Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T04:58:48.434Z Has data issue: false hasContentIssue false

2 - Why Study the Geomagnetic Field?

from Part I - Introduction

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

In this chapter we provide an introduction to different fields of geomagnetism studies rather than to this book as a whole. The aim is to present the wide, temporaly variable and spatialy heterogeneous subjects covered by geomagnetism studies. Individual parts of this chapter address subjects extending from geodynamo through historical records of the geomagnetic field, its present dynamics, its interaction with solar wind and coronal mass ejections, its influence on the electrodynamics of plasma in near-Earth space,hazards of space weather, and finally to the importance of the geomagnetic field for the biosphere. Individual parts, written by top experts in these fields, are different in both style and length; and in view of the vast range of topics covered, some of the subjects introduced here are not presented in greater details in the whole volume. We believe that this chapter shows the many facets of the role of the geomagnetic field and associated physical phenomena, taking place in our natural environment, some of which may have significant effects on human lives and the technology that we use today. The chapter demonstrates the attractiveness and usefulness of geomagnetism and aeronomy studies in a form suitable for both experts and non-specialists.

Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 7 - 29
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Banks, R. J. (1969) Geomagnetic variations and the electrical conductivity of the upper mantle. Geophys. J. R. Astron. Soc., 17, 457–87.Google Scholar
Constable, S. (2015) Geomagnetic induction studies. In: Schubert, G. (Ed.), Treatise on Geophysics, 2nd edn., Elsevier, Oxford, 219–54.Google Scholar
Constable, S. C., Parker, R. L. and Constable, C. G. (1987) Occam’s Inversion: a practical algorithm for generating smooth models from EM sounding data. Geophysics, 52, 289300.Google Scholar
Dong, S.-W., Li, T.-D., Lu, Q.-T., Gao, R., Yang, J.-S., Chen, X.-H., Wei, W.-B. and Zhou, Q. (2013) Progress in deep lithospheric exploration of the continental China: a review of the SinoProbe. Tectonophysics, 606, 113.CrossRefGoogle Scholar
Egbert, G. D. (1997) Robust multiple-station magnetotelluric data processing. Geophys. J. Int., 130, 475–96.Google Scholar
Kelbert, A., Meqbel, N., Egbert, G. D. and Tandon, K. (2014) ModEM: a modular system for inversion of electromagnetic geophysical data. Comput. Geosci., 66, 4053.Google Scholar
Key, K., Constable, S., Liu, L. and Pommier, A. (2013) Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature, 495, 499502.Google Scholar
Meqbel, N. M., Egbert, G. D., Wannamaker, P. E., Kelbert, A. and Schultz, A. (2014) Deep electrical resistivity structure of the northwestern US derived from 3-D inversion of USArray magnetotelluric data. Earth Planet. Sci. Lett., 402, 290304.Google Scholar
Naif, S., Key, K., Constable, S. and Evans, R. L. (2013) Meltrich channel observed at the lithosphere-asthenosphere boundary. Nature, 495, 356–9.Google Scholar
Pommier, A. (2014) Interpretation of magnetotelluric results using laboratory measurements. Surv. Geophys., 35, 4184.Google Scholar
Puethe, C., Kuvshinov, A., Khan, A. and Olsen, N. (2015) A new model of Earth’s radial conductivity structure derived from over 10 yr of satellite and observatory magnetic data. Geophys. J. Int., 203, 1864–72.Google Scholar
Puethe, C. and Kuvshinov, A. (2013) Determination of the 3-D distribution of electrical conductivity in Earth’s mantle from Swarm satellite data: frequency domain approach based on inversion of induced coefficients. Earth Planets Space, 65, 1247–56.Google Scholar
Robertson, K., Heinson, G. and Thiel, S. (2016) Lithospheric reworking at the Proterozoic-Phanerozoic transition of Australia imaged using AusLAMP Magnetotelluric data. Earth Planet. Sci. Lett., 452, 2735.Google Scholar
Wannamaker, P. E., Evans, R. L., Bedrosian, P. A., Unsworth, M. J., Maris, V. and McGary, R. S. (2014) Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity. Geochem. Geophys. Geosyst., 15, 4230–53.Google Scholar

