Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T11:35:18.175Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  22 August 2018

Stefan Schwede
Affiliation:
Rheinische Friedrich-Wilhelms-Universität Bonn
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. F., Haeberly, J.-P., Jackowski, S., May, J. P., A generalization of the Atiyah–Segal completion theorem. Topology 27 (1988), no. 1, 16.CrossRefGoogle Scholar
Alexander, J. C., The bordism ring of manifolds with involution. Proc. Amer. Math. Soc. 31 (1972), 536542.CrossRefGoogle Scholar
Atiyah, M. F., Bott periodicity and the index of elliptic operators. Quart. J. Math. Oxford Ser. (2) 19 (1968), 113140.CrossRefGoogle Scholar
Atiyah, M. F., Bott, R., Shapiro, A., Clifford modules. Topology 3 (1964) suppl. 1, 338.CrossRefGoogle Scholar
Atiyah, M. F., Segal, G. B., Equivariant K-theory and completion. J. Differential Geom. 3 (1969), 118.CrossRefGoogle Scholar
Becker, J. C., Gottlieb, D. H., The transfer map and fiber bundles. Topology 14 (1975), 112.CrossRefGoogle Scholar
Beem, R. P., Generators for G bordism. Proc. Amer. Math. Soc. 67 (1977), no. 2, 335343.Google Scholar
Beem, R. P., The structure of Z/4 bordism. Indiana Univ. Math. J. 27 (1978), no. 6, 10391047.CrossRefGoogle Scholar
Beem, R. B., Rowlett, R. J., The fixed point homomorphism for maps of period 2k . Indiana Univ. Math. J. 30 (1981), no. 4, 489500.CrossRefGoogle Scholar
Beilinson, A. A., Bernstein, J., Deligne, P., Faisceaux pervers. Analysis and topology on singular spaces, I (Luminy, 1981), 5–171, Astérisque, 100, Soc. Math. France, Paris, 1982.Google Scholar
Beligiannis, A., Reiten, I., Homological and homotopical aspects of torsion theories. Mem. Amer. Math. Soc. 188 (2007), no. 883, viii+207 pp.Google Scholar
Berger, C., Moerdijk, I., On an extension of the notion of Reedy category. Math. Z. 269 (2011), no. 3–4, 9771004.CrossRefGoogle Scholar
Besse, A. L., Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 10. Springer-Verlag, Berlin, 1987. xii+510 pp.CrossRefGoogle Scholar
Blumberg, A. J., Continuous functors as a model for the equivariant stable homotopy category. Algebr. Geom. Topol. 6 (2006), 22572295.CrossRefGoogle Scholar
Boardman, J. M., On stable homotopy theory and some applications. PhD thesis, University of Cambridge (1964).Google Scholar
Boardman, J. M., Vogt, R. M., Homotopy-everything H-spaces. Bull. Amer. Math. Soc. 74 (1968), 11171122.CrossRefGoogle Scholar
J. Boardman, M., Vogt, R. M., Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, Vol. 347. Springer-Verlag, Berlin-New York, 1973. x+257 pp.CrossRefGoogle Scholar
Bohmann, A. M., Topics in equivariant stable homotopy theory. PhD thesis, University of Chicago, 2011.Google Scholar
Bohmann, A. M., Global orthogonal spectra. Homology Homotopy Appl. 16 (2014), no. 1, 313332.CrossRefGoogle Scholar
Boltje, R., A canonical Brauer induction formula. Astérisque No. 181–182 (1990) 5, 31–59.Google Scholar
Boltje, R., Snaith, V., Symonds, P., Algebraicisation of explicit Brauer induction. J. Algebra 148 (1992), no. 2, 504527.CrossRefGoogle Scholar
Bousfield, A. K., Friedlander, E. M., Homotopy theory of Γ-spaces, spectra, and bisimplicial sets. Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, pp. 80–130, Lecture Notes in Mathematics, Vol. 658, Springer-Verlag, Berlin, 1978.CrossRefGoogle Scholar
Bott, R., The stable homotopy of the classical groups. Ann. of Math. (2) 70 (1959), 313337.CrossRefGoogle Scholar
Brauer, R., On Artin’s L-series with general group characters. Ann. of Math. (2) 48 (1947), 502514.CrossRefGoogle Scholar
