chu, X. (2012a), ‘Necessity of substorm expansions in the initiation of steady magnetospheric convection’, Geophys. Res. Lett., 39(L15105), 15. doi: 10.1029/2012GL052599Google Scholar
Kletzing, C. A., et al. (2017), ‘Phase sorting wave-particle correlator’, J. Geophys. Res., 122, 2069–78. doi: 10.1002/2016JA023334Google Scholar
Kletzing, C. A., et al. (2013), ‘The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP’, Space Sci. Rev. doi: 10.1007/s11214-013-9993-6Google Scholar
Kotova, G., Verigin, M., Lemaire, J., Pierrard, V., Bezrukikh, V. and Smilauer, J. (2018), ‘Experimental study of the plasmasphere boundary layer using MAGION 5 data’, J. Geophys. Res., 123, 1251–9. doi: 10.1002/2017JA024590Google Scholar
Kurth, W. S., et al. (2015), ‘Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes’, J. Geophys. Res., 120, 904–14, doi: 10.1002/2014JA020857Google Scholar
Lemaire, J., and Pierrard, V. (2008), ‘Comparison between two theoretical mechanisms for the formation of the plasmapause and relevant observations’, Geomagn. Aeron., 48(5), 553–70. doi: 10.1134/S0016793208050010Google Scholar
Li, X., Baker, D. N., Temerin, M., Larson, D., Lin, R. P., Reeves, G. D., Looper, M., Kanekal, S. G. and Mewaldt, R. A. (1997a), ‘Are energetic electrons in the solar wind the source of the outer radiation belt?’, Geophys. Res. Lett., 24(8), 923–6. doi: 10.1029/97GL00543Google Scholar
Li, X., Baker, D. N., Temerin, M., Cayton, T. D., Reeves, E. G. D., Christensen, R. A., Blake, J. B., Looper, M. D., Nakamura, R. and Kanekal, S. G. (1997b), ‘Multisatellite observations of the outer zone electron variation during the November 3–4, 1993, magnetic storm’, J. Geophys. Res., 102(A7), 14123–40. doi: 10.1029/97JA01101Google Scholar
Li, X., Baker, D. N., O’Brien, T. P., Xie, L. and Zong, Q. G. (2006), ‘Correlation between the inner edge of outer radiation belt electrons and the innermost plasmapause location’, Geophys. Res. Lett., 33(14). doi: 10.1029/2006GL026294Google Scholar
Li, X., Selesnick, R. S., Baker, D. N., Jaynes, A. N., Kanekal, S. G., Schiller, Q., Blum, L., Fennell, J. and Blake, J. B. (2015), ‘Upper limit on the inner radiation belt MeV electron intensity’, J. Geophys. Res., 120(2), 1215–28. doi: 10.1002/2014JA020777Google Scholar
Lui, A. T. Y. (2009), ‘Comment on “Tail reconnection triggering substorm onset”’, Science, 324(5933), 3. doi: 10.1126/science.1167726Google Scholar
Lui, A. T. Y., Meng, C.-I. and Akasofu, S.-I. (1976), ‘Search for the magnetic neutral line in the near-Earth plasma sheet, 1. Critical reexamination of earlier studies on magnetic field observations’, J. Geophys. Res., 81(34), 5934–40. doi: 10.1029/JA081i034p05934Google Scholar
Lui, A. T. Y., Chang, C.-L., Mankofsky, A., Wong, H.-K. and Winske, D. (1991), ‘A cross-field current instability for substorm expansions’, J. Geophys. Res., 96(A7), 11389–401. doi: 10.1029/91JA00892Google Scholar
Lui, A. T. Y., Lopez, R. E., Krimigis, S. M., McEntire, R. W., Zanetti, L. J. and Potemra, T. A. (1988), ‘A case study of magnetotail current sheet disruption and diversion’, Geophys. Res. Lett, 15(7), 721–4. doi: 10.1029/GL015i007p00721Google Scholar
Lyons, L. R., Nishimura, Y., Shi, Y., Zou, S., Kim, H. J., Angelopoulos, V., Heinselman, C., Nicolls, M. J. and Fornacon, K. H. (2010), ‘Substorm triggering by new plasma intrusion: Incoherent-scatter radar observations’, J. Geophys. Res., 115(13). doi: 10.1029/2009ja015168Google Scholar
Malakit, K., Shay, M. A., Cassak, P. A. and Ruffolo, D. (2013), ‘New electric field in asymmetric magnetic reconnection’, Phys. Rev. Lett., 111, 135001.Google Scholar
McPherron, R. L. (1970), ‘Growth phase of magnetospheric substorms’, J. Geophys. Res., 75(28), 5592–9. doi: 10.1029/JA075i028p05592Google Scholar
McPherron, R. L. (1991), ‘Physical processes producing magnetospheric substorms and magnetic storms’, in Geomagnetism, vol. 4, ed. Jacobs, J., pp. 593739, Academic Press, London.Google Scholar
McPherron, R. L. (2015), ‘Earth’s Magnetotail’, in Magnetotails in the Solar System, ed. Keiling, A., Jackman, C. M. and Delamere, P. A., pp. 6184, Blackwell Science, Oxford. doi: 10.1002/9781118842324.ch4Google Scholar
McPherron, R. L., and Chu, X. (2017), ‘The mid-latitude positive bay and the MPB Index of substorm activity’, Space Sci. Rev., 206(1–4), 91122. doi: 10.1007/s11214-016-0316-6Google Scholar
McPherron, R. L., Russell, C. T. and Aubry, M. (1973), ‘Satellite studies of magnetospheric substorms on August 15, 1968, 9. Phenomenological model for substorms’, J. Geophys. Res., 78(16), 3131–49.Google Scholar
McPherron, R. L., Weygand, J. M. and Hsu, T. S. (2008), ‘Response of the Earth’s magnetosphere to changes in the solar wind’, J. Atmos. Sol. Terr. Phys., 70(2–4), 303–15. doi: 10.1016/j.jastp.2007.08.040Google Scholar
McPherron, R. L., O’Brien, T. P. and Thompson, S. M. (2005), ‘Solar wind drivers for steady magnetospheric convection’, in Multiscale Coupling of Sun-Earth Processes, ed. Lui, A. T. Y., Kamide, Y. and Consolini, G., pp. 113–24, Elsevier, Amsterdam. doi: 10.1016/B978-044451881-1/50009-5Google Scholar
McPherron, R. L., Hsu, T. S., Kissinger, J., Chu, X. and Angelopoulos, V. (2011), ‘Characteristics of plasma flows at the inner edge of the plasma sheet’, J. Geophys. Res., 116. doi: 10.1029/2010ja015923Google Scholar
McPherron, R. L., Hsu, T.-S. and Chu, X. (2015), ‘An optimum solar wind coupling function for the AL index’, J. Geophys. Res., 120(4), 24942515. doi: 10.1002/2014ja020619Google Scholar
Meredith, N. P., et al. (2003), ‘Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES’, J. Geophys. Res., 208, 1250.Google Scholar
Murakami, G., Yoshioka, K., Yamazaki, A., Nishimura, Y., Yoshikawa, I. and Fujimoto, M. (2016), ‘The plasmapause formation seen from meridian perspective by KAGUYA’, J. Geophys. Res., 121(11), 97311984. doi: 10.1002/2016JA023377Google Scholar
Nishida, A. (1994), ‘The Geotail mission’, Geophys. Res. Lett, 21(25), 2871–3. doi: 10.1029/94gl01223Google Scholar
Nishimura, Y., et al. (2014), ‘Day-night coupling by a localized flow channel visualized by polar cap patch propagation’, Geophys. Res. Lett, 41(11), 3701–9. doi: 10.1002/2014gl060301Google Scholar
Nishimura, Y., Lyons, L., Zou, S., Angelopoulos, V. and Mende, S. (2010), ‘Substorm triggering by new plasma intrusion: THEMIS all-sky imager observations’, J. Geophys. Res., 115(A7), A07222. doi: 10.1029/2009ja015166Google Scholar
Nishimura, Y., Lyons, L. R., Angelopoulos, V., Kikuchi, T., Zou, S. and Mende, S. B. (2011), ‘Relations between multiple auroral streamers, pre-onset thin arc formation, and substorm auroral onset’, J. Geophys. Res., 116(10). doi: 10.1029/2011ja016768Google Scholar
O’Brien, T. P., Thompson, S. M. and McPherron, R. L. (2002), ‘Steady magnetospheric convection: Statistical signatures in the solar wind and AE’, Geophys. Res. Lett., 29(7). doi: 10.1029/2001GL014641Google Scholar
Ohtani, S. (2004), ‘Flow bursts in the plasma sheet and auroral substorm onset: observational constraints on connection between midtail and near-Earth substorm processes’, Space Sci. Rev., 113(1–2), 7796. doi: 10.1023/B:SPAC.0000042940.59358.2 fGoogle Scholar
Pierrard, V., and Cabrera, J. (2006), ‘Dynamical simulations of plasmapause deformations’, Space Sci. Rev., 122(1–4), 119–26. doi: 10.1007/s11214-005-5670-8Google Scholar
Pierrard, V., Goldstein, J., André, N., Jordanova, V. K., Kotova, G. A., Lemaire, J. F., Liemohn, M. W. and Matsui, H. (2009), ‘Recent progress in physics-based models of the plasmasphere’, Space Sci. Rev., 145, 193229. doi: 10.1007/s11214-008-9480-7Google Scholar
Pierrard, V., Khazanov, G., Cabrera, J. and Lemaire, J. (2008), ‘Influence of the convection electric field models on predicted plasmapause positions during the magnetic storms’, J. Geophys. Res., 113, A08212, 121. doi: 10.1029/2007JA012612Google Scholar