References

Abrajevitch, A. V., Van der Voo, R., Levashova, N. M. and Bazhenov, M. L. (2007) Paleomagnetism of the mid-Devonian Kurgasholak Formation, Southern Kazakhstan: constraints on the Devonian paleogeography and oroclinal bending of the Kazakhstan volcanic arc. Tectonophysics, 441, 6784.Google Scholar
Bourquin, S., Bercovici, A., López-Gómez, J., Diez, J. B., Broutin, J., Ronchi, A., Durand, M., Arché, A., Linol, B. and Amour, F. (2011) The Permian–Triassic transition and the onset of Mesozoic sedimentation at the northwestern peri-Tethyan domain scale: palaeogeographic maps and geodynamic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol, 299, 265–80.CrossRefGoogle Scholar
Burke, K. and Torsvik, T. H. (2004) Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet Sci. Lett., 227, 531–8.Google Scholar
Carey, S. W. (1958) The orocline concept in geotectonics, part 1, Papers and Proceedings of the Royal Society of Tasmania, 89, 255–88.Google Scholar
Chen, D., Zhou, X. Q. and Yong, F. (2015) New U–Pb zircon ages of the Ediacaran–Cambrian boundary strata in South China. Terra Nova, 27, 6268. doi: 10.1111/ter.12134.Google Scholar
Creer, K. M. (1968) Paleozoic paleomagnetism. Nature, 219, 246–50.CrossRefGoogle Scholar
Deenen, M. H. L., Langereis, C. G., van Hinsbergen, D. J. J. and Biggin, A. J. (2011) Geomagnetic secular variation and the statistics of palaeomagnetic directions. Geophys. J. Int., 186, 509–20.Google Scholar
Domeier, M., Van der Voo, R. and Torsvik, T. H. (2012) Paleomagnetism and Pangea: the road to reconciliation. Tectonophysics, 514–17, 1443.Google Scholar
Domeier, M. and Torsvik, T. H. (2014) Focus review paper: plate kinematics of the Late Paleozoic. Geosci. Frontiers, 5, 303–50.Google Scholar
Dominguez, A. and Van der Voo, R. (2014) Secular variation of the middle and late Miocene geomagnetic field recorded by the Columbia River Basalt Group in Oregon, Idaho, and Washington, USA. Geophys. J. Int., 197, 12991320.Google Scholar
Doubrovine, P. V., Steinberger, B. and Torsvik, T. H. (2012) Absolute plate motions in a reference frame defined by moving hotspots in the Pacific, Atlantic and Indian oceans. J. Geophys. Res., 117, B09101. doi: 10.1029/2011JB009072.Google Scholar
Evans, D. A. D. (2013) Reconstructing pre-Pangean supercontinents. Geol. Soc. Am. Bull., 125, 1735–51.CrossRefGoogle Scholar
Fitz-Diaz, E. and van der Pluijm, B. A. (2013) Fold dating: a new Ar/Ar illite dating application to constrain the age of deformation in shallow crustal rocks. J. Struct. Geol., 54, 174–9. doi: 10.1016/j.jsg.2013.05.011.Google Scholar
Fitz-Diaz, E., Hall, C. M., and van der Pluijm, B.A. (2016). XRD-based 40Ae/39Arage correction for fine-grained illite with application to folded carbonates in the Monterrey Salient (northern Mexico). Geochim. Cosmochim. Acta, 181, 201216, doi: 10.1016/j.gca.2016.02.004.Google Scholar
Gordon, R. G., Cox, A. and O’Hare, S. (1984) Paleomagnetic Euler poles and the apparent polar wander and absolute motion of North America since the Carboniferous. Tectonics, 3, 499537. doi: 10.1029/TC003i005p00499.CrossRefGoogle Scholar
Graham, J. W. (1949) The stability and significance of magnetism in sedimentary rocks. J. Geophys. Res., 54, 131–67.Google Scholar
Irving, E. (2004) The case for Pangea B, and the Intra-Pangean Megashear: timescales of the paleomagnetic field. Geophys. Monogr., 145, 1327.Google Scholar