Bredon, G. E., Equivariant cohomology theories. Lecture Notes in Mathematics, Vol. 34, Springer-Verlag, Berlin-New York, 1967. vi+64 pp.CrossRefGoogle Scholar
Bredon, G. E., Introduction to compact transformation groups. Pure and Applied Mathematics, Vol. 46. Academic Press, New York-London, 1972. xiii+459 pp.Google Scholar
Bröcker, T., Hook, E. C., Stable equivariant bordism. Math. Z. 129 (1972), 269277.CrossRefGoogle Scholar
Bröcker, T., tom Dieck, T., Representations of compact Lie groups. Graduate Texts in Math., Vol. 98, Springer-Verlag, New York, 1985. x+313 pp.CrossRefGoogle Scholar
Brown, K. S., Abstract homotopy theory and generalized sheaf cohomology. Trans. Amer. Math. Soc. 186 (1974), 419458.CrossRefGoogle Scholar
Brown, R., Function spaces and product topologies. Quart. J. Math. Oxford Ser. (2) 15 (1964), 238250.CrossRefGoogle Scholar
Brun, M., Witt vectors and equivariant ring spectra applied to cobordism. Proc. London Math. Soc. (3) 94 (2007), 351385.CrossRefGoogle Scholar
Brun, M., Dundas, B. I., Stolz, M., Equivariant structure on smash powers. arXiv:1604.05939Google Scholar
Bruner, R., Greenlees, J., The connective K-theory of finite groups. Mem. Amer. Math. Soc. 165 (2003), no. 785, viii+127 pp.Google Scholar
Bruner, R., May, J. P., McClure, J., Steinberger, M., H ring spectra and their applications. Lecture Notes in Mathematics, Vol. 1176. Springer-Verlag, Berlin, 1986. viii+388 pp.CrossRefGoogle Scholar
Carlsson, G., Equivariant stable homotopy and Segal’s Burnside ring conjecture. Ann. of Math. (2) 120 (1984), no. 2, 189224.CrossRefGoogle Scholar
Christensen, J. D., Hovey, M., Quillen model structures for relative homological algebra. Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 2, 261293.CrossRefGoogle Scholar
Cohen, D. E., Spaces with weak topology. Quart. J. Math. Oxford Ser. (2) 5, (1954), 7780.CrossRefGoogle Scholar
Cole, M., Mixing model structures. Topology Appl. 153 (2006), no. 7, 1016– 1032.CrossRefGoogle Scholar
Conner, P. E., Floyd, E. E., Differentiable periodic maps. Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 33, Academic Press Inc., Publishers, New York; Springer-Verlag, 1964. vii+148 pp.Google Scholar
Costenoble, S. R., Equivariant cobordism and K-theory. PhD thesis, University of Chicago, 1985.Google Scholar
Curtis, E. B., Simplicial homotopy theory. Advances in Math. 6 (1971), 107209.CrossRefGoogle Scholar
Day, B., On closed categories of functors. Reports of the Midwest Category Seminar, IV pp. 1–38. Lecture Notes in Mathematics, Vol. 137. Springer-Verlag, Berlin, 1970.CrossRefGoogle Scholar
Dowker, C. H., Topology of metric complexes. Amer. J. Math. 74 (1952), 555577.CrossRefGoogle Scholar
Dress, A., Notes on the theory of representations of finite groups. Duplicated notes, Bielefeld, 1971.Google Scholar
Dugger, D., An Atiyah-Hirzebruch spectral sequence for KR-theory. K-theory 35 (2005), 213256.CrossRefGoogle Scholar
Dugger, D., Isaksen, D. C., Topological hypercovers and A1 -realizations. Math. Z. 246 (2004), no. 4, 667689.CrossRefGoogle Scholar
Dundas, B., Goodwillie, T. G., McCarthy, R., The local structure of algebraic K-theory. Algebra and Applications, 18. Springer-Verlag London, Ltd., London, 2013. xvi+435 pp.Google Scholar
Dwyer, W. G., Spalinski, J., Homotopy theories and model categories. In: Handbook of algebraic topology, ed. I. M. James, Elsevier (1995), 73126.Google Scholar
Eilenberg, S., Zilber, J. A., Semi-simplicial complexes and singular homology. Ann. of Math. (2) 51 (1950), 499513.CrossRefGoogle Scholar
