Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T18:21:59.566Z Has data issue: false hasContentIssue false

5 - A survey on noncompact harmonic and asymptotically harmonic manifolds

Published online by Cambridge University Press:  05 January 2016

Gerhard Knieper
Affiliation:
Ruhr University Bochum
C. S. Aravinda
Affiliation:
TIFR Centre for Applicable Mathematics, Bangalore, India
F. T. Farrell
Affiliation:
Tsinghua University, Beijing
J. -F. Lafont
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Ba] W., Ballmann. Nonpositively curved manifolds of higher rank, Ann. of Math. 122 (2) (1985), 597–609.Google Scholar
[BBE] W., Ballmann, M., Brin, P., Eberlein. Structure of manifolds of nonpositive curvature I, Ann. of Math. 122 (2) (1985), 171–203.Google Scholar
[BCG] G., Besson, G., Courtois, S., Gallot. Entropies et regidités des espaces localement symétriques de courbure strictement négative., Geom. Funct. Anal. 5 (5) (1995), 731–799.Google Scholar
[BFL] Y., Benoist, P., Foulon, F., Labourie. Flots d' Anosov à distributions stable et instable differéntiables, J. Amer.Math. Soc. 5 (1) (1992), 33–74.Google Scholar
[Be] A.L., Besse. Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas] 93, Springer Verlag, Berlin-New York, 1978.Google Scholar
[BH] M.R., Bridson, A., Haefliger. Metric spaces of nonpositive curvature. Grundlehren der mathematischen Wissenschaften, [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999. xxii + 643 pp.Google Scholar
[Bohr] H., Bohr. Almost Periodic Functions, Chelsea Publishing Company, New York, 1947.Google Scholar
[Bo] J., Bolton. Conditions under which a geodesic flow is Anosov, Inst. Hautes Études Sci. Publ. Math., 65 Math. Ann. 240 (2) (1979), 103–113.Google Scholar
[BS] K., Burns, R., Spatzier. Manifolds of nonpositive curvature and their buildings, (1987), 35–59.
[Bu] K., Burns. The flat strip theorem fails for surfaces with no conjugate points, Proc. Am. Math. Soc. 115 (1) (1992), 199–206.Google Scholar
[CS] P., Castillon, A., Sambusetti. On asymptotically harmonic manifolds of negative curvature, Math. Zeitschrift, published online, March 2014, see also arXiv:1203.2482, 12 March 2012.Google Scholar
[Coor] M., Coornaert. Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (2) (1993), 241–270.Google Scholar
[DR] E., Damek, F., Ricci. A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1) (1992), 139–142.Google Scholar
[Eb] P., Eberlein. When ist the geodesic flow of Anosov type? I., J. Differential Geometry 8 (1973), 437–463.Google Scholar
[EO] P., Eberlein, B., O'Neill. Visibility manifolds, Pacific J. Math. 46 (1973), 45–109.Google Scholar
[Es] J.H., Eschenburg. Horospheres and the stable part of the geodesic flow, Math. Zeitschrift 153 (3) (1977), 237–251.Google Scholar
[FM] A., Freiré, R., Mañé. On the entropy of the geodesic flow in manifolds without conjugate points, Invent. Math. 69 (3) (1982), 375–392.Google Scholar
[FL] P., Foulon, F., Labourie. Sur les variétés compactes asymptotiquement harmoniques, Invent. Math. 109 (1) (1992), 97–111.Google Scholar
[Gr] M., Gromov. Hyperbolic groups, In: Essays in group theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York (1987), 75–263.Google Scholar
[Gre] L., Green. A theorem by Hopf, Michigan Math. J. 5 (1) (1958), 31–34.Google Scholar
[He] J., Heber. On harmonic and asymptotically harmonic homogeneous spaces, Geom. Funct. Anal. 16 (4) (2006), 869–890.Google Scholar
[HKS] J., Heber, G., Knieper, H.M., Shah. Asymptotically harmonic spaces in dimension 3, Proc. Amer. Math. Soc. 135 (3) (2007), 845–849.Google Scholar