Pierrard, V., and Voiculescu, M. (2011), ‘The 3D model of the plasmasphere coupled to the ionosphere’, Geophys. Res. Lett., 38, L12104. doi: 10.1029/2011GL047767Google Scholar
Poppe, A. R., et al. (2016), ‘ARTEMIS observations of terrestrial ionospheric molecular ion outflow at the Moon’, Geophys. Res. Lett., 43, 6749–58, doi: 10.1002/2016GL069715Google Scholar
Pytte, T., McPherron, R. L., Hones, E. W. and West, H. L. (1978), ‘Multiple satellite studies of magnetospheric substorms: Distinction between polar magnetic substorms and convection-driven bays’, J. Geophys. Res., 83(Na2), 663–79. doi: 10.1029/JA083iA02p00663Google Scholar
Reeves, G. D., et al. (2013), ‘Electron acceleration in the heart of the Van Allen radiation belts’, Science, 1237743. doi: 10.1126/science.1237743Google Scholar
Rosenbauer, H., Grünwaldt, H., Montgomery, M. D., Paschmann, G. and Sckopke, N. (1975), ‘Heos 2 plasma obserations in the distant polar magnetosphere: The plasma mantle’, J. Geophys. Res., 80, 2723–37.Google Scholar
Russell, A. J. B., Karlsson, T. and Wright, A. N. (2015), ‘Magnetospheric signatures of ionospheric density cavities observed by Cluster’, J. Geophys. Res., 120, 1876–87.Google Scholar
Schroeder, J. W. R., et al. (2016), ‘Direct measurement of electron sloshing of an inertial Alfvén wave’, Geophys. Res. Lett., 43, 4701–7. doi: 10.1002/2016GL068865Google Scholar
Selesnick, R. S., Baker, D. N., Jaynes, A. N., Li, X., Kanekal, S. G., Hudson, M. K. and Kress, B. T. (2014), ‘Observations of the inner radiation belt: CRAND and trapped solar protons’, J. Geophys. Res., 119. doi: 10.1002/2014JA020188Google Scholar
Sergeev, V. A., Pellinen, R. J. and Pulkkinen, T. I. (1996), ‘Steady magnetospheric convection: a review of recent results’, Space Sci. Rev., 75(3–4), 551604.Google Scholar
Shiokawa, K., et al. (1998), ‘High-speed ion flow, substorm current wedge, and multiple Pi 2 pulsations’, J. Geophys. Res., 103(A3), 44914507. doi: 10.1029/97ja01680Google Scholar
Shiokawa, K., Baumjohann, W. and Haerendel, G. (1997), ‘Braking of high-speed flows in the near-Earth tail’, Geophys. Res. Lett, 24(10), 1179–82. doi: 10.1029/97gl01062Google Scholar
Shprits, Y. Y., Thorne, R. M., Friedel, R., Reeves, G. D., Fennell, J., Baker, D. N. and Kanekal, S. G. (2006), ‘Outward radial diffusion driven by losses at magnetopause’, J. Geophys. Res., 111, A11214. doi: 10.1029/2006JA011657Google Scholar
Singh, S., and Horwitz, J. L. (1992), ‘Plasmasphere refilling: Recent observations and modeling’, J. Geophys. Res., 97, 1049–79. doi: 10.1029/91JA02602Google Scholar
Stewart, B. (1861), ‘On the great magnetic disturbance of 28 Aug. to 7 Sep. 1859’, Philos. Trans. London, 151, 423–30.Google Scholar
Summers, D., Ni, B. and Meredith, N. P. (2007), ‘Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves’, J. Geophys. Res., 112, A04207. doi: 10.1029/2006JA011993Google Scholar
Thorne, R. L., et. al. (2013), ‘Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus’, Nature, 504(7480), 411. doi: 10.1038/nature12889Google Scholar
Thorne, R. M., Smith, E. J., Burton, R. K. and Holzer, R. E. (1973), ‘Plasmaspheric hiss’, J. Geophys. Res., 78(10), 1581–96. doi: 10.1029/JA078i010p01581Google Scholar
Torbert, R. B., et al. (2016), ‘Estimates of terms in Ohm’s law during an encounter with an electron diffusion region’, Geophys. Res. Lett., 43, 5918. doi: 10.1002/2016GL069553Google Scholar
Ukhorskiy, A. Y., Anderson, B. J., Brandt, P. C. and Tsyganenko, N. A. (2006), ‘Storm time evolution of the outer radiation belt: Transport and losses’, J. Geophys. Res., 111, A11S03. doi: 10.1029/2006JA011690Google Scholar
Van Allen, J. A., Ludwig, G. H., Ray, E. C. and McIlwain, C. E. (1958), ‘Observations of high intensity radiation by satellites 1958 Alpha and Gamma’, Jet Propul., 28, 588–92.Google Scholar
Verbanac, G., Bandic, M. and Pierrard, V. (2018), ‘MLT plasmapause characteristics: comparison between THEMIS observations and numerical simulations’, J. Geophys. Res., 123, 20002017. doi: 10.1002/2017JA024573Google Scholar
Verbanac, G., Pierrard, V., Bandic, M., Darrouzet, F., Rauch, J.-L. and Décréau, P. (2015), ‘Relationship between plasmapause, solar wind and geomagnetic activity between 2007 and 2011 using Cluster data’, Ann. Geophys., 33, 1271–83. doi: 10.5194/angeo-33-1271-2015Google Scholar
Walsh, B. M., et al. (1974), ‘Simultaneous ground- and space-based observations of the plasmaspheric plume and reconnection’, Science, 343(6175), 1122–5. doi: 10.1126/science.1247212Google Scholar
Walsh, B. M., Phan, T. D., Siebeck, D. G. and Souza, V. M. (2014), ‘The plasmaspheric plume and magnetopause reconnection’, Geophys. Res. Lett., 41(2), 223–8. doi: 10.1002/2013GL058802Google Scholar
Weimer, D. R. (1992), ‘Characteristic time scale of substorm expansion and recovery’, Proc. Int. Conf. Substorms, ICS-1, 581–6.Google Scholar
Wilson, L. B. III (2016), ‘Relativistic electrons produced by foreshock disturbances observed upstream of the Earth’s bow shock’, Phys. Rev. Lett., 117(21). doi: 10.1103/PhysRevLett.117.215101Google Scholar

References

Ables, S. T. and Fraser, B. J. (2005). Observing the open-closed boundary using cusp-latitude magnetometers. Geophys. Res. Lett., 32, L10104, doi: 10.1029/2005GL022824.Google Scholar
Albert, J. M. (2003). Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma. J. Geophys. Res., 108, 1249, doi: 10.1029/2002JA009792.Google Scholar
Alfvén, H. (1942). Existence of electromagnetic-hydromagnetic waves. Nature, 150, 405.Google Scholar
Alfvén, H., and Fälthammar, C. G. (1963). Cosmical Electrodynamics, Oxford University Press, Oxford.Google Scholar
Allan, W., and Knox, F. B. (1979a). A dipole field model for axisymmetric Alfvén waves with finite ionosphere conductivities. Planet. Space Sci., 27(1), 7985.Google Scholar
Allan, W., and Knox, F. B. (1979b). The effect of finite ionosphere conductivities on axisymmetric toroidal Alfvén wave resonances. Planet. Space Sci., 27(7), 939–50.Google Scholar
Allan, W., and Wright, A. N. (1997), Large-m waves generated by small-m field line resonances via the nonlinear Kelvin–Helmholtz instability. J. Geophys. Res., 102(A9), 19927–33, doi: 10.1029/97JA01489.Google Scholar
Arnoldy, R. L., Cahill, L. J. Jr, Engebretson, M. J., Lanzerotti, L. J. and Wolfe, A. (1988). Review of hydromagnetic wave studies in the Antarctic. Rev. Geophys., 26, 181201.Google Scholar
Backus, G., Parker, R. and Constable, C. (1996). Foundations of Geomagnetism. Cambridge University Press, Cambridge.Google Scholar
Backus, G. E. (1983). Application of mantle filter theory to the magnetic jerk of 1969. Geophys. J. Int., 74(3), 713–46.Google Scholar
Baddeley, L. J., Yeoman, T. K., Wright, D. M. et al. (2002). Morning sector drift-bounce resonance driven ULF waves observed in artificially-induced HF radar backscatter. Ann. Geophys., 20(9), 1487–98.Google Scholar
Baker, D. N., Kanekal, S. G., Hoxie, V. C., Henderson, M. G., Li, X., Spence, H. E., Elkington, S. R., Friedel, R. H. W., Goldstein, J., Hudson, M. K. and Reeves, G. D. (2013). A long-lived relativistic electron storage ring embedded in Earth’s outer Van Allen belt. Science, 340(6129), 186–90.Google Scholar
Balasis, G., Daglis, I. A. and Mann, I. R., eds. (2016). Waves, Particles, and Storms in Geospace: A Complex Interplay. Oxford University Press, Oxford.Google Scholar
Beharrell, M., Kavanagh, A. J. and Honary, F. (2010). On the origin of high m magnetospheric waves. J. Geophys. Res., 115, A02201, doi: 10.1029/2009JA014709.Google Scholar
Belakhovsky, V., Pilipenko, V., Murr, D., Fedorov, E. and Kozlovsky, A. (2016). Modulation of the ionosphere by Pc5 waves observed simultaneously by GPS/TEC and EISCAT. Earth Planets Space, 68, 102, doi: 10.1186/s40623-016–0480-7.Google Scholar