Johnston, S. T. (2001) The Great Alaskan Terrane Wreck: reconciliation of paleomagnetic and geological data in the northern Cordillera. Earth Planet. Sci. Lett., 193, 259–72.Google Scholar
Kodama, K. P. (2012) Paleomagnetism of Sedimentary Rocks: Process and Interpretation. Wiley-Blackwell, London.Google Scholar
Linder, J. M. and Gilder, S. A. (2012) Latitude dependency of the geomagnetic secular variation S parameter: A mathematical artifact. Geophys. Res. Lett., 39, L02308. doi: 10.1029/2011GL050330.Google Scholar
McElhinny, M. W. and Opdyke, N. D. (1973) Remagnetization hypothesis discounted: a paleomagnetic study of the Trenton Limestone, New York State. Bull. Geol. Soc. Amer., 84, 36973708. doi: 10.1130/0016/7606(1973)84<3697:rhdaps>2.0.CO;2.Google Scholar
Meert, J. G. (2012) What’s in a name? The Columbia (Palaeopangea/Nuna) Supercontinent, Gondwana Res., 21, 987–93.Google Scholar
Nemkin, S. R., Fitz-Diaz, E., van der Pluijm, B. A. and Van der Voo, R. (2015). Dating syn-folding remagnetization: approach and field application (central Sierra Madre Oriental, Mexico). Geosphere, 11, 112. doi: 10.1130/GES01187.1.Google Scholar
Nemkin, S. R., Lageson, D., van der Pluijm, B. A. and Van der Voo, R. (2016) Remagnetization and folding in the frontal Montana Rocky Mountains. Lithosphere, 8, 716–28. doi: 10.1130/L579.1.Google Scholar
Tauxe, L. (2010) Essentials of Paleomagnetism. University of California Press, Berkeley.Google Scholar
Tauxe, L. and Kodama, K. P. (2009). Paleosecular variation models for ancient times: clues from Keweenawan lava flows. Phys. Earth Planet. Inter., 177, 3145.Google Scholar
Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J. J., Domeier, M., Gaina, C., Tovher, E., Meert, J. G., McCausland, P. J. and Cocks, L. R. M. (2012) Phanerozoic polar wander, paleogeography and dynamics. Earth Sci. Rev., 114, 325–68.Google Scholar
Torsvik, T. H., Van der Voo, R., Doubrovine, P. V., Burke, K., Steinberger, B., Ashwal, L. D., Trønnes, R., Webb, S. J. and Bull, A. L. (2014a) Deep mantle structure as a reference frame for movements in and on the Earth. PNAS, 111, 24, 8735–40.Google Scholar
Torsvik, T. H., Doubrovine, P. V. and Domeier, M. (2014b) Continental drift (paleomagnetism). In: Encyclopedia of Scientific Dating Methods. Springer Science, Berlin. doi: 10.1007/978-94-007-6326-5_107-1.Google Scholar
Torsvik, T. H. and Cocks, L. R. M. (2017) Earth History and Palaeogeography. Cambridge University Press, Cambridge.Google Scholar
van der Meer, D., Spakman, W., van Hinsbergen, D. J. J., Amaru, M. L. and Torsvik, T. H. (2010) Absolute plate motions since the Permian interred from lower mantle slab remnants. Nature Geosci., 3, 3640. doi: 10.1038/NGEO708.Google Scholar
Van der Voo, R. (1990) Phanerozoic paleomagnetic poles from Europe and North America and comparisons with continental reconstructions. Rev. Geophys., 28, 167206.Google Scholar
Van der Voo, R. (2004) Paleomagnetism, oroclines, and growth of the continental crust. GSA Today, 14. doi: 10.1130/1052-5173(2004)014<4:poagot>2.0.C0;2.Google Scholar
Wegener, A. (1912) Die Entstehung der Kontinente. Petermann’s Mittelungen aus Justus Perthes’ Geographischer Anstalt, 58, 185–95, 253–6, 305–9.Google Scholar
Weil, A. B. and Van der Voo, R. (2002) Insights into the mechanism for orogen-related carbonate remagnetization from growth of authigenic Feoxide: a scanning electron microscopy and rock magnetic study of Devonian carbonates from northern Spain. J. Geophys. Res., 107(B4), 2063. doi: 10.1029/2001JB000200.Google Scholar

