Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T14:49:44.286Z Has data issue: false hasContentIssue false

14 - Lateglacial and Postglacial Faulting in the Russian Part of the Fennoscandian Shield

from Part III - Glacially Triggered Faulting in the Fennoscandian Shield

Published online by Cambridge University Press:  02 December 2021

Holger Steffen
Affiliation:
Lantmäteriet, Sweden
Odleiv Olesen
Affiliation:
Geological Survey of Norway
Raimo Sutinen
Affiliation:
Geological Survey of Finland
Get access

Summary

This chapter reviews the results of studies of late- and postglacial faults in the Russian part of the Fennoscandian Shield (Kola Peninsula, Karelia, Sankt-Petersburg region). It provides a brief overview and description from north to south of the main seismic lineaments (Murmansk and Kandalaksha) as well as results from a study of some secondary lineaments, individual late- and postglacial faults and seismic dislocations. The obtained data allowed defining a decrease in seismic activity from the Late Glaciation to the present times. It is due to the fading glacial isostatic uplift of the shield and the change of the leading role from the vertically directed forces of glacial isostasy to horizontal compressive strains. Glacial isostasy as a factor giving rise to stresses has nearly exhausted itself by the present time, while the tectonic factor continues to be felt.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Assinovskaya, B. A. (2004). Instrumental data on earthquakes in the Karelian region. In Sharov, N. V., ed., Glubinnoe stroenie i seismichnost’ Karel’skogo regiona i ego obramleniia [Deep Structure and Seismicity of the Karelian Region and Its Framework]. Karelian Science Center RAS, Petrozavodsk, Russia, pp. 213229.Google Scholar
Avenarius, I. G. (1989). Morphostructural analysis of the zone of neotectonic dislocations on the southern slope of the Khibiny Mountains. Geomorfologiya, 2, 5256.Google Scholar
Baluyev, A. S., Zhuravlyov, V. A., Terekhov, Y. N. and Przhiyalgovsky, Y. S. (2012). Tektonika Belogo moria (Ob’iasnitel’naia zapiska k «Tektonicheskoi karte Belogo moria i prilegaiushchikh territorii masshtaba 1:1500000) [Tectonics of the White Sea (Explanatory note to the Tectonic map of the White Sea and adjacent territories at a scale of 1:1 500 000)]. Issue 597, GEOS: Tr. GIN RAS, Moscow.Google Scholar
Biske, G. S. (1959). Chetvertichnye otlozheniia i geomorfologiia Karelii [Quaternary Sediments and Geomorphology of Karelia], Gos. izd-vo Karel’skoi ASSR, Petrozavodsk, Russia.Google Scholar
Biske, Yu. S., Sumareva, I. V. and Sheetov, M. V. (2009). Late Holocene seismic event in the south-eastern Ladoga area. The principles of research and deformation textures. Vestnik of St. Petersburg University, 7(1), 325.Google Scholar
Demidov, I. N., Lukashov, A. D., Lavrova, N. B., Shelekhova, T. S. and Vyakhirev, S. A. (1998). Paleoecology and paleoseismology of the Mt. Vottovaara area (West Karelia) in the late glacial and postglacial time. Paleoklimaty i evolyutsiya paleogeograficheskikh obstanovok v geologicheskoi istorii Zemli: Tezisy dokladov Mezhdunarodnogo simpoziuma [Paleoclimates and Evolution of Paleogeographic Environments during the Geological History of the Earth: Abstracts of International Symposium Reports], Petrozavodsk, Russia, 27–31 August 1998, pp. 28–30.Google Scholar
Karpov, N. N. (1960). Traces of postglacial tectonic faults in the Khibiny Mountains. Moscow University Bulletin, 5(4), 61.Google Scholar
Krapivner, R. B. (2018). Krizis lednikovoi teorii: argumenty i fakty [Crisis of the glacial theory: arguments and facts]. GEOS, Moscow.Google Scholar
Kolodyazhnyi, S. Y., Baluyev, A. S. and Zykov, D. S. (2019). Structure and evolution of the Belomorian–Severodvinsk shear zone in the Late Proterozoic and Phanerozoic, East European Platform. Geotectonics, 53(1), 6083, doi.org/10.1134/S0016852119010047.Google Scholar
Lukashov, A. D. (1995). Paleoseismoteсtoniсs in the Northern Part of Lake Onega (Zaonezhskij Peninsula, Russian Karelia). Geological Survey of Finland. Nuсlear Waste Disposal Researсh Report YST-90, Espoo, Finland, 36 pp.Google Scholar