Elmendorf, A. D., Kriz, I., Mandell, M. A., May, J. P., Rings, modules, and algebras in stable homotopy theory. With an appendix by M. Cole. Mathematical Surveys and Monographs, 47, Amer. Math. Soc., Providence, RI, 1997, xii+249 pp.Google Scholar
Elmendorf, A. D., Mandell, M. A., Rings, modules, and algebras in infinite loop space theory. Adv. Math. 205 (2006), no. 1, 163228.CrossRefGoogle Scholar
Fausk, H., Equivariant homotopy theory for pro-spectra. Geom. Topol. 12 (2008), 103176.CrossRefGoogle Scholar
Feshbach, M., The transfer and compact Lie groups. Trans. Amer. Math. Soc. 251 (1979), 139169.CrossRefGoogle Scholar
Firsching, M., Real equivariant bordism for elementary abelian 2-groups. Homology Homotopy Appl. 15 (2013), no. 1, 235251.CrossRefGoogle Scholar
Fresse, B., Modules over operads and functors. Lecture Notes in Mathematics, Vol. 1967. Springer-Verlag, Berlin, 2009. x+308 pp.CrossRefGoogle Scholar
Friedlander, E. M., Mazur, B., Filtrations on the homology of algebraic varieties. With an appendix by Daniel Quillen. Mem. Amer. Math. Soc. 110 (1994), no. 529, x+110 pp.Google Scholar
Fritsch, R., Piccinini, R., Cellular structures in topology. Cambridge Studies in Advanced Mathematics, 19. Cambridge University Press, Cambridge, 1990. xii+326 pp.CrossRefGoogle Scholar
Gabriel, P., Zisman, M., Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35. Springer-Verlag New York, Inc., New York, 1967. x+168 pp.Google Scholar
Galatius, S., Tillmann, U., Madsen, I., Weiss, M., The homotopy type of the cobordism category. Acta Math. 202 (2009), no. 2, 195239.CrossRefGoogle Scholar
Ganter, N., Global Mackey functors with operations and n-special lambda rings. arXiv:1301.4616Google Scholar
Gepner, D., Henriques, A., Homotopy theory of orbispaces. arXiv:math.AT/0701916Google Scholar
Goerss, P., Hopkins, M., Moduli spaces of commutative ring spectra. Structured ring spectra, 151–200, London Math. Soc. Lecture Note Ser., 315, Cambridge University Press, Cambridge, 2004.CrossRefGoogle Scholar
Goerss, P. G., Jardine, J. F., Simplicial homotopy theory. Progress in Mathematics, 174. Birkhäuser Verlag, Basel, 1999. xvi+510 pp.CrossRefGoogle Scholar
Gorchinskiy, S., Guletskiĭ, V., Symmetric powers in abstract homotopy categories. Adv. Math. 292 (2016), 707754.CrossRefGoogle Scholar
Green, J. A., Axiomatic representation theory for finite groups. J. Pure Appl. Algebra 1 (1971), 4177.CrossRefGoogle Scholar
Greenlees, J. P. C., Equivariant connective K-theory for compact Lie groups. J. Pure Appl. Algebra 187 (2004), 129152.CrossRefGoogle Scholar
Greenlees, J. P. C., May, J. P., Generalized Tate cohomology. Mem. Amer. Math. Soc. 113 (1995), no. 543, viii+178 pp.Google Scholar
Greenlees, J. P. C., May, J. P., Localization and completion theorems for MU-module spectra. Ann. of Math. (2) 146 (1997), 509544.CrossRefGoogle Scholar
Haag, U., Some algebraic features of Z2 -graded KK-theory. K-Theory 13 (1998), no. 1, 81108.CrossRefGoogle Scholar
Harris, B., Bott periodicity via simplicial spaces. J. Algebra 62 (1980), no. 2, 450454.CrossRefGoogle Scholar
Hatcher, A., Algebraic topology. Cambridge University Press, Cambridge, 2002. xii+544 pp.Google Scholar
Hausmann, M., Global equivariant homotopy theory of symmetric spectra. Master thesis, Universität Bonn, 2013.Google Scholar
Hausmann, M., Symmetric spectra model global homotopy theory of finite groups. arXiv:1509.09270Google Scholar
Hausmann, M., Ostermayr, D., Filtrations of global equivariant K-theory. arXiv:1510.04011Google Scholar