Boteler, D. H. (2011). Space weather effects on power systems, in Space Weather, ed. Song, P., Singer, H. J. and Siscoe, G. L., American Geophysical Union, Washington, DC, doi: 10.1002/GM125p0347.Google Scholar
Bourdarie, S., Friedel, R. H. W., Fennell, J., Kanekal, S. and Cayton, T. E. (2005). Radiation belt representation of the energetic electron environment: Model and data synthesis using the Salammbô radiation belt transport code and Los Alamos geosynchronous and GPS energetic particle data. Space Weather, 3, S04S01, doi: 10.1029/2004SW000065.Google Scholar
Brautigam, D. H. and Albert, J. M. (2000). Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm. J. Geophys. Res., 105(A1), 291309.Google Scholar
Brizard, A. J. and Chan, A. A. (2001). Relativistic bounce-averaged quasilinear diffusion equation for low-frequency electromagnetic fluctuations. Phys. Plasmas, 8(11), 4762–71.Google Scholar
Campbell, W. H. (2009). Natural magnetic disturbance fields, not precursors, preceding the Loma Prieta earthquake. J. Geophys. Res., 114, A05307, doi: 10.1029/2008JA013932.Google Scholar
Carpenter, D. and Anderson, R. (1992). An ISEE/Whistler model of equatorial electron density in the magnetosphere. J. Geophys. Res., 97, 10971108.Google Scholar
Carrington, R. C. (1859). Description of a Singular Appearance seen in the Sun on September 1, 1859. Monthly Notices R. Astron. Soc., 20(1), 1315.Google Scholar
Chapman, S. and Bartels, J. (1962). Geomagnetism, vol. 1, Clarendon Press, Oxford.Google Scholar
Chave, A. D., and Jones, A. G., eds. (2012). The Magnetotelluric Method: Theory and Practice, Cambridge University Press, Cambridge.Google Scholar
Chen, L., and Hasegawa, A. (1974). A theory of long‐period magnetic pulsations: 1. Steady state excitation of field line resonance. J. Geophys. Res., 79(7), 1024–32.Google Scholar
Chen, L., and Hasegawa, A. (1991). Kinetic theory of geomagnetic pulsations: 1. Internal excitations by energetic particles. J. Geophys. Res., 96(A2), 1503–12, doi: 10.1029/90JA02346.Google Scholar
Chen, L., Thorne, R. M., Bortnik, J. and Zhang, X.-J. (2016). Nonresonant interactions of electromagnetic ion cyclotron waves with relativistic electrons. J. Geophys. Res., 121, 9913–25, doi: 10.1002/2016JA022813.Google Scholar
Chi, P. J., Russell, C. T., Foster, J. C., Moldwin, M. B., Engebretson, M. J. and Mann, I. R. (2005). Density enhancement in plasmasphere-ionosphere plasma during the 2003 Halloween Superstorm: Observations along the 330th magnetic meridian in North America. Geophys. Res. Lett., 32, L03S07, doi: 10.1029/2004GL021722.Google Scholar
Chi, P. J., Russell, C. T. and Ohtani, S. (2009). Substorm onset timing via traveltime magnetoseismology. Geophys. Res. Lett., 36(8).Google Scholar
Chisham, G., Mann, I. R. and Orr, D. (1997). A statistical study of giant pulsation latitudinal polarization and amplitude variation. J. Geophys. Res., 102(A5), 9619–29.Google Scholar
Claudepierre, S. G., et al. (2013). Van Allen Probes observation of localized drift resonance between poloidal mode ultra-low frequency waves and 60 keV electrons. Geophys. Res. Lett., 40, 4491–7, doi: 10.1002/grl.50901.Google Scholar
Claudepierre, S. G., Hudson, M. K., Lotko, W., Lyon, J. G. and Denton, R. E. (2010). Solar wind driving of magnetospheric ULF waves: Field line resonances driven by dynamic pressure fluctuations. J. Geophys. Res., 115(A11), doi: 10.1029/2010JA015399.Google Scholar
Claudepierre, S. G., Wiltberger, M., Elkington, S. R., Lotko, W. and Hudson, M. K. (2009). Magnetospheric cavity modes driven by solar wind dynamic pressure fluctuations. Geophys. Res. Lett., 36(13), doi: 10.1029/2009GL039045.Google Scholar
Constable, C., and Korte, M. (2015). Centennial- to millennial-scale geomagnetic field variations, in Treatise on Geophysics, vol. 5, pp. 309–41, Elsevier, New York.Google Scholar
Constable, C., Korte, M. and Panovska, S. (2016). Persistent high paleosecular variation activity in the Southern Hemisphere for at least 10000 years. Earth Planet. Sci. Lett., 453, 7886.Google Scholar
Constable, C. G., and Constable, S. C. (2004). Satellite magnetic field measurements: Applications in studying the deep earth, in The State of the Planet: Frontiers and Challenges in Geophysics, American Geophysical Union, Washington, DC.Google Scholar
Currie, J. L., and Waters, C. L. (2014). On the use of geomagnetic indices and ULF waves for earthquake precursor signatures. J. Geophys. Res., 119, 9921003, doi: 10.1002/2013JA019530.Google Scholar
Dai, L., Takahashi, K., Lysak, R. L. et al. (2015). Storm time occurrence and spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes statistical study. J. Geophys. Res., 120(6), 4748–62.Google Scholar
Degeling, A. W., Rae, I. J., Watt, C. E. J., Shi, Q. Q., Rankin, R. and Zong, Q.-C. (2018). Control of ULF wave accessibility to the inner magnetosphere by the convection of plasma density. J. Geophys. Res., 123, doi: 10.1002/2017ja024874.Google Scholar
Demekhov, A. G. (2007). Recent progress in understanding Pc1 pearl formation. J. Atmos. Sol. Terr. Phys., 69, 1609–22.Google Scholar
Dent, Z. C., Mann, I. R., Menk, F. W., Goldstein, J., Wilford, C. R., Clilverd, M. A., and Ozeke, L. G. (2003). A coordinated ground-based and IMAGE satellite study of quiet-time plasmaspheric density profiles. Geophys. Res. Lett., 30, 1600, doi: 10.1029/2003GL016946.Google Scholar
Dent, Z. C., Mann, I. R., Goldstein, J., Menk, F. W. and Ozeke, L. G. (2006). Plasmaspheric depletion, refilling, and plasmapause dynamics: A coordinated ground-based and IMAGE satellite study. J. Geophys. Res., 111, A03205, doi: 10.1029/2005JA011046.Google Scholar
Dimitrakoudis, S., Mann, I. R., Balasis, G., Papadimitriou, C., Anastasiadis, A. and Daglis, I. A. (2015). Accurately specifying storm-time ULF wave radial diffusion in the radiation belts. Geophys. Res. Lett., 42, 5711–18, doi: 10.1002/2015GL064707.Google Scholar
Dungey, J. W. (1954). Electrodynamics of the outer atmosphere. Pennsylvania State University lonos. Res. Lab. Sci. Rept. No. 69.Google Scholar
Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett., 6(2), 47.Google Scholar
Elkington, S. R., Hudson, M. K. and Chan, A. A. (2003). Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. J. Geophys. Res., 108(A3).Google Scholar
Engebretson, M. J., Takahashi, K and Scholer, M, eds. (1994). Solar Wind Sources of Magnetospheric Ultra-Low Frequency Waves, AGU Monogr. 81, American Geophysical Union, Washington, DC, doi: 10.1029/GM081p00xi.Google Scholar
Engebretson, M. J., Lessard, M. R., Bortnik, J., Green, J. C., Thorne, R. B., Detrick, D. L., Weatherwax, A. T., Mannionen, J., Petit, N. J., Posch, J. L. and Rose, M. C. (2008). Pc1-Pc2 waves and energetic particle precipitation during and after magnetic storms: Superposed epoch analysis and case studies. J. Geophys. Res., 113, A01211, doi: 10.1029/2007JA012362.Google Scholar
Fälthammar, C.-G. (1965). Effects of time-dependent electric fields on geomagnetically trapped radiation. J. Geophys. Res., 70(11), 2503–16, doi: 10.1029/JZ070i011p02503.Google Scholar
Fei, Y., Chan, A. A., Elkington, S. R. and Wiltberger, M. J. (2006). Radial diffusion and MHD particle simulations of relativistic electron transport by ULF waves in the September 1998 storm. J. Geophys. Res., 111, A12209, doi: 10.1029/2005JA011211.Google Scholar
Fenrich, F. R., and Samson, J. C. (1997). Growth and decay of field line resonances. J. Geophys. Res., 102(A9), 20031–9.Google Scholar
Fenrich, F. R., Samson, J. C., Sofko, G. and Greenwald, R. A. (1995). ULF high‐and low‐m field line resonances observed with the Super Dual Auroral Radar Network. J. Geophys. Res., 100(A11), 21535–47.Google Scholar
Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N. and Tøffner-Clausen, L. (2016). Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model. Earth Planets Space, 68(1), 1.Google Scholar