References

Catanzariti, G., McIntosh, G., Soares, A. M. M., Díaz-Martínez, E., Kresten, P. and Osete, M. L. (2008) Archaeomagnetic dating of a vitrified wall at the Late Bronze Age settlement of Misericordia (Serpa, Portugal). J. Archaeol. Sci., 35, 13991407.Google Scholar
Cochran, K. A. and Elmore, R. D. (1987) Paleomagnetic dating of Liesegang bands. J. Sedim. Res., 57, 701–8.Google Scholar
Constable, C., Korte, M. and Panovska, S. (2016) Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years. Earth Planet. Sci. Lett., 453, 7886.Google Scholar
Fang, X., Zhang, W., Meng, Q., Gao, J., Wang, X., King, J., Song, C., Dai, S. and Miao, Y. (2007) High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet. Sci. Lett., 258, 293306.CrossRefGoogle Scholar
Hagstrum, J. T. and Champion, D. E. (2002) A Holocene paleosecular variation record from 14C‐dated volcanic rocks in western North America. J. Geophys. Res. Solid Earth, 107(B1), 2025. doi: 10.1029/2001JB000524.Google Scholar
Henry, B., Rouvier, H., Le Goff, M., Leach, D., Macquar, J. C., Thibieroz, J. and Lewchuk, M. T. (2001) Palaeomagnetic dating of widespread remagnetization on the southeastern border of the French Massif Central and implications for fluid flow and Mississippi Valley-type mineralization. Geophys. J. Int., 145, 368–80.Google Scholar
Herries, A. I. and Shaw, J. (2011) Palaeomagnetic analysis of the Sterkfontein palaeocave deposits: Implications for the age of the hominin fossils and stone tool industries. J. Human Evol., 60, 523–39.Google Scholar
Hilgen, F. J., Krijgsman, W., Langereis, C. G., Lourens, L. J., Santarelli, A. and Zachariasse, W. J. (1995) Extending the astronomical (polarity) time scale into the Miocene. Earth Planet. Sci. Lett., 136, 495510.Google Scholar
Hospers, J. (1954) Magnetic correlation in volcanic districts. Geol. Mag., 91, 352–60.Google Scholar
Jackson, A., Jonkers, A. R. and Walker, M. R. (2000) Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. London A, 358, 957–90.Google Scholar
Kent, D. V. and Irving, E. (2010) Influence of inclination error in sedimentary rocks on the Triassic and Jurassic apparent pole wander path for North America and implications for Cordilleran tectonics. J. Geophys. Res. Solid Earth, 115, B10103. doi: 10.1029/2009JB007205.Google Scholar
Korte, M., Constable, C., Donadini, F. and Holme, R. (2011) Reconstructing the Holocene geomagnetic field. Earth Planet. Sci. Lett., 312, 497505.Google Scholar
Kovacheva, M., Kostadinova-Avramova, M., Jordanova, N., Lanos, P. and Boyadzhiev, Y. (2014) Extended and revised archaeomagnetic database and secular variation curves from Bulgaria for the last eight millennia. Phys. Earth Planet. Inter., 236, 7994.Google Scholar
Langereis, C. G., Krijgsman, W., Muttoni, G. and Menning, M. (2010) Magnetostratigraphy – concepts, definitions, and applications. Newsl. Stratigr., 43(3), 207–33.Google Scholar
Lenhardt, N., Böhnel, H., Wemmer, K., Torres-Alvarado, I. S., Hornung, J. and Hinderer, M. (2010) Petrology, magnetostratigraphy and geochronology of the Miocene volcaniclastic Tepoztlán Formation: implications for the initiation of the Transmexican Volcanic Belt (Central Mexico). Bull. Volcanol., 72, 817–32.Google Scholar