Higson, N., Kasparov, G., Trout, J., A Bott periodicity theorem for infinite-dimensional Euclidean space. Adv. Math. 135 (1998), no. 1, 140.CrossRefGoogle Scholar
Higson, N., Guentner, E., Group C -algebras and K-theory. Noncommutative geometry, 137–251, Lecture Notes in Mathematics, Vol. 1831, Springer-Verlag, Berlin, 2004.CrossRefGoogle Scholar
Hill, M., Hopkins, M., Ravenel, D., On the nonexistence of elements of Kervaire invariant one. Ann. of Math. (2) 184 (2016), 1262.CrossRefGoogle Scholar
Hirschhorn, P. S., Model categories and their localizations. Mathematical Surveys and Monographs, 99. Amer. Math. Soc., Providence, RI, 2003. xvi+457 pp.Google Scholar
Hohnhold, H., Stolz, S., Teichner, P., From minimal geodesics to supersymmetric field theories. A celebration of the mathematical legacy of Raoul Bott, 207–274, CRM Proc. Lecture Notes 50, Amer. Math. Soc., Providence, RI, 2010.CrossRefGoogle Scholar
Hovey, M., Model categories. Mathematical Surveys and Monographs, 63. Amer. Math. Soc., Providence, RI, 1999, xii+209 pp.Google Scholar
Hovey, M., Shipley, B., Smith, J., Symmetric spectra. J. Amer. Math. Soc. 13 (2000), 149208.CrossRefGoogle Scholar
Hurewicz, W., Beiträge zur Topologie der Deformationen. IV. Asphärische Räume. Proc. Kon. Akad. Wet. Amsterdam 39 (1936), 215224.Google Scholar
Illman, S., Smooth equivariant triangulations of G-manifolds for G a finite group. Math. Ann. 233 (1978), no. 3, 199220.CrossRefGoogle Scholar
Illman, S., The equivariant triangulation theorem for actions of compact Lie groups. Math. Ann. 262 (1983), 487501.CrossRefGoogle Scholar
Illman, S., Restricting the transformation group in equivariant CW complexes. Osaka J. Math. 27 (1990), no. 1, 191206.Google Scholar
Joachim, M., Higher coherences for equivariant K-theory. Structured ring spectra, 87–114, London Math. Soc. Lecture Note Ser., 315, Cambridge University Press, Cambridge, 2004.CrossRefGoogle Scholar
Kan, D. M., On c. s. s. complexes. Amer. J. Math. 79 (1957), 449476.CrossRefGoogle Scholar
Karoubi, M., Sur la K-théorie équivariante. Séminaire Heidelberg-Saarbrücken-Strasbourg sur la K-théorie (1967/68), 187–253. Lecture Notes in Mathematics, Vol. 136. Springer-Verlag, Berlin, 1970.Google Scholar
Kelley, J. L., General topology. D. Van Nostrand Company, Inc., Toronto-New York-London, 1955. xiv+298 pp.Google Scholar
Kelly, G. M., Basic concepts of enriched category theory. Reprint of the 1982 original. Repr. Theory Appl. Categ. No. 10 (2005), vi+137 pp.Google Scholar
Kirillov, A. A., Elements of the theory of representations. Translated from the Russian by E. Hewitt. Grundlehren der Mathematischen Wissenschaften, Band 220. Springer-Verlag, Berlin-New York, 1976. xi+315 pp.CrossRefGoogle Scholar
Krause, H., A Brown representability theorem via coherent functors. Topology 41 (2002), no. 4, 853861.CrossRefGoogle Scholar
Kriz, I., The Z/p-equivariant complex cobordism ring. Homotopy invariant algebraic structures (Baltimore, MD, 1998), 217–223, Contemp. Math., 239, Amer. Math. Soc., Providence, RI, 1999.CrossRefGoogle Scholar
Lashof, R. K., Equivariant bundles. Illinois J. Math. 26 (1982), no. 2, 257271.CrossRefGoogle Scholar
Lashof, R. K., May, J. P., Segal, G. B., Equivariant bundles with abelian structural group. Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), 167–176, Contemp. Math., 19, Amer. Math. Soc., Providence, RI, 1983.CrossRefGoogle Scholar
Lewis, L. G., Jr., The stable category and generalized Thom spectra. Ph.D. thesis, University of Chicago, 1978.Google Scholar