Fraser, B. J., Horwitz, J. L., Slavin, J. A., Dent, Z. C. and Mann, I. R. (2005). Heavy ion mass loading of the geomagnetic field near the plasmapause and ULF wave implications. Geophys. Res. Lett., 32, L04102, doi: 10.1029/2004GL021315.Google Scholar
Fraser-Smith, A. C., Bernardi, A., McGill, P. R., Ladd, M. E., Helliwell, R. A. and Villard, O. G. (1990). Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake. Geophys. Res. Lett., 17, 1465–8, doi: 10.1029/GL017i009p01465.Google Scholar
Gee, J. S., and Kent, D. V. (2007). Source of oceanic magnetic anomalies and the geomagnetic polarity timescale, in Treatise on Geophysics, vol. 5, pp. 419–60, Elsevier, New York.Google Scholar
Gjerloev, J. W. (2012). The SuperMAG data processing technique. J. Geophys. Res., 117, A09213, doi: 10.1029/2012JA017683.Google Scholar
Glassmeier, K. H., Vogt, J., Stadelmann, A. and Buchert, S. (2004). Concerning long-term geomagnetic variations and space climatology. Ann. Geophys., 22(10), 3669–77.Google Scholar
Goldstein, J., Sandel, B. R., Thomsen, M. F., Spasojević, M. and Reiff, P. H. (2004). Simultaneous remote sensing and in situ observations of plasmaspheric drainage plumes. J. Geophys. Res., 109, A03202, doi: 10.1029/2003JA010281.Google Scholar
Grebowsky, J. M. (1970). Model study of plasmapause motion. J. Geophys. Res., 75(22), 4329–33, doi: 10.1029/JA075i022p04329.Google Scholar
Grew, R. S., Menk, F. W., Clilverd, M. A. and Sandel, B. R. (2007). Mass and electron densities in the inner magnetosphere during a prolonged disturbed interval. Geophys. Res. Lett., 34, L02108, doi: 10.1029/2006GL028254.Google Scholar
Gu, X., Shprits, Y. Y. and Ni, B. (2012). Parameterized lifetime of radiation belt electrons interacting with lower‐band and upper‐band oblique chorus waves. Geophys. Res. Lett., 39, L15102, doi: 10.1029/2012GL052519.Google Scholar
Halford, A. J., Fraser, B. J. and Morley, S. K. (2010). EMIC wave activity during geomagnetic storm and nonstorm periods: CRRES results. J. Geophys. Res., 115, A12248, doi: 10.1029/2010JA015716.Google Scholar
Harrold, B. G., and Samson, J. C. (1992). Standing ULF modes of the magnetosphere: A theory. Geophys. Res. Lett., 19(18), 1811–14.Google Scholar
Hartinger, M. D., Turner, D. L., Plaschke, F., Angelopoulos, V., and Singer, H. (2013). The role of transient ion foreshock phenomena in driving Pc5 ULF wave activity. J. Geophys. Res., 118(1), 299312.Google Scholar
Hayakawa, M. (2016). Earthquake prediction with electromagnetic phenomena. AIP Conf. Proc., 1709, 020002, doi: 10.1063/1.4941199.Google Scholar
Helliwell, R. A. (2006). Whistlers and Related Ionospheric Phenonemena. Dover, Mineola, NY.Google Scholar
Hendry, A. T., Rodger, C. J. and Clilverd, M. A. (2017). Evidence of sub-MeV EMIC-driven electron precipitation. Geophys. Res. Lett., 44, 1210–18, doi: 10.1002/2016GL071807.Google Scholar
Hendry, A. T., Rodger, C. J., Clilverd, M. A., Engebretson, M. J., Mann, I. R., Lessard, M. R., Raita, T., and Milling, D. K. (2016). Confirmation of EMIC wave driven relativistic electron precipitation. J. Geophys. Res., 121, doi: 10.1002/2015JA022224Google Scholar
Horne, R. B., and Thorne, R. M. (1998). Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys. Res. Lett., 25(15), 3011–14.Google Scholar
Horne, R. B., Glauert, S. A., Meredith, N. P., Koskinen, H., Vainio, R., Afanasiev, A., Ganushkina, N. Y., Amariutei, O. A., Boscher, D., Sicard, A. and Maget, V. (2013). Forecasting the Earth’s radiation belts and modelling solar energetic particle events: Recent results from SPACECAST. J. Space Weather Space Clim., 3, A20.Google Scholar
Hughes, W. J., Southwood, D. J., Mauk, B., McPherron, R. L. and Barfield, J. N. (1978). Alfvén waves generated by an inverted plasma energy distribution. Nature, 275(5675), 43–5.Google Scholar
Jackson, A., Jonkers, A. R. T. and Walker, M. R. (2000). Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. London A, 358, 957–90.Google Scholar
Jacobs, J. A., Kato, Y., Matsushita, S. and Troitskaya, V. A. (1964). Classification of geomagnetic micropulsations. J. Geophys. Res., 69(1), 180–81.Google Scholar
James, M. K., Yeoman, T. K., Mager, P. N. and Klimushkin, D. Y. (2013). The spatio-temporal characteristics of ULF waves driven by substorm injected particles. J. Geophys. Res., 118, 1737–49, doi: 10.1002/jgra.50131.Google Scholar
James, M. K., Yeoman, T. K, Mager, P. N. and Klimushkin, D. Y. (2016). Multiradar observations of substorm-driven ULF waves. J. Geophys. Res., 121, 5213–32, doi: 10.1002/2015JA022102.Google Scholar
Jorgensen, A. M., Heilig, B., Vellante, M., Lichtenberger, J., Reda, J., Valach, F. and Mandic, I. (2017). Comparing the dynamic global core plasma model with ground-based plasma desnity observations. J. Geophys. Res., 122, 79978013, doi: 10.1002/2016JA023229.Google Scholar
Kabin, K., Rankin, R., Mann, I. R., Degeling, A. W. and Marchand, R. (2007). Polarization properties of standing shear Alfvén waves in non-axisymmetric background magnetic fields. Ann. Geophys., 25(3), 815–22.Google Scholar
Kale, Z. C., Mann, I. R., Waters, C. L., Vellante, M., Zhang, T. L. and Honary, F. (2009). Plasmaspheric dynamics resulting from the Hallowe’en 2003 geomagnetic storms. J. Geophys. Res., 114, A08204, doi: 10.1029/2009JA014194.Google Scholar
Kavosi, S. and Raeder, J. (2015). Ubiquity of Kelvin–Helmholtz waves at Earth’s magnetopause. Nat. Comm., 6, 7019.Google Scholar
Keiling, A., and Takahashi, K. (2011). Review of Pi2 models. Space Sci. Rev., 161(14), 63148.Google Scholar
Kelley, M. C. (2009). The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 2nd edn., Elsevier, New York.Google Scholar
Kepko, L., Spence, H. E. and Singer, H. J. (2002). ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophys. Res. Lett., 29(8), doi: 10.1029/2001GL014405.Google Scholar
Kimura, I. (1974). Interrelation between VLF and ULF emissions. Space Sci. Rev., 16, 389411.Google Scholar
Kivelson, M. G., and Russell, C. T., eds. (1995). Introduction to Space Physics. Cambridge University Press, Cambridge.Google Scholar
Kivelson, M. G., and Southwood, D. J. (1985). Resonant ULF waves: A new interpretation. Geophys. Res. Lett., 12(1), 4952.Google Scholar
Kivelson, M. G., and Southwood, D. J. (1986). Coupling of global magnetospheric MHD eigenmodes to field line resonances. J. Geophys. Res., 91(A4), 4345–51.Google Scholar
Kivelson, M. G., Cao, M., McPherron, R. L. and Walker, R. J. (1997). A possible signature of magnetic cavity mode oscillations in ISEE spacecraft observations. J. Geomagn. Geoelec., 49(9), 1079–98.Google Scholar
Kivelson, M. G., and Russell, C. T., eds. (1995). Introduction to Space Physics. Cambridge University Press, Cambridge.Google Scholar
Klimushkin, D. Y. (2000). The propagation of high-m Alfvén waves in the Earth’s magnetosphere and their interaction with high-energy particles. J. Geophys. Res., 105(A10), 23303–10, doi: 10.1029/1999JA000396.Google Scholar
Kono, M. (2015). Geomagnetism: An introduction and overview, in Treatise on Geophysics, vol. 5, pp. 131, Elsevier, New York.Google Scholar
Le, G., and Russell, C. T. (1994). The morphology of ULF waves in the Earth’s foreshock, in Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, ed. Engebretson, M. J., Takahashi, K. and Scholer, M., American Geophysical Union, Washington, DC, doi: 10.1029/GM081p0087.Google Scholar
Lee, D.-H., and Lysak, R. L. (1999). MHD waves in a three-dimensional dipolar magnetic field: A search for Pi2 pulsations. J. Geophys. Res., 104(A12), 28691–99, doi: 10.1029/1999JA900377.Google Scholar
Li, W., et al. (2016a). Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations. J. Geophys. Res., 121, 5520–36.Google Scholar
Li, W., Thorne, R., Bortnik, J., Baker, D., Reeves, G., Kanekal, S., Spence, H. and Green, J. (2015a). Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis. Geophys. Res. Lett., 42, 6906–15.Google Scholar