Mahgoub, A. N., Reyes-Guzmán, N., Böhnel, H., Siebe, C., Pereira, G. and Dorison, A. (2018) Paleomagnetic constraints on the ages of the Holocene Malpaís de Zacapu lava flow eruptions, Michoacán (México): implications for archeology and volcanic hazards. Holocene, 28, 229–45.Google Scholar
McDougall, I., Allsopp, H. L. and Chamalaun, F. H. (1966) Isotopic dating of the Newer Volcanics of Victoria, Australia, and geomagnetic polarity epochs. J. Geophys. Res. Soild Earth, 71, 6107–18.Google Scholar
McDougall, I. and Harrison, T. M. (1999) Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press, New York.Google Scholar
Nilsson, A., Holme, R., Korte, M., Suttie, N. and Hill, M. (2014) Reconstructing Holocene geomagnetic field variation: new methods, models and implications. Geophys. J. Int., 198, 229–48.Google Scholar
Nowaczyk, N. R., Frederichs, T. W., Eisenhauer, A. and Gard, G. (1994) Magnetostratigraphic data from late Quaternary sediments from the Yermak Plateau, Arctic Ocean: evidence for four geomagnetic polarity events within the last 170 Ka of the Brunhes Chron. Geophys. J. Int., 117, 453–71.Google Scholar
Ogg, J. G. (2012) Geomagnetic polarity time scale. In: Gradstein, F. M., Ogg, J. C., Schmitz, M. D. and Ogg, G. M. (Eds), The Geologic Time Scale 2012. Elsevier, Amsterdam, 85113.Google Scholar
Opdyke, N. D. (1972) Paleomagnetism of deep‐sea cores. Rev. Geophys., 10, 213–49.Google Scholar
Pavón-Carrasco, F. J., Rodríguez-González, J., Osete, M. L. and Torta, J. M. (2011) A Matlab tool for archaeomagnetic dating. J. Archaeol. Sci., 38, 408–19.Google Scholar
Pavón-Carrasco, F. J., Osete, M. L., Torta, J. M. and De Santis, A. (2014) A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data. Earth Planet. Sci. Lett., 388, 98109.Google Scholar
Roche, A. (1953) Sur l’origine des inversions d’aimantation constatés dans les roches d’Auvergne. C. R. Acad. Sci. Paris, 236, 107–9.Google Scholar
Singer, B. S. (2014) A Quaternary geomagnetic instability time scale. Quat. Geochronol., 21, 2952.Google Scholar
Singer, B. S., Hoffman, K. A., Chauvin, A., Coe, R. S. and Pringle, M. S. (1999) Dating transitionally magnetized lavas of the late Matuyama Chron: toward a new 40Ar/39Ar timescale of reversals and events. J. Geophys. Res. Solid Earth, 104, 679–93.Google Scholar
Speranza, F., Pompilio, M., D’Ajello Caracciolo, F. and Sagnotti, L. (2008) Holocene eruptive history of the Stromboli volcano: constraints from paleomagnetic dating. J. Geophys. Res. Solid Earth, 113, B09101. doi: 10.1029/2007JB005139.Google Scholar
Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J., Domeier, M., Gaina, C., Tohver, E. and Meert, J. G. (2012) Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci. Rev., 114, 325–68.Google Scholar
Vine, F. J. and Matthews, D. H. (1963) Magnetic anomalies over oceanic ridges. Nature, 199, 947–9.Google Scholar
Watkins, N. D. and Walker, G. P. L. (1977) Magnetostratigraphy of eastern Iceland. Am. J. Sci., 277, 513–84.Google Scholar