Lukashov, A. D. (2004). Geodynamics of the contemporary times. In Sharov, N. V., ed., Glubinnoe stroenie i seismichnost’ Karel’skogo regiona i ego obramleniia [Deep Structure and Seismicity of the Karelian Region and Its Framework], Karelian Science Center RAS, Petrozavodsk, Russia, pp. 150191.Google Scholar
Marakhanov, A. V. and Romanenko, F. A. (2014). New data on postglacial seismic dislocations of the Northern Karelia (Karelian coast of the White Sea). Iudakhinskie chteniia. Geodinamika i ekologiia Barents-regiona v XXI v. Materialy dokladov Vserossiiskoi konferentsii s mezhdunarodnym uchastiem [Yudakhin Readings. Geodynamics and ecology of the Barents region in the XXIst century]. Proceedings of the All-Russian Conference with International Participation, Institute of Ecological Problems of the North, Arkhangelsk, Russia, 15–18 September 2014, pp. 137–140.Google Scholar
Marinin, A. V., Sim, L. A. and Bondar, I. V. (2019). Tectodynamics of the Vuoksi Fault Zone in the Karelian Isthmus. Trudy Fersmanovskoj nauchnoj sessii GI KNC RAN, pp. 364–368.Google Scholar
Michetti, A. M., Andermard, F. and Azuma, T. (2007). Intensity Scale ESI-2007: Memory Descriptive della carta geologica d’Italia. APAT, Rome, 74 pp.Google Scholar
Murzaev, P. M. (1935). On the age and formation of the gorges of the southern slope of the Khibiny massif. Izvestiâ Leningradskogo geologo-gidrogeodezičeskogo tresta, 6(1), 1419.Google Scholar
Nikiforov, C. L., Koshel, S. M. and Froll, V. V. (2012). Digital model of the bottom of the White Sea. Moscow University Bulletin, 5(4), 8692.Google Scholar
Nikolaev, N. I. (1967). Neotectonics and seismicity of the East European Platform. Izv. Academy of Sciences of the USSR, 2, 1327.Google Scholar
Nikolaeva, S. B. (2001). Paleoseismic manifestations in the north-eastern part of the Baltic Shield and their geological and tectonic position. Geomorfologiya, 4, 6674.Google Scholar
Nikolaeva, S. B. (2008). Disastrous earthquakes in the vicinities of the town of Murmansk: paleoseismological and geological evidence. Journal of Volcanology and Seismology, 2(3), 189198, doi.org/10.1134/S0742046308030068.Google Scholar
Nikolaeva, S. B. (2009). Seismites in Late Pleistocene and Holocene deposits of the northwestern Kola region (northern Baltic Shield). Russian Geology and Geophysics, 50(7), 644650, doi.org/10.1016/j.rgg.2008.12.009.Google Scholar
Nikolaeva, S. B. (2013). Evidence of seismic events on the coast of Murman in the Late Glacial and Holocene. News of the Russian Geographical Society, 145(4), 5365.Google Scholar
Nikolaeva, S. B., Lavrova, N. B. and Denisov, D. B. (2017). A catastrophic Holocene event in the lake bottom sediments of the Kola region (northeastern Fennoscandian shield). Doklady Earth Sciences, 473(1), 308312, doi.org/10.1134/S1028334X17030072.Google Scholar
Nikolaeva, S. B., Nikonov, A. A., Shvarev, S. V. and Rodkin, M. V. (2018). Detailed paleoseismological research on the flank of the Lake Imandra depression (Kola region): new approaches and results. Russian Geology and Geophysics, 59(6), 697708, doi.org/10.1016/j.rgg.2018.05.008.Google Scholar
Nikonov, A. A. (1964), Razvitie rel’efa i paleogeografija antropogena na zapade Kol’skogo poluostrova [Development of the Relief and Paleogeography of the Anthropogen in the West of the Kola Peninsula], Nauka, Moscow.Google Scholar
Nikonov, A. A. (2004). Historical and instrumental data on seismicity of the region. Historical earthquakes. In Sharov, N. V., ed., Glubinnoe stroenie i seismichnost’ Karel’skogo regiona i ego obramleniia [Deep Structure and Seismicity of the Karelian Region and Its Framework]. Karelian Science Center RAS, Petrozavodsk, Russia, pp. 192–213.Google Scholar
Nikonov, A. A. and Shvarev, S. V. (2015). Seismolineaments and destructive earthquakes in the Russian part of the Baltic shield: new solutions for the past 13 thousand years. Geologo-geofizicheskaja sreda i raznoobraznye projavlenija sejsmichnosti [Geological-geophysical environment and diverse manifestations of seismic activity]. Proceedings of the International Conference, Neriungri, Russia, 23–25 September 2015, pp. 243–251.Google Scholar