Li, Z., Hudson, M., Kress, B. and Paral, J. (2015b). Three‐dimensional test particle simulation of the 17–18 March 2013 CME shock‐driven storm. Geophys. Res. Lett., 42, 5679–85.Google Scholar
Li, Z., Hudson, M., Paral, J., Wiltberger, M. and Turner, D. (2016b). Global ULF wave analysis of radial diffusion coefficients using a global MHD model for the 17 March 2015 storm. J. Geophys. Res., 121(7), 61966206.Google Scholar
Loto’aniu, T. M., Fraser, B. J. and Waters, C. L. (2005). Propagation of electromagnetic ion cyclotron wave energy in the magnetosphere. J. Geophys. Res., 110, A07214, doi: 10.1029/2004JA010816.Google Scholar
Loto’aniu, T. M., Mann, I. R., Ozeke, L. G., Chan, A. A., Dent, Z. C. and Milling, D. K. (2006). Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween geomagnetic storms. J. Geophys. Res., 111, A04218, doi: 10.1029/2005JA011355.Google Scholar
Loto’Aniu, T. M., Singer, H. J., Waters, C. L., Angelopoulos, V., Mann, I. R., Elkington, S. R. and Bonnell, J. W. (2010) Relativistic electron loss due to ultralow frequency waves and enhanced outward radial diffusion. J. Geophys. Res., 115, A12245, doi: 10.1029/2010JA015755.Google Scholar
Lowrie, W. (2007). Fundamentals of Geophysics, Cambridge University Press, Cambridge.Google Scholar
Lysak, R. L. (1993). Generalized model of the ionospheric Alfvén resonator, in Auroral Plasma Dynamics, ed. Lysak, R. L., Geophys. Monogr. 80, American Geophysical Union, Washington, DC.Google Scholar
Mann, I. R., et al. (2018). Reply to ‘The dynamics of Van Allen belts revisited’. Nat. Phys., 14(2), 103, doi: 10.1038/nphys4351.Google Scholar
Mann, I. R., Murphy, K. R., Ozeke, L. G., Rae, I. J., Milling, D. K., Kale, A. A. and Honary, F. F. (2012). The role of ultralow frequency waves in radiation belt dynamics, in Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, ed. Summers, D., Mann, I. R., Baker, D. N. and Schulz, M., American Geophysical Union, Washington, DC, doi: 10.1029/2012GM001349.Google Scholar
Mann, I. R., Ozeke, L. G., Murphy, K. R., Claudepierre, S., Turner, D., Baker, D. N., Rae, I. J., Kale, A., Milling, D. K. and Boyd, A. (2016). Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt. Nat. Phys., 12(10), 978, doi: 10.1038/nphys3799.Google Scholar
Mann, I. R., and Wright, A. N. (1995). Finite lifetimes of ideal poloidal Alfvén waves. J. Geophys. Res., 100(A12), 23677–86.Google Scholar
Mann, I. R., and Wright, A. N. (1999). Diagnosing the excitation mechanisms of Pc5 magnetospheric flank waveguide modes and FLRs. Geophys. Res. Lett., 26(16), 2609–12.Google Scholar
Mann, I. R., Balmain, K. G., Blake, J. B., Boteler, D., Bourdarie, S., Clemmons, J. H., Dent, Z. C., Degeling, A. W., Fedosejeves, R., Fennell, J. F. and Fraser, B. J. (2006). The outer radiation belt injection, transport, acceleration and loss satellite (ORBITALS): A Canadian small satellite mission for ILWS. Adv. Space Res., 38(8), 1838–60.Google Scholar
Mann, I. R., Chisham, G. and Bale, S. D. (1998). Multisatellite and ground‐based observations of a tailward propagating Pc5 magnetospheric waveguide mode. J. Geophys. Res., 103(A3), 4657–69.Google Scholar
Mann, I. R., Lee, E. A., Claudepierre, S. G., Fennell, J. F., Degeling, A., Rae, I. J., Baker, D. N., Reeves, G. D., Spence, H. E., Ozeke, L. G. and Rankin, R. (2013). Discovery of the action of a geophysical synchrotron in the Earth’s Van Allen radiation belts. Nat. Comm., 4, 2795.Google Scholar
Mann, I. R., Milling, D. K., Rae, I. J, Ozeke, L. G., Kale, A. et al. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Sci. Rev., 141(1–4), 413–51.Google Scholar
Mann, I. R., O’Brien, T. P. and Milling, D. K. (2004). Correlations between ULF wave power, solar wind speed, and relativistic electron flux in the magnetosphere: Solar cycle dependence. J. Atmos. Sol. Terr. Phys., 66(2), 187–98.Google Scholar
Mann, I. R., Wright, A. N. and Cally, P. S. (1995). Coupling of magnetospheric cavity modes to field line resonances: A study of resonance widths. J. Geophys. Res., 100(A10), 19441–56.Google Scholar
Mann, I. R., Wright, A. N. and Hood, A. W. (1997). Multiple‐timescales analysis of ideal poloidal Alfvén waves. J. Geophys. Res., 102(A2), 2381–90.Google Scholar
Mann, I. R., Wright, A. N., Mills, K. J. and Nakariakov, V. M. (1999). Excitation of magnetospheric waveguide modes by magnetosheath flows. J. Geophys. Res., 104(A1), 333–53.Google Scholar
Marshall, R. A., Gorniak, H., der Walt, T. V., Waters, C. L., Sciffer, M. D., Miller, M., Dalzell, M., Daly, T., Pouferis, G., Hesse, G., and Wilkinson, P. (2013). Observations of geomagnetically induced currents in the Australian power network. Space Weather, 11, doi: 10.1029/2012SW000849.Google Scholar
Marshall, R. A. (1996). Geomagnetic pulsation service, IPS Radio and Space Services Internal Report, IPS TR-96-02, Aus. Govt. Dep. Admin. Services.Google Scholar
Masci, F. (2011). On the seismogenic increase of the ratio of the ULF geomagnetic field components. Phys. Earth Planet. Inter., 187, 1932, doi: 10.1016/j.pepi.2011.05.001.Google Scholar
Mathie, R. A., and Mann, I. R. (2001). On the solar wind control of Pc5 ULF pulsation power at mid-latitudes: Implications for MeV electron acceleration in the outer radiation belt. J. Geophys. Res., 106(A12), 29783–96, doi: 10.1029/2001JA000002.Google Scholar
Mathie, R. A., Menk, F. W., Mann, I. R. and Orr, D. (1999a). Discrete field line resonances and the Alfvén continuum in the outer magnetosphere. Geophys. Res. Lett., 26(6), 659–62.Google Scholar
Mathie, R. A., and Mann, I. R. (2000). A correlation between extended intervals of ULF wave power and storm‐time geosynchronous relativistic electron flux enhancements. Geophys. Res. Lett., 27(20), 3261–4.Google Scholar
Mathie, R. A., and Mann, I. R. (2000). Observations of Pc5 field line resonance azimuthal phase speeds: A diagnostic of their excitation mechanism. J. Geophys. Res., 105(A5), 10713–28.Google Scholar
Mathie, R. A., Mann, I. R., Menk, F. W. and Orr, D. (1999b). Pc5 ULF pulsations associated with waveguide modes observed with the IMAGE magnetometer array. J. Geophys. Res., 104(A4), 7025–36.Google Scholar
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G. and Ukhorskiy, A. (2013). Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev., 179(1–4), 327.Google Scholar
McPherron, R. L., Russell, C. T. and Coleman, P. J. (1972). Fluctuating magnetic fields in the magnetosphere. Space Sci. Rev., 13, 411–54.Google Scholar
McPherron, R. L. (2005). Magnetic pulsations: Their sources and relation to solar wind and geomagnetic activity. Surv. Geophys., 26, 545–92.Google Scholar
Menk, F. W., Orr, D., Clilverd, M. A., Smith, A. J., Waters, C. L., Milling, D. K. and Fraser, B. J. (1999). Monitoring spatial and temporal variations in the dayside plasmasphere using geomagnetic field line resonances. J. Geophys. Res., 104(A9), 19955–69, doi: 10.1029/1999JA900205.Google Scholar
Menk, F. W., Kale, Z. C., Sciffer, M., Robinson, P., Waters, C. L., Grew, R., Clilverd, M. and Mann, I. R. (2014). Remote sensing the plasmasphere, plasmapause, plumes and other features using ground-based magnetometers. J. Space Weather Space Clim., 4, A34.Google Scholar
Menk, F. W., and Waters, C. L. (2013). Magnetoseismology: Ground-Based Remote Sensing of Earth’s Magnetosphere. John Wiley, Hoboken, NJ.Google Scholar
Menk, F. W., Fraser, B. J., Hansen, H. J., Newell, P. T., Meng, C.-I. and Morris, R. J. (1992). Identification of the magnetospheric cusp and cleft using Pc1-2 ULF pulsations. J. Atmos. Terr. Phys., 54(7/8), 1021–43.Google Scholar
Meredith, N. P., Thorne, R. M., Horne, R. B., Summers, D., Fraser, B. J. and Anderson, R. R. (2003). Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES. J. Geophys. Res., 108, 1250, doi: 10.1029/2002JA009700.Google Scholar