Lewis, L. G., Jr., When is the natural map X −→ ΩΣX a cofibration? Trans. Amer. Math. Soc. 273 (1982), no. 1, 147155.Google Scholar
Lewis, L. G., Jr., When projective does not imply flat, and other homological anomalies. Theory Appl. Categ. 5 (1999), no. 9, 202250.Google Scholar
Lewis, L. G., Jr., May, J. P., McClure, J. E., Classifying G-spaces and the Segal conjecture. Current trends in algebraic topology, Part 2 (London, Ont., 1981), pp. 165–179, CMS Conf. Proc., 2, Amer. Math. Soc., Providence, RI, 1982.Google Scholar
Lewis, L. G., Jr., May, J. P., Steinberger, M., Equivariant stable homotopy theory. Lecture Notes in Mathematics, Vol. 1213, Springer-Verlag, 1986. x+538 pp.CrossRefGoogle Scholar
Lillig, J., A union theorem for cofibrations. Arch. Math. (Basel) 24 (1973), 410415.CrossRefGoogle Scholar
Lind, J. A., Diagram spaces, diagram spectra and spectra of units. Algeb. Geom. Topol. 13 (2013), 18571935.CrossRefGoogle Scholar
Lindner, H., A remark on Mackey-functors. Manuscripta Math. 18 (1976), no. 3, 273278.CrossRefGoogle Scholar
Löffler, P., Equivariant unitary cobordism and classifying spaces. Proceedings of the International Symposium on Topology and its Applications (Budva, 1972), pp. 158–160. Savez Društava Mat. Fiz. i Astronom., Belgrade, 1973.Google Scholar
Mac Lane, S., Categories for the working mathematician. Second edition. Graduate Texts in Mathematics, 5. Springer-Verlag, New York, 1998. xii+314 pp.Google Scholar
Mandell, M. A., Algebraization of E ring spectra. Preprint, 1998.Google Scholar
Mandell, M. A., May, J. P., Schwede, S., Shipley, B., Model categories of diagram spectra. Proc. London Math. Soc. (3) 82 (2001), no. 2, 441512.CrossRefGoogle Scholar
Mandell, M. A., May, J. P., Equivariant orthogonal spectra and S -modules. Mem. Amer. Math. Soc. 159 (2002), no. 755, x+108 pp.Google Scholar
Matumoto, T., On G-CW complexes and a theorem of J. H. C. Whitehead. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 363374.Google Scholar
May, J. P., The geometry of iterated loop spaces. Lectures Notes in Mathematics, Vol. 271. Springer-Verlag, Berlin-New York, 1972. viii+175 pp.CrossRefGoogle Scholar
May, J. P., E spaces, group completions, and permutative categories. New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972), pp. 61–93. London Math. Soc. Lecture Note Ser., No. 11, Cambridge University Press, London, 1974.CrossRefGoogle Scholar
May, J. P., E ring spaces and E ring spectra. With contributions by F. Quinn, N. Ray, and J. Tornehave. Lecture Notes in Mathematics, Vol. 77. Springer-Verlag, Berlin-New York, 1977. 268 pp.CrossRefGoogle Scholar
May, J. P., Equivariant homotopy and cohomology theory. With contributions by M. Cole, G. Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner. CBMS Regional Conference Series in Mathematics, 91. Amer. Math. Soc., Providence, RI, 1996. xiv+366 pp.CrossRefGoogle Scholar
May, J. P., A concise course in algebraic topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1999. x+243 pp.Google Scholar
May, J. P., Merling, M., Osorno, A. M., Equivariant infinite loop space theory, I. The space level story. arXiv:1704.03413Google Scholar
May, J. P., Sigurdsson, J., Parametrized homotopy theory. Mathematical Surveys and Monographs, 132. Amer. Math. Soc., Providence, RI, 2006. x+441 pp.CrossRefGoogle Scholar
McClure, J., Schwänzl, R., Vogt, R., THH(R) ≅ RS 1 for E ring spectra. J. Pure Appl. Algebra 121 (1997), no. 2, 137159.CrossRefGoogle Scholar