References

Chave, A. D. and Jones, A. G. (2012) The Magnetotelluric Method: Theory and Practice. Cambridge University Press, New York.Google Scholar
Cox, A., Doell, R., Brent, R. and Dalrymple, G. (1964) Reversals of the Earth’s magnetic field. Science, 144, 1537–43.Google Scholar
Gialanella, P. R., Incoronato, A., Russo, F. and Nigro, G. (1993) Magnetic stratigraphy of Vesuvius products. I. 1631 lavas. J. Volcanol. Geotherm. Res., 58, 211–15, doi: 10.1016/0377-0273(93)90109-5.Google Scholar
Ishido, T. and Mizutani, H. (1981) Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics. J. Geophys. Res.-Sloid Earth, 86, 1763–75.Google Scholar
Johnston, M. J. S. and Mueller, R. J. (1987) Seismomagnetic observations during the 8 July 1986, magnitude 5.9 North Palm Springs, California, earthquake. Science, 237, 1201–3.Google Scholar
Johnston, M. J. S. (1997) Review of electric and magnetic fields accompanying seismic and volcanic activity. Surv. Geophys., 18, 441–76.Google Scholar
Johnston, M. J. S. (2002) Electromagnetic Fields Generated by Earthquakes. In: International Handbook of Earthquake and Engineering Seismology, vol. 81A, Academic Press, New York, 621–35.Google Scholar
Johnston, M. J. S. (2007) Seismo-electromagnetic effects. In: Encyclopedia of Geomagnetism and Paleomagnetism, Springer, The Netherlands, 908–10.Google Scholar
Kanda, W., Utsugi, M., Tanaka, Y., Hashimoto, T., Fujii, I., Hasenaka, T. and Shigeno, N. (2010) A heating process of Kuchi-erabu-jima volcano, Japan, as inferred from geomagnetic field variations and electrical structure. J. Volcanol. Geotherm. Res., 189, 158–71. doi: 10.1016/j.jvolgeores.2009.11.002.Google Scholar
Love, J. J. (2008) Magnetic monitoring of Earth and space. Physics Today, Feb., 31–6.Google Scholar
Park, S. K., Johnston, M. J. S., Madden, T., Morgan, R., Dale, F. and Morrison, H. F. (1993) Electromagnetic precursors to earthquakes in the ULF band: a review of observations and mechanisms. Rev. Geophys., 31, 117–32. doi: 10.1029/93RG00820.Google Scholar
Parrot, M., Berthelier, J. J., Lebreton, J. P., Sauvaud, J. A., Santolík, O. and Blecki, J. (2006) Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys. Chem. Earth, 31, 486–95.Google Scholar
Piša, D., Němec, F., Santolík, O. R., Parrot, M. and Rycroft, M. (2013) Additional attenuation of natural VLF electromagnetic waves observed by the DEMETER spacecraft resulting from preseismic activity. J. Geophys. Res. Space Phys., 118, 5286–95. doi: 10.1002/jgra.50469.Google Scholar
Reitz, J. R., Milford, F. J. and Christy, R. W. (2008) Foundations of Electromagnetic Theory. 4th edn. Addison-Wesley, New York.Google Scholar
Sasai, Y., Uyeshima, M., Zlotnicki, J., Utada, H., Kagiyama, T., Hashimoto, T. and Takahashi, Y. (2002) Magnetic and electric field observations during the 2000 activity of Miyake-jima volcano, Central Japan. Earth Planet. Sci. Lett., 203, 769–77. doi: 10.1016/S0012-821X(02)00857-9.Google Scholar
Stacey, F. D. and Johnston, M. J. S. (1972) Theory of the piezomagnetic effect in titanomagnetite-bearing rocks. Pure Appl. Geophys., 97, 146–55.Google Scholar
Tyler, R. H., Maus, S. and Lühr, H. (2003) Satellite observations of magnetic fields due to ocean tidal flow. Science, 299, 239–41. doi: 10.1126/science.1078074.Google Scholar
Uyeda, S., Hayakawa, M., Nagao, T., Molchanov, O., Hattori, K., Orihara, Y., Gotoh, K., Akinaga, Y. and Tanaka, H. (2002) Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan. Proc. Natl. Acad. Sci. USA, 99, 7352–5. doi: 10.1073_pnas.072208499.Google Scholar
Uyeda, S., Nagao, T. and Kamogawa, M. (2009) Short-term earthquake prediction: current status of seismo-electromagnetics. Tectonophysics, 470, 205–13.Google Scholar
Varotsos, P., Sarlis, N. V. and Skordas, E. S. (2011) Natural Time Analysis: The New View of Time: Precursory Seismic Electric Signals, Earthquakes and Other Complex Time Series. Springer, New York. doi: 10.1007/978-3-642-16449-1.Google Scholar
Wawrzyniak, P., Zlotnicki, J., Sailhac, P. and Marquis, G. (2017) Resistivity variations related to the large March 9, 1998 eruption at La Fournaise volcano inferred by continuous MT monitoring. J. Volcanol. Geotherm. Res., 347, 185206, doi: 10.1016/j.jvolgeores.2017.09.011.Google Scholar
Yukutake, T. (1990) An overview of the eruptions of Oshima Volcano, Izu, 1986–1987 from the 1149 geomagnetic and geoelectric standpoints. J. Geomagn. Geoelectr., 42, 141–50.Google Scholar
Zlotnicki, J., Li, F. and Parrot, M. (2013) Ionospheric disturbances detected by DEMETER satellite over active volcanoes: August 2004 to December 2010. Geophys. J. Int., 183, 1332–47. doi: 10.1155/2013/530865.Google Scholar
Zlotnicki, J., Sasai, Y., Johnston, M., Fauquet, F., Villacorte, E. and Cordon, J. M. Jr (2018) The 2010 seismovolcanic crisis at Taal Volcano (Philippines). Earth Planets Space, 70, Article 159. doi: 10.1186/s40623-018-0925-2.Google Scholar