Millan, R. M., and Thorne, R. M. (2007). Review of radiation belt relativistic electron losses. J. Atmos. Sol. Terr. Phys., 69, 362–77.Google Scholar
Mills, K. J., Wright, A. N. and Mann, I. R. (1999). Kelvin-Helmholtz driven modes of the magnetosphere. Phys. Plasmas, 6(10), 4070–87.Google Scholar
Min, K., Takahashi, K., Ukhorskiy, A. Y. et al. (2017). Second harmonic poloidal waves observed by Van Allen Probes in the dusk‐midnight sector. J. Geophys. Res., 122(3), 3013–39.Google Scholar
Morley, S. K., Sullivan, J. P., Carver, M. R., Kippen, R. M., Friedel, R. H. W., Reeves, G. D. and Henderson, M. G. (2017). Energetic particle data from the Global Positioning System constellation. Space Weather, 15, 283–9, doi: 10.1002/2017SW001604.Google Scholar
Mourenas, D., Artemyev, A. V., Ma, Q., Agapitov, O. V. and Li, W. (2016). Fast dropouts of multi-MeV electrons due to combined effects of EMIC and whistler mode waves. Geophys. Res. Lett., 43, doi: 10.1002/2016GL068921.Google Scholar
Murphy, K. R., Mann, I. R. and Sibeck, D. G. (2015). On the dependence of storm time ULF wave power on magnetopause location: Impacts for ULF wave radial diffusion. Geophys. Res. Lett., 42, 9676–84, doi: 10.1002/2015GL066592.Google Scholar
Murphy, K. R., Mann, I. R. and Ozeke, L. G. (2014). A ULF wave driver of ring current energization. Geophys. Res. Lett., 41(19), 65956602.Google Scholar
Neudegg, D. A., Fraser, B. J., Menk, F. W., Hansen, H. J., Burns, G. B., Morris, R. J. and Underwood, M. J. (1995). Sources and velocities of Pc1-2 ULF waves at high latitudes. Geophys. Res. Lett., 22(21), 2965–8, doi: 10.1029/95GL02939.Google Scholar
Nickolaenko, A., and Hayakawa, M. (2014). Schumann Resonance for Tyros. Springer Japan, Tokyo.Google Scholar
Norouzi-Sedeh, L. (2013). Doppler clutter in HF radar systems produced by ULF waves, PhD thesis, University of Newcastle, NSW, Australia.Google Scholar
Norouzi-Sedeh, L., Waters, C. L. and Menk, F. W. (2015). Survey of ULF wave signatures seen in the Tasman International Geospace Environment Radar data. J. Geophys. Res., 120, doi: 10.1002/2014JA020652.Google Scholar
Obana, Y., Waters, C. L., Sciffer, M. D., Menk, F. W., Lysak, R. L., Shiokawa, K., Hurst, A. W. and Petersen, T. (2015). Resonance structure and mode transition of quarter-wave ULF pulsations around the dawn terminator. J. Geophys. Res., 120, 41944212, doi: 10.1002/2015JA021096.Google Scholar
Odera, T. J. (1986). Solar wind controlled pulsations: A review. Rev. Geophys., 24, 5574.Google Scholar
Olifer, L., Mann, I. R, Morley, S. K., Ozeke, L. G. and Choi, D. (2018). On the role of last closed drift shell dynamics in driving fast losses and Van Allen radiation belt extinction. J. Geophys. Res., 123, doi: 10.1029/2018JA025190.Google Scholar
Olsen, N. (2007). Natural sources for electromagnetic induction studies, in Encyclopedia of Geomagnetism and Paleomagnetism, ed. Gubbins, D. and Herrero-Bervera, E., pp. 696700, Springer, New York.Google Scholar
Olsen, N., Hulot, G. and Sabaka, T. J. (2010). Sources of the geomagnetic field and the modern data that enable their investigation, in Handbook of Geomathematics, ed. Freeden, W., Nashed, M. Z. and Sonar, T., Springer, Berlin.Google Scholar
Orlova, K., Shprits, Y. and Spasojevic, M. (2016). New global loss model of energetic and relativistic electrons based on Van Allen Probes measurements. J. Geophys. Res., 121, 1308–14, doi: 10.1002/2015JA021878.Google Scholar
Orr, D., and Matthew, J. A. (1971). The variation of geomagnetic micropulsation periods with latitude and the plasmapause. Planet. Space Sci., 19(8), 897905.Google Scholar
Orr, D. (1973). Magnetic pulsations within the magnetosphere: A review. J. Atmos. Terr. Phys., 35, 150.Google Scholar
Ozeke, L. G., and Mann, I. R. (2008). Energization of radiation belt electrons by ring current ion driven ULF waves. J. Geophys. Res., 113, A02201, doi: 10.1029/2007JA012468.Google Scholar
Ozeke, L. G., Mann, I. R. and Rae, I. J. (2009). Mapping guided Alfvén wave magnetic field amplitudes observed on the ground to equatorial electric field amplitudes in space. J. Geophys. Res., 114, A01214, doi: 10.1029/2008JA013041.Google Scholar
Ozeke, L. G., Mann, I. R., Turner, D. L., Murphy, K. R., Degeling, A. W., Rae, I. J. and Milling, D. K. (2014b). Modeling cross L shell impacts of magnetopause shadowing and ULF wave radial diffusion in the Van Allen belts. Geophys. Res. Lett., 41, 6556–62.Google Scholar
Ozeke, L. G., Mann, I. R., Murphy, K. R., Sibeck, D. G. and Baker, D. N. (2017). Ultra-relativistic radiation belt extinction and ULF wave radial diffusion: Modeling the September 2014 extended dropout event. Geophys. Res. Lett., 44, 2624–33, doi: 10.1002/2017GL072811.Google Scholar
Ozeke, L. G., Mann, I. R., Murphy, K. R., Rae, I. J., Milling, D. K., Elkington, S. R., Chan, A. A. and Singer, H. J. (2012a). ULF wave derived radiation belt radial diffusion coefficients. J. Geophys. Res., 117, A04222.Google Scholar
Ozeke, L. G., Mann, I. R., Murphy, K. R., Jonathan Rae, I. and Milling, D. K. (2014a). Analytic expressions for ULF wave radiation belt radial diffusion coefficients. J. Geophys. Res., 119, 15871605.Google Scholar
Ozeke, L. G., Mann, I. R., Murphy, K. R., Rae, I. J. and Chan, A. A. (2012b). ULF wave–driven radial diffusion simulations of the outer radiation belt, in Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, ed. Summers, D., Mann, I. R., Baker, D. N. and Schulz, M., American Geophysical Union, Washington, DC, doi: 10.1029/2012GM001332.Google Scholar
Ozeke, L. G., and Mann, I. R. (2001). Modeling the properties of high‐m Alfvén waves driven by the drift‐bounce resonance mechanism. J. Geophys. Res., 106(A8), 15583–97.Google Scholar
Ozeke, L. G., and Mann, I. R. (2005). High and low ionospheric conductivity standing guided Alfvén wave eigenfrequencies: A model for plasma density mapping. J. Geophys. Res., 110(A4), doi: 10.1029/2004JA010719.Google Scholar
Ozeke, L. G., Mann, I. R. and Mathews, J. T. (2005). The influence of asymmetric ionospheric Pedersen conductances on the field‐aligned phase variation of guided toroidal and guided poloidal Alfvén waves. J. Geophys. Res., 110(A8), doi: 10.1029/2005JA011167.Google Scholar
Pilipenko, V. A., Kozyreva, O. V., Engebretson, M. J. and Soloviev, A. A. (2017). ULF wave power index for space weather and geophysical applications: A review. Russ. J. Earth Sci., 17, doi: 10.2205/2017ES000597.Google Scholar
Plaschke, F., Glassmeier, K. H., Auster, H. U. et al. (2009). Standing Alfvén waves at the magnetopause. Geophys. Res. Lett., 36(2), doi: 10.1029/2008GL036411.Google Scholar
Plaschke, F., and Glassmeier, K.-H. (2011). Properties of standing Kruskal-Schwarzschild-modes at the magnetopause. Ann. Geophys., 29, 17931807, doi: 10.5194/angeo-29-1793-2011.Google Scholar
Potapova, A. S., Polyushkina, T. N., Tsegmed, B., Oinats, A. V., Pashinin, A. Yu., Edemskiy, I. K., Mylnikova, A. A. and Ratovsky, K. G. (2017). Considering the potential of IAR emissions for ionospheric sounding. J. Atmos. Sol. Terr. Phys., 164, 229–34.Google Scholar
Pulkkinen, A., Bernabeu, E., Thomson, A., Viljanen, A., Pirjola, R., Boteler, D., Eichner, J., Cilliers, P. J., Welling, D., Savani, N. P., Weigel, R. S., Love, J. J., Balch, C., Ngwira, C. M., Crowley, G., Schultz, A., Kataoka, R., Anderson, B., Fugate, D., Simpson, J. J. and MacAlester, M. (2017). Geomagnetically induced currents: Science, engineering and applications readiness. Space Weather, doi: 10.1002/2016SW001501.Google Scholar
Radoski, H. R. (1967). Highly asymmetric MHD resonances: The guided poloidal mode. J. Geophys. Res., 72(15), 4026–7.Google Scholar
Rae, I. J., Mann, I. R., Murphy, K. R., Ozeke, L. G., Milling, D. K., Chan, A. A., Elkington, S. R. and Honary, F. (2012). Ground-based magnetometer determination of in situ Pc4–5 ULF electric field wave spectra as a function of solar wind speed. J. Geophys. Res., 117, A04221, doi: 10.1029/2011JA017335.Google Scholar