McCord, M. C., Classifying spaces and infinite symmetric products. Trans. Amer. Math. Soc. 146 (1969), 273298.CrossRefGoogle Scholar
Meyer, R., Equivariant Kasparov theory and generalized homomorphisms. K-Theory 21 (2000), no. 3, 201228.CrossRefGoogle Scholar
Milnor, J., Construction of universal bundles. II. Ann. of Math. (2) 63 (1956), 430436.CrossRefGoogle Scholar
Milnor, J., The geometric realization of a semi-simplicial complex. Ann. of Math. (2) 65 (1957), 357362.CrossRefGoogle Scholar
Montgomery, D., Zippin, L., A theorem on Lie groups. Bull. Amer. Math. Soc. 48 (1942), 448452.CrossRefGoogle Scholar
Morel, F., Voevodsky, V., A1 -homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45143.CrossRefGoogle Scholar
Mostow, G. D., Equivariant embeddings in Euclidean space. Ann. of Math. (2) 65 (1957), 432446.CrossRefGoogle Scholar
Murayama, M., On G-ANRs and their G-homotopy types. Osaka J. Math. 20 (1983), no. 3, 479512.Google Scholar
Murphy, G. J., C -algebras and operator theory. Academic Press, Inc., Boston, MA, 1990. x+286 pp.Google Scholar
Neeman, A., The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J. Amer. Math. Soc. 9 (1996), 205236.CrossRefGoogle Scholar
Neeman, A., Triangulated categories. Annals of Mathematics Studies, 148. Princeton University Press, Princeton, NJ, 2001. viii+449 pp.CrossRefGoogle Scholar
Ostermayr, D., Equivariant Γ-spaces. Homology Homotopy Appl. 18 (2016), no. 1, 295324.CrossRefGoogle Scholar
Palais, R. S., Imbedding of compact, differentiable transformation groups in orthogonal representations. J. Math. Mech. 6 (1957), 673678.Google Scholar
Palais, R. S., The classification of G-spaces. Mem. Amer. Math. Soc. 36 (1960), iv+72 pp.Google Scholar
Puppe, D., Homotopiemengen und ihre induzierten Abbildungen. I. Math. Z. 69 (1958), 299344.CrossRefGoogle Scholar
Puppe, D., Bemerkungen über die Erweiterung von Homotopien. Arch. Math. (Basel) 18 (1967), 8188.CrossRefGoogle Scholar
Quillen, D., Homotopical algebra. Lecture Notes in Mathematics, Vol. 43, Springer-Verlag, 1967. iv+156 pp.CrossRefGoogle Scholar
Quillen, D., Higher algebraic K-theory. I. Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85–147. Lecture Notes in Mathematics, Vol. 341, Springer-Verlag, Berlin 1973.CrossRefGoogle Scholar
Reedy, C. L. Homotopy theory of model categories. Unpublished manuscript, 1974.Google Scholar
Rezk, C., Spaces of algebra structures and cohomology of operads. PhD thesis, Massachusetts Institute of Technology, 1996.Google Scholar
Rezk, C., Classifying spaces for 1-truncated compact Lie groups. Algebr. Geom. Topol. 18 (2018), 525546.CrossRefGoogle Scholar
Rotman, J. J., An introduction to algebraic topology. Graduate Texts in Mathematics, 119. Springer-Verlag, New York, 1988. xiv+433 pp.CrossRefGoogle Scholar
Rotman, J. J., An introduction to homological algebra. Second edition. Universi-text. Springer-Verlag, New York, 2009. xiv+709 pp.CrossRefGoogle Scholar
Sagave, S., Schlichtkrull, C., Diagram spaces and symmetric spectra. Adv. Math. 231 (2012), no. 3–4, 21162193.CrossRefGoogle Scholar
dos Santos, P., A note on the equivariant Dold-Thom theorem. J. Pure Appl. Algebra 183 (2003), 299312.CrossRefGoogle Scholar
Schwede, S., The p-order of topological triangulated categories. J. Topol. 6 (2013), no. 4, 868914.CrossRefGoogle Scholar
Schwede, S., Equivariant properties of symmetric products. J. Amer. Math. Soc. 30 (2017), 673711.CrossRefGoogle Scholar
Schwede, S., Orbispaces, orthogonal spaces, and the universal compact Lie group. arXiv:1711.06019Google Scholar