Nikonov, A. A., Shvarev, S. V., Sim, L. A. et al. (2014). Paleoseismodeformations of hard rocks in the Karelian isthmus. Doklady Earth Sciences, 457, 10081013, doi.org/10.1134/S1028334X14080145.Google Scholar
Nikonov, A. A., Nikolaeva, S. B. and Shvarev, S. V. (2015). Murmansk coastal band in the Russian part of European Arctic as outstanding seismogenic zone: newest approach. In Pavlenko, V. I., ed., Prirodnye resursy i kompleksnoe osvoenie pribrezhnyj rajonov Arkticheskoj zony. Sb. nauchnyh trudov [Natural Resources and Integrated Development of Coastal Areas of the Arctic Zone. Collection of Scientific Papers]. Arhangel’skij nauchnyj centr Ural’skogo otdelenija RAN, Arkhangelsk, Russia, pp. 34–40.Google Scholar
Rodionov, A. I., Nikolaeva, S. B. and Ryazantsev, P. A. (2018). Evaluation of GPR capabilities in the study of seismogenic faulting and deformation in the bottom sediments of Lake Upoloksha (northeast of the Fennoscandian shield). Geodynamics & Tectonophysics, 9(4), 11891203, doi.org/10.5800/GT-2018-9-4-0390.Google Scholar
Rybalko, A. E., Tokarev, M. Y., Fedorova, N. K. and Nikitin, M. A. (2011). New data on geology and geomorphology of the Kandalaksha Gulf from high-frequency seismoacoustic profiling and geological sampling. Geologiya morei i okeanov: Materialy XIX Mezhdunarodnoi konferentsii (shkoly) po morskoi geologii [Geology of Seas and Oceans: Proceedings of XIX International Conference–Workshop on Marine Geology, Moscow, Vol. 5], pp. 174–177.Google Scholar
Saarnisto, M. (1970). The Late Weichselian and Flandrian history of the Saimaa lake complex. Societas Scientiarum Fennica, Commentationes Physico-Mathematicae, 37, 107.Google Scholar
Shvarev, S. V. and Nikonov, A. A. (2018). Morphotectonics of the White Sea basin in comparison with the specified characteristics of historical earthquakes. Materialy Vserossijskoj nauchnoj konferencii: Pozdne – i postgljacial’naja istorija Belogo morja: geologija, tektonika, sedimentacionnye obstanovki, hronologija, KDU, University Book, Moscow, pp. 174180 (in Russian).Google Scholar
Shvarev, S. V. and Rodkin, M. V. (2018). Structural position and parameters of the paleoearthquakes in the area of Vottovaara Mountain (middle Karelia, eastern part of the Fennoscandian Shield). Seismic Instruments, 54, 99218, doi.org/10.3103/S0747923918020093.Google Scholar
Shvarev, S. V., Nikonov, A. A., Rodkin, M. V. and Poleshchuk, A. V. (2018). The active tectonics of the Vuoksi Fault Zone in the Karelian Isthmus: parameters of paleoearthquakes estimated from bedrock and soft sediment deformation features. Bulletin of the Geological Society of Finland, 90, 257273.Google Scholar
Shvarev, S. V., Subetto, D. A., Nikonov, A. A., Zaretskaja, N. E. and Romanov, A. O. (2019). Seismites in the pre- and postglacial sediments of the Karelian isthmus (eastern Fennoscandia). In Börner, A., Hüneke, H. and Lorenz, S., eds., Field Symposium of INQUA PeriBaltic Working Group. From Weichselian Ice-Sheet Dynamics to Holocene Land Use Development in Western Pomerania and Mecklenburg. Abstract Volume. Scientific Technical Report STR 19/01, Potsdam GFZ German Research Centre for Geosciences, pp. 102–105, doi.org/10.2312/GFZ.b103-19012.Google Scholar
Starovojtov, A. V., Tokarev, M. Y., Terekhina, Y. E. and Kozupicza, N. A. (2018). The structure of the sedimentary cover of the Kandalaksha Bay of the White Sea according to seismic data. Moscow University Bulletin, 4(2), 8192.Google Scholar
Subetto, D. A, Shvarev, S. V., Nikonov, A. A. et al. (2018). New evidence of the Vuoksi River origin by geodynamic cataclysm. Bulletin of the Geological Society of Finland, 90, 275289.Google Scholar
Sviridenko, L. P., Isanina, E. V. and Sharov, N. V. (2017). Deep structure, volcano-plutonism and tectonics of Lake Ladoga region. Trudy Karel’skogo nauchnogo centra RAN, 2, 7385.Google Scholar
Trifonov, V. G. (1999). Neotektonika Evrazii [Neotectonics of Eurasia]. Scientific World, Moscow, Russia.Google Scholar
Verzilin, N. N., Bobkov, A. A., Kulkova, M. A. et al. (2013). On age and formation of modern dissected relief of Kola Peninsula northern part. Vestnik of Saint-Petersburg University, 7(2), pp. 7993.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×