Rae, I. J., Donovan, E. F., Mann, I. R. et al. (2005). Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval. J. Geophys. Res., 110(A12), doi: 10.1029/2005JA011007.Google Scholar
Reeves, G. D., Chen, Y., Cunningham, G. S., Friedel, R. W. H., Henderson, M. G., Jordanova, V. K., Koller, J., Morley, S. K., Thomsen, M. F. and Zaharia, S. (2012). Dynamic Radiation Environment Assimilation Model: DREAM. Space Weather, 10, S03006, doi: 10.1029/2011SW000729.Google Scholar
Reeves, G., McAdams, K., Friedel, R. and O’Brien, T. (2003). Acceleration and loss of relativistic electrons during small geomagnetic storms. Geophys. Res.Lett., 30, doi: 10.1002/2015GL066376.Google Scholar
Reeves, G. D., Spence, H. E., Henderson, M. G., Morley, S. K., Friedel, R. H. W., Funsten, H. O., Baker, D. N., Kanekal, S. G., Blake, J. B., Fennell, J. F. and Claudepierre, S. G. (2013). Electron acceleration in the heart of the Van Allen radiation belts. Science, 341(6149), 991–4.Google Scholar
Rickard, G. J., and Wright, A. N. (1995). ULF pulsations in a magnetospheric waveguide: Comparison of real and simulated satellite data. J. Geophys. Res., 100(A3), 3531–7.Google Scholar
Rickard, G. J., and Wright, A. N. (1994). Alfvén resonance excitation and fast wave propagation in magnetospheric waveguides. J. Geophys. Res., 99(A7), 13455–64.Google Scholar
Rostoker, G., Skone, S. and Baker, D. N. (1998). On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms. Geophys. Res. Lett., 25(19), 3701–4.Google Scholar
Ruohoniemi, J. M., Greenwald, R. A., Baker, K. B. and Samson, J. C. (1991). HF radar observations of Pc 5 field line resonances in the midnight/early morning MLT sector. J. Geophys. Res., 96(A9), 15697–710, doi: 10.1029/91JA00795.Google Scholar
Sabaka, T. J., Hulot, G. and Olsen, N. (2010). Mathematical Properties Relevant to Geomagnetic Field Modeling, in Handbook of Geomathematics, pp. 503–38, Springer, Berlin.Google Scholar
Saito, T. (1969). Geomagnetic pulsations. Space Sci. Rev., 10, 319412.Google Scholar
Samson, J. C., Greenwald, R. A., Ruohoniemi, J. M., Hughes, T. J. and Wallis, D. D. (1991). Magnetometer and radar observations of magnetohydrodynamic cavity modes in the Earth’s magnetosphere. Can. J. Phys., 69, 929.Google Scholar
Samson, J. C., Harrold, B. G., Ruohoniemi, J. M., Greenwald, R. A. and Walker, A. D. M. (1992). Field line resonances associated with MHD waveguides in the magnetosphere. Geophys. Res. Lett., 19, 441–4, doi: 10.1029/92GL00116.Google Scholar
Samson, J. C. (1991). Geomagnetic pulsations and plasma waves in the Earth’s magnetosphere, in Geomagnetism, vol. 4, ed. Jacobs, J. A., chapter 4, Academic Press, London.Google Scholar
Samson, J. C., Jacobs, J. A. and Rostoker, G. (1971). Latitude‐dependent characteristics of long‐period geomagnetic micropulsations. J. Geophys. Res., 76(16), 3675–83.Google Scholar
Samson, J. C. (1983). Pure states, polarized waves, and principal components in the spectra of multiple, geophysical time series. Geophys. J. R. Astron. Soc., 72, 647–64.Google Scholar
Schulz, M., and Lanzerotti, L. J. (1974). Particle Diffusion in the Radiation Belts, Physics and Chemistry in Space 7, Springer, Berlin.Google Scholar
Sciffer, M. D., and Waters, C. L. (2011). Relationship between ULF wave mode mix, equatorial electric fields, and ground magnetometer data. J. Geophys. Res., 116, A06202, doi: 10.1029/2010JA016307.Google Scholar
Sciffer, M. D., Waters, C. L. and Menk, F. W. (2005). A numerical model to investigate the polarisation azimuth of ULF waves through an ionosphere with oblique magnetic fields. Ann. Geophys., 23, 3457–71.Google Scholar
Sciffer, M. D., Waters, C. L. and Menk, F. W. (2004). Propagation of ULF waves through the ionosphere: Inductive effect for oblique magnetic fields. Ann. Geophys., 22, 1155–69.Google Scholar
Serson, P. H. (1973). Instrumentation for induction studies on land. Phys. Earth Planet. Inter., 7, 313–22.Google Scholar
Shah, A. S., Waters, C. L., Sciffer, M. D. and Menk, F. W. (2016). Energization of outer radiation belt electrons during storm recovery phase. J. Geophys. Res., 121, 10845–60, doi: 10.1002/2016JA023245.Google Scholar
Shprits, Y. Y., Thorne, R. M., Friedel, R., Reeves, G. D., Fennell, J., Baker, D. N. and Kanekal, S. G. (2006). Outward radial diffusion driven by losses at magnetopause. J. Geophys. Res., 111, A11214, doi: 10.1029/2006JA011657.Google Scholar
Shprits, Y. Y., Subbotin, D., Drozdov, A., Usanova, M. E., Kellerman, A., Orlova, K., Baker, D. N., Turner, D. L. and Kim, K. C. (2013). Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts. Nat. Phys., 9(11), 699.Google Scholar
Shvets, A., and Hayakawa, M. (2011). Global lightning activity on the basis of inversions of natural ELF electromagnetic data observed at multiple stations around the world. Surv. Geophys., 32(6), 705–32.Google Scholar
Sibeck, D. G. (1990). A model for the transient magnetospheric response to sudden solar wind dynamic pressure variations. J. Geophys. Res., 95(A4), 3755–71.Google Scholar
Sibeck, D. G., Borodkova, N. L., Schwartz, S. J. et al. (1999). Comprehensive study of the magnetospheric response to a hot flow anomaly. J. Geophys. Res., 104(A3), 4577–93.Google Scholar
Silin, I., Mann, I. R., Sydora, R. D., Summers, D. and Mace, R. L. (2011). Warm plasma effects on electromagnetic ion cyclotron wave MeV electron interactions in the magnetosphere. J. Geophys. Res., 116, A05215, doi: 10.1029/2010JA016398.Google Scholar
Siscoe, G. L., and Chen, C. K. (1975). The paleomagnetosphere. J. Geophys. Res., 80(34), 4675–80.Google Scholar
Southwood, D. J. (1974). Some features of field line resonances in the magnetosphere. Planet. Space Sci., 22(3), 483–91.Google Scholar
Southwood, D. J. (1976). A general approach to low‐frequency instability in the ring current plasma. J. Geophys. Res., 81(19), 3340–48.Google Scholar
Southwood, D. J., and Hughes, W. J. (1983). Theory of hydromagnetic waves in the magnetosphere. Space Sci. Rev., 35(4), 301–66.Google Scholar
Southwood, D. J., Dungey, J. W. and Etherington, R. J. (1969). Bounce resonant interaction between pulsations and trapped particles. Planet. Space Sci., 17(3), 349–61.Google Scholar
Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M., Bourdarie, S., Chan, A. A., Claudepierre, S. G., Clemmons, J. H., Cravens, J. P. and Elkington, S. R. (2013). Science goals and overview of the radiation belt storm probes (RBSP) energetic particle, composition, and thermal plasma (ECT) suite on NASA’s Van Allen probes mission. Space Sci. Rev., 179(1–4), 311–36.Google Scholar
Stadelmann, A., Vogt, J., Glassmeier, K.-H., Kallenrode, M.-B. and Voigt, G.-H. (2010). Cosmic ray and solar energetic particle flux in paleomagnetospheres. Earth Planets Space, 62(3), 333–45.Google Scholar
Subbotin, D. A., Shprits, Y. Y. and Ni, B. (2011). Long-term radiation belt simulation with the VERB 3-D code: Comparison with CRRES observations. J. Geophys. Res., 116, A12210, doi: 10.1029/2011JA017019.Google Scholar
Summers, D., Ni, B. and Meredith, N. P. (2007). Timescales for radiation belt electron acceleration and loss due to resonant wave‐particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. J. Geophys. Res., 112(A4), doi: 10.1029/2006JA01180.Google Scholar
Surkov, V., and Hayakawa, M. (2014b). Ionospheric Alfven Resonator (IAR) in Ultra and Extremely Low Frequency Electromagnetic Fields, Springer, Tokyo.Google Scholar
Surkov, V., and Hayakawa, M. (2014a). Ultra and Extremely Low Frequency Electromagnetic Fields, Springer, Tokyo.Google Scholar
Takahashi, K., and Ukhorski, A. Y. (2007). Solar wind control of Pc5 pulsation power at geosynchronous orbit. J. Geophys. Res., 112, A11205, doi: 10.1029/2007JA012483.Google Scholar