References

Abdu, M. A. (1997) Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions. J. Atmos. Sol. Ter. Phys., 59, 1505–19.Google Scholar
Blanc, M. and Richmond, A. D. (1980) The ionospheric disturbance dynamo. J. Geophys. Res. Space Phys., 85, 1669–86. doi: 10.1029/JA085iA04p01669.Google Scholar
Dungey, J. W. (1961) Interplanetary magnetic fields and the auroral zones. Phys. Rev. Letts., 6, 47–8.Google Scholar
Fejer, B. G. (2011) Low latitude ionospheric electrodynamics. Space Sci. Rev., 158, 145–66. doi: 10.1007/s11214-010-9690-7.Google Scholar
Forbes, J. F. (2000) Wave coupling between the lower and upper atmosphere: case study of an ultra-fast Kelvin Wave. J. Atmos. Sol. Terr. Phys., 62, 1603–21.Google Scholar
Gonzalez, W. D., Joselyn, J. A. Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T. and Vasyliunas, V. M. (1994) What is a geomagnetic storm. J. Geophys. Res. Space Phys., 99, 5771–92.Google Scholar
Gopalaswamy, N. (2016) History and development of coronal mass ejections as a key player in solar–terrestrial relationship. Geosci. Lett., 3, UNSP 8. doi: 10.1186/s40562-016-0039-2.Google Scholar
Hansen, R. T., Garcia, C. J., Grognard, R. J. M. and Sheridan, K. V. (1971) A coronal disturbance observed simultaneously with a white-light corona-meter and the 80 MHz Culgoora radio heliograph. Proc. Astron. Soc. Austr., 2, 5760.Google Scholar
Ijima, T. and Potemra, T. A. (1978) Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res. Space Phys., 83, 599615.Google Scholar
Kamide, Y. (1974) Association of DP and DR fields with the interplanetary magnetic field variation. J. Geophys. Res. Space Phys., 79, 4955. doi: 10.1029/JA079i001p00049.Google Scholar
Kelley, M. C. (1989) The Earth’s Ionosphere, Plasma Physics and Electrodynamics. Academic Press, New York.Google Scholar
Kelley, M. C., Fejer, B. G. and Gonzales, C. A. (1979) An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Letts., 6, 301–4.Google Scholar
Kikuchi, T., Hashimoto, K. K. and Nozaki, K. (2008) Penetration of magnetospheric electric fields to the equator during a geomagnetic storm. J. Geophys. Res. Space Phys., 113, A06214. doi: 10.1029/2007JA012628.Google Scholar
Kivelson, M. G. and Russell, C. (Eds) (1995) Introduction to Space Physics. Cambridge University Press, Cambridge.Google Scholar
Luhr, H., Xiaong, C., Olsen, N. and Le, G. (2017) Near-Earth magnetic field effects of large-scale magnetospheric currents. Space Sci. Rev., 206, 521–45. doi: 10.1007/s11214-016-0267-y.Google Scholar
Mannucci, A. J., Tsurutani, B. T., Iijima, B. A., Komjathy, A., Saito, A., Gonzalez, W. D., Guarnieri, F. L., Kozyra, J. U. and Skoug, R. (2005) Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 ‘Halloween storms’. Geophys. Res. Lett., 32, L12S02.Google Scholar
Nishida, A. (1968) Geomagnetic DP-2 fluctuations and associated magnetospheric phenomena. J. Geophys. Res. Space Phys., 73, 17951803.Google Scholar
Rastogi, R. G. and Patel, V. L. (1975) Effect of interplanetary magnetic field on the ionosphere over the magnetic equator. Proc. Indian Acad. Sci. A, 82, 121–41.Google Scholar
Richmond, A. D., Peymirat, C. and Roble, R. G. (2003) Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere–ionosphere–thermosphere model. J. Geophys. Res. Space Phys., 108, 1118. doi: 10.1029/2002JA009758.Google Scholar
Southwood, D., Stanley, W. H., Cowley, F. R. S. and Simon, M. (Eds) (2015) Magnetospheric Plasma Physics: The Impact of Jim Dungey’s Research. Springer, Berlin. doi: 10.1007/978-3-319-18359-6.Google Scholar
Tsurutani, B. T., Gonzalez, W. D., Tang, F., Akasofu, S.-I. and Smith, E. J. (1988) Origin of interplanetary southward magnetic fields responsible for major magnetic storm near solar maximum (1978–1979). J. Geophys. Res. Space Phys., 93, 8519–31.Google Scholar
Van Allen, J. A. and Frank, L. A. (1959) Radiation around the Earth to a radial distance of 107,400 km. Nature, 183, 430–34.Google Scholar
Yamazaki, Y. and Maute, A. (2017) Sq and EEJ – a review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Sci. Rev., 206, 299405.Google Scholar
Zmuda, A. J., Martin, J. H. and Heuring, F. T. (1966) Transverse magnetic disturbances at 1100 kilometers in the auroral region. J. Geophys. Res., 71, 5033–45.Google Scholar

