Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T11:42:49.934Z Has data issue: false hasContentIssue false

3 - Spherical Circle Planes

Published online by Cambridge University Press:  04 August 2010

Burkard Polster
Affiliation:
University of Adelaide
Günter Steinke
Affiliation:
University of Canterbury, Christchurch, New Zealand
Get access

Summary

Flat Möbius planes were first investigated by Wölk [1966] and Strambach [1967c]. Later, Strambach [1970d], [1972], [1973], [1974a], [1974b] studied the more general spherical circle planes. For more information about Möbius planes and, in particular, finite Möbius planes, we refer to Dembowski [1968], Delandtsheer [1995], Hering [1965], Mäurer [1967], Wilker [1981] and the references given there.

A spherical circle plane is a point–circle geometry whose point set is (homeomorphic to) S2 and whose circles are topological circles on S2. Furthermore, the Axiom of Joining B1 (see p. 7) is satisfied, that is, any three distinct points are contained in exactly one of the circles. A spherical circle plane is a flat Möbius plane if, in addition, the Axiom of Touching B2 is satisfied, that is, for each circle C and any two distinct points p, q with pC there is precisely one circle through p and q that touches C at p geometrically, that is, intersects C only at the point p or coincides with C.

Models of the Classical Flat Möbius Plane

In this first section we describe a number of models of the classical flat Möbius plane. For detailed information about most of these models see Benz [1973].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×