[Ho] E., Hopf. Statistik der Lösungen geodätischer Probleme vom unstabilen Typus. II, Math. Ann. 117 (1940), 590–608.Google Scholar
[Kl] W., Klingenberg. Riemannian manifolds with geodesic flow of Anosov type, Ann. of Math. 99 (2) (1974), 1–13.Google Scholar
[Kn1] G., Knieper. Mannigfaltigkeiten ohne konjugierte Punkte, Bonn. Math. Schr. 168 (1986).Google Scholar
[Kn2] G., Knieper. On the asymptotic geometry of nonpositively curved manifolds, Geom. Funct. Anal. 7 (4) (1997), 755–782.Google Scholar
[Kn3] G., Knieper. Hyperbolic Dynamics and Riemannian Geometry, in Handbook of Dynamical Systems, Vol. 1A 2002, Elsevier Science B., eds. B., Hasselblatt and A., Katok, (2002), 453–545.Google Scholar
[Kn4] G., Knieper. New results on noncompact harmonic manifolds, Comment. Math. Helv. 87 (3) (2012), 669–703, see also arXiv:0910.3872, 20 Oct. 2009.Google Scholar
[KnPe] G., Knieper, N., Peyerimhoff. Geometric properties of rank one asymptotically harmonic manifolds, J. Differential Geom. 100 (3) (2015), 507-532.Google Scholar
[Le] F., Ledrappier. Harmonic measures and Bowen-Margulis measures, Israel J. Math. 71 (3) (1990), 275–287.Google Scholar
[Led] J., Ledger. Symmetric harmonic spaces, J. London Math. Soc. 32 (1957), 53–56.Google Scholar
[Li] A., Lichnerowicz. Sur les espaces riemanniens complèment harmoniques (French), Bull. Soc. Math. France 72 (1944), 146–168.Google Scholar
[LiW] P., Li, J., Wang. Mean value inequalities, Indiana Univ. Math. J. 48 (4) (1999), 1257–1283.Google Scholar
[Ma] R., Mané. On a theorem of Klingenberg, Dynamical Systems and Bifurcation Theory, (Rio de Janeiro, 1985), M., Camacho, M., Pacifico and F., Takens eds., Pitman Res. Notes Math. 160 Longman Sci. Tech., Harlow (1987), 319–345.Google Scholar
[Ni] Y., Nikolayevsky. Two theorems on harmonic manifolds, Comment. Math. Helv. 80 (1) (2005), 29–50.Google Scholar
[PeSa] N., Peyerimhoff, E., Samiou. Integral geometric properties of noncompact harmonic spaces, J. Geom. Anal. 25 (1) (2015), 122-148.Google Scholar
[RSh1] A., Ranjan, H., Shah. Harmonic manifolds with minimal horospheres, J. Geom. Anal. 12 (4) (2002), 683–694.Google Scholar
[Ru] H. S., Ruse, : On the elementary solution of Laplace's equation, Proc. Edinburgh Math. Soc. 2 (2) (1931), 135–139.Google Scholar
[SS] V., Schroeder, H., Shah. On 3-dimensional asymptotically harmonic manifolds, Arch. Math. 90 (2008), 275–278.Google Scholar
[SW] N.E., Steenrod, J.H.C., Whitehead. Vector fields on the n-Sphere, Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 58–63.Google Scholar
[Sz] Z.I., Szabó. The Lichnerowicz Conjecture on Harmonic manifolds, J. Differential Geom. 31 (1) (1990), 1–28.Google Scholar
[Wal] A.G., Walker. On Lichnerowicz's conjecture for harmonic 4-spaces, J. London Math. Soc. 24 (1949), 21–28.Google Scholar
[Wa] J., Watkins. The Higher Rank Rigidity Theorem for Manifolds With No Focal Points, Geom. Dedicata, 164 (2013), 319–349.Google Scholar
[Wi1] T.J., Willmore. Mean value theorems in harmonic Riemannian spaces, J. London Math. Soc. 25 (1950), 54–57.Google Scholar
[Wi2] T.J., Willmore. Riemannian geometry. Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1993.Google Scholar
[Zi1] A. M., Zimmer. Compact asymptotically harmonic manifolds, J. Mod. Dynamics. 66 (3) (2012), 377–403.Google Scholar
[Zi2] A. M., Zimmer. Boundaries of non-compact harmonic manifolds, Geom. Dedicata, 168 (2014), 339–357.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×