Schwede, S., Shipley, B., Algebras and modules in monoidal model categories. Proc. London Math. Soc. 80 (2000), 491511.CrossRefGoogle Scholar
Schwede, S., Shipley, B., A uniqueness theorem for stable homotopy theory. Math. Z. 239 (2002), 803828.CrossRefGoogle Scholar
Schwede, S., Shipley, B., Stable model categories are categories of modules. Topology 42 (2003), no. 1, 103153.CrossRefGoogle Scholar
Segal, G., Classifying spaces and spectral sequences. Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105112.CrossRefGoogle Scholar
Segal, G., The representation ring of a compact Lie group. Inst. Hautes Études Sci. Publ. Math. 34 (1968), 113128.CrossRefGoogle Scholar
Segal, G., Equivariant K-theory. Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129151.CrossRefGoogle Scholar
Segal, G., Equivariant stable homotopy theory. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, pp. 59–63, 1971.Google Scholar
Segal, G., Categories and cohomology theories. Topology 13 (1974), 293– 312.CrossRefGoogle Scholar
Segal, G., K-homology theory and algebraic K-theory. K-theory and operator algebras (Proc. Conf., Univ. Georgia, Athens, Ga., 1975), pp. 113–127. Lecture Notes in Mathematics, Vol. 575, Springer-Verlag, Berlin, 1977.CrossRefGoogle Scholar
Segal, G., Some results in equivariant homotopy theory. Preprint, 1978.Google Scholar
de Seguins Pazzis, C., The geometric realization of a simplicial Hausdorff space is Hausdorff. Topology Appl. 160 (2013), no. 13, 16211632.CrossRefGoogle Scholar
Shimakawa, K., Infinite loop G-spaces associated with monoidal G-graded categories. Publ. Res. Inst. Math. Sci. 25 (1989), 239262.CrossRefGoogle Scholar
Shimakawa, K., A note on ΓG -spaces. Osaka J. Math. 28 (1991), no. 2, 223– 228.Google Scholar
Singer, J., Äquivariante λ-Ringe und kommutative Multiplikationen auf Moore-Spektren. Dissertation, Universität Bonn, 2007. http://hss.ulb.uni-bonn.de/2008/1400/1400.pdfGoogle Scholar
Snaith, V. P., Explicit Brauer induction. Invent. Math. 94 (1988), no. 3, 455– 478.CrossRefGoogle Scholar
Steenrod, N. E., A convenient category of topological spaces. Michigan Math. J. 14 (1967), 133152.CrossRefGoogle Scholar
Stenström, B., Rings of quotients. An introduction to methods of ring theory. Die Grundlehren der Mathematischen Wissenschaften, Band 217. Springer-Verlag, New York-Heidelberg, 1975. viii+309 pp.Google Scholar
Stolz, M., Equivariant structure on smash powers of commutative ring spectra. PhD thesis, University of Bergen, 2011.Google Scholar
Stong, R. E., Unoriented bordism and actions of finite groups. Mem. Amer. Math. Soc. 103 (1970), 80 pp.Google Scholar
Strickland, N. P., Complex cobordism of involutions. Geom. Topol. 5 (2001), 335345.CrossRefGoogle Scholar
Strickland, N. P., Realising formal groups. Algebr. Geom. Topol. 3 (2003), 187205.CrossRefGoogle Scholar
Strickland, N. P., The category of CGWH spaces. Preprint, available from the author’s homepage. http://neil-strickland.staff.shef.ac.ukGoogle Scholar
Sullivan, D. P., Geometric topology: localization, periodicity and Galois symmetry. The 1970 MIT notes. Edited and with a preface by A. Ranicki. K-Monographs in Mathematics, 8. Springer-Verlag, Dordrecht, 2005. xiv+283 pp.CrossRefGoogle Scholar
Suslin, A. A., The Beilinson spectral sequence for the K-theory of the field of real numbers. Mat. Metody i Fiz.-Mekh. Polya No. 28 (1988), 51–52, 105; translation in J. Soviet Math. 63 (1993), no. 1, 57–58.Google Scholar
Symonds, P., A splitting principle for group representations. Comment. Math. Helv. 66 (1991), no. 2, 169184.CrossRefGoogle Scholar
Tambara, D., On