References

Boteler, D. H. (2006) The super storms of August/September 1859 and their effects on the telegraph system. Adv. Space Res., 38, 159–72.Google Scholar
Guillon, S., Toner, P., Gibson, L. and Boteler, D. (2016) A colorful blackout. IEEE Power Energy Mag., 14, 5971.Google Scholar
Prescott, G. B. (1866) History, Theory, and Practice of the Electric Telegraph. Ticnor and Fields, Boston.Google Scholar
Sabine, E. (1852) On periodical laws discoverable in the mean effects of the larger magnetic disturbances – No. II. Philos. Trans. R. Soc. London, 142, 103–24.Google Scholar
Turner, G. (2011) North Pole, South Pole: The Epic Quest to Solve the Great Mystery of Earth’s Magnetism. The Experiment, New York.Google Scholar

References

Courtillot, V. (1994) Mass extinctions in the last 300 million years: one impact and seven flood basalts. Isr. J. Earth Sci., 43, 255–66.Google Scholar
Crutzen, P. J., Isaksen, I. S. and Reid, G. C. (1975) Solar proton events: Stratospheric sources of nitric oxide. Science, 189, 457–9.Google Scholar
Fuller, M. (2006) Geomagnetic field intensity, excursions, reversals and the 41,000-yr obliquity signal. Earth Planet. Sci. Lett., 245, 605–15.Google Scholar
Glassmeier, K. H., Othmer, C., Cramm, R., Stellmacher, M. and Engebretson, M. (1999) Magnetospheric field line resonances: a comparative planetology approach. Surv. Geophys., 20, 61109.Google Scholar
Glassmeier, K. H. and Vogt, J. (2010) Magnetic polarity transitions and biospheric effects. Space Sci. Rev., 155, 387410.Google Scholar
Jackman, R. J., Floyd, T. M., Ghodssi, R., Schmidt, M. A. and Jensen, K. F. (2001) Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy. J. Micromech. Microeng., 11, 263–9.Google Scholar
Kent, D. V. and Carlut, J. (2001) A negative test of orbital control of geomagnetic reversals and excursions. Geophys. Res. Lett., 28, 3561–4.Google Scholar
Meert, J. G., Levashova, N. M., Bazhenov, M. L. and Landing, E. (2016) Rapid changes of magnetic field polarity in the late Ediacaran: linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana Res., 34, 149–57.Google Scholar
Mussard, M., Le Hir, G., Fluteau, F., Lefebvre, V. and Goddéris, Y. (2014). Modeling the carbon-sulfate interplays in climate changes related to the emplacement of continental flood basalts. Geol. Soc. Am. Spec. Pap., 505, 339–52.Google Scholar
Thouveny, N., Bourlès, D. L., Saracco, G., Carcaillet, J. T. and Bassinot, F. (2008) Paleoclimatic context of geomagnetic dipole lows and excursions in the Brunhes, clue for an orbital influence on the geodynamo? Earth Planet. Sci. Lett., 275, 269–84.Google Scholar
Tilgner, A. (2007) Kinematic dynamos with precession driven flow in a sphere. Geophys. Astrophys. Fluid Dyn., 101, 19.Google Scholar
Valet, J. P. and Valladas, L. (2010) The Laschamp-Mono lake geomagnetic events and the extinction of Neanderthal: a causal link or a coincidence? Quat. Sci. Rev., 29, 3887–93.Google Scholar
Van Allen, J. A. and Frank, L. A. (1959) Radiation around the Earth to a radial distance of 107,400 km. Nature, 183, 430–34.Google Scholar
Wei, Y., Pu, Z., Zong, Q., Wan, W., Ren, Z., Fraenz, M. and Hong, M. (2014) Oxygen escape from the Earth during geomagnetic reversals: implications to mass extinction. Earth Planet. Sci. Lett., 394, 94–8.Google Scholar
Worm, H. U. (1997) A link between geomagnetic reversals and events and glaciations. Earth Planet. Sci. Lett., 147, 5567.Google Scholar
Wu, C. C. and Roberts, P. H. (2008) A precessionally-driven dynamo in a plane layer. Geophys. Astrophys. Fluid. Dyn., 102, 119.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×