Takahashi, K., Waters, C. L., Glassmeier, K.-H., Kletzing, C. A., Kurth, W. S. and Smith, C. W. (2015). Multifrequency compressional magnetic field oscillations and their relation to multiharmonic toroidal mode standing Alfvén waves. J. Geophys. Res., 120, 10384–403, doi: 10.1002/2015JA021780.Google Scholar
Takahashi, K., et al. (2010). Multipoint observation of fast mode waves trapped in the dayside plasmasphere. J. Geophys. Res., 115, A12247, doi: 10.1029/2010JA015956.Google Scholar
Takahashi, K., Hartinger, M. D., Angelopoulos, V., Glassmeier, K. H. and Singer, H. J. (2013). Multispacecraft observations of fundamental poloidal waves without ground magnetic signatures. J. Geophys. Res., 118(7), 4319–34.Google Scholar
Takahashi, K., Oimatsu, S., Nosé, M., Min, K., Claudepierre, S. G. et al. (2018). Van Allen Probes observations of second-harmonic poloidal standing Alfvén waves. J. Geophys. Res., 123, doi: 10.1002/2017JA024869.Google Scholar
Takahashi, K., Chi, P. J., Denton, R. E. and Lysak, R. L., eds. (2006). Magnetospheric ULF Waves: Synthesis and New Directions, AGU Monograph 169, American Geophysical Union, Washington, DC.Google Scholar
Takahashi, K., Denton, R. E. and Singer, H. J. (2010). Solar cycle variation of geosynchronous plasma mass density derived from the frequency of standing Alfvén waves. J. Geophys. Res., 115, A07207, doi: 10.1029/2009JA015243.Google Scholar
Takahashi, K. (1990). Response of energetic particles to magnetospheric ultra-low-frequency waves. Johns Hopkins APL Tech. Digest, 11, 255–63.Google Scholar
Tamao, T. (1964). The structure of three-dimensional hydromagnetic waves in a uniform cold plasma. J. Geomagn. Geoelectr., 18, 89114.Google Scholar
Tamao, T. (1966). Transmission and coupling resonance of hydromagnetic disturbances in the non-uniform Earth’s magnetosphere. Sci. Rep. Tohoku Univ. Ser. 5, 17, 43.Google Scholar
Tarduno, J. A., Cottrell, R. D., Davis, W. J., Nimmo, F. and Bono, R. K. (2015). A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science, 349(6247), 521–4.Google Scholar
Tarduno, J. A., Cottrell, R. D., Watkeys, M. K., Hofmann, A., Doubrovine, P. V., Mamajek, E. E., Liu, D., Sibeck, D. G., Neukirch, L. P. and Usui, Y. (2010). Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science, 327(5970), 1238–40.Google Scholar
Tauxe, L. (2010). Essentials of Paleomagnetism. University of California Press, Berkeley.Google Scholar
Tu, W., Elkington, S. R., Li, X., Liu, W. and Bonnell, J. (2012). Quantifying radial diffusion coefficients of radiation belt electrons based on global MHD simulation and spacecraft measurements. J. Geophys. Res., 117, A10210, doi: 10.1029/2012JA017901.Google Scholar
Turner, D. L., Shprits, Y., Hartinger, M. and Angelopoulos, V. (2012). Explaining sudden losses of outer radiation belt electrons during geomagnetic storms. Nat. Phys., 8(3), 208.Google Scholar
Ukhorskiy, A. Y., Anderson, B. J., Brandt, P. C. and Tsyganenko, N. A. (2006). Storm time evolution of the outer radiation belt: Transport and losses. J. Geophys. Res., 111, A11S03, doi: 10.1029/2006JA011690.Google Scholar
Usanova, M. E., Drozdov, A., Orlova, K., Mann, I. R., Shprits, Y. et al. (2014). Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground‐based and Van Allen Probes observations. Geophys. Res. Lett., 41, 1375–81.Google Scholar
Usanova, M. E., Mann, I. R., Rae, I. J., Kale, Z. C., Angelopoulos, V., Bonnell, J. W., Glassmeier, K.-H., Auster, H. U. and Singer, H. J. (2008). Multipoint observations of magnetospheric compression related EMIC Pc1 waves by THEMIS and CARISMA. Geophys. Res. Lett., 35, L17S25, doi: 10.1029/2008GL034458.Google Scholar
Vallee, M. A., Newitt, L., Dumont, R. and Keating, P. (2005). Correlation between aeromagntic data rejection and geomagnetic indices. Geophysics, 70, J33–8, doi: 10.1190/1.2057982.Google Scholar
Walker, A. D. M. (2000). Reflection and transmission at the boundary between two counterstreaming MHD plasmas – active boundaries or negative-energy waves? J. Plasma Phys., 63(3), 203–19.Google Scholar
Waters, C. L. and Cox, S. P. (2009). ULF wave effects on high frequency signal propagation through the ionosphere. Ann. Geophys., 27, 2779–88, doi: 10.5194/angeo-27-2779-2009.Google Scholar
Waters, C. L., Gjerloev, J. W., Dupont, M. and Barnes, R. J. (2015). Global maps of ground magnetometer data. J. Geophys. Res., 120, doi: 10.1002/2015JA021596.Google Scholar
Waters, C. L., Kabin, K., Rankin, R., Donovan, E. and Samson, J. C. (2007). Effects of the magnetic field model and wave polarisation on the estimation of proton number densities in the magnetosphere using field line resonances. Planet. Space Sci., 55, 809–19.Google Scholar
Waters, C. L., Lysak, R. L. and Sciffer, M. D. (2013). On the coupling of fast and shear Alfvén wave modes by the ionospheric Hall conductance. Earth Planets Space, 65, 385–96, doi: 10.5047/eps.2012.08.002.Google Scholar
Waters, C. L., Menk, F. W. and Fraser, B. J. (1991). The resonance structure of low latitude Pc3 geomagnetic pulsations. Geophys. Res. Lett., 18, 2293–6, doi: 10.1029/91GL02550.Google Scholar
Waters, C. L., Takahashi, K., Lee, D. H. and Anderson, B. J. (2002). Detection of ultralow‐frequency cavity modes using spacecraft data. J. Geophys. Res., 107(A10).Google Scholar
Webb, D. F., and Allen, J. H. (2004). Spacecraft and ground anomalies related to the October–November 2003 solar activity. Space Weather, 2(3).Google Scholar
Wright, A. N., and Mann, I. R. (2006). Global MHD eigenmodes of the outer magnetosphere, in Magnetospheric ULF Waves: Synthesis and New Directions, ed. Takahashi, K., Chi, P. J., Denton, R. E. and Lysak, R. L., pp. 5172, American Geophysical Union, Washington, DC, doi: 10.1029/169GM06.Google Scholar
Wright, A. N. (1994). Dispersion and wave coupling in inhomogeneous MHD waveguides. J. Geophys. Res., 99(A1), 159–67.Google Scholar
Wright, D. M., and Yeoman, T. K. (1999). High resolution bistatic HF radar observations of ULF waves in artificially generated backscatter. Geophys. Res. Lett., 26(18), 2825–8.Google Scholar
Wright, D. M., Yeoman, T. K. and Jones, T. B. (1999). ULF wave occurrence statistics in a high-latitude HF Doppler sounder. Ann. Geophys., 17, 749–58.Google Scholar
Yeoman, T. K. and Wright, D. M. (2001). ULF waves with drift resonance and drift-bounce resonance energy sources as observed in artificially-induced HF radar backscatter. Ann. Geophys., 19, 159–70, doi: 10.5194/angeo-19-159-2001.Google Scholar
Yeoman, T. K., James, M. K., Klimushkin, D. Y. and Mager, P. N. (2016). Energetic particle‐driven ULF waves in the ionosphere, in Low-Frequency Waves in Space Plasmas, ed. A. Keiling, D.-H. Lee and V. Nakariakov, Geophys. Monogr. 216, American Geophysical Union, Washington, DC.Google Scholar
Yeoman, T. K., Wright, D. M., Robinson, T. R., Davies, J. A. and Rietveld, M. (1997). High spatial and temporal resolution observations of an impulse-driven field line resonance in radar backscatter artificially generated with the Tromsø heater. Ann. Geophys., 15(6), 634–44.Google Scholar
Yoshikawa, A., and Itonaga, M. (2000). The nature of reflection and mode conversion of MHD waves in the inductive ionosphere: Multistep mode conversion between divergent and rotational electric fields. J. Geophys. Res., 105, 10565–84.Google Scholar
Zhou, X.-Z., Wang, Z.-H., Zong, Q.-G., Rankin, R., Kivelson, M. G., Chen, X.-R., Blake, J. B., Wygant, J. R. and Kletzing, C. A. (2016). Charged particle behavior in the growth and damping stages of ultralow frequency waves: Theory and Van Allen Probes observations. J. Geophys. Res., 121, 3254–63, doi: 10.1002/2016JA022447.Google Scholar
Ziegler, L. B., Constable, C. G., Johnson, C. L. and Tauxe, L. (2011). PADM2 M: Penalized maximum likelihood model of the 0–2 Ma palaeomagnetic axial dipole moment. Geophys. J. Int., 184(3), 1069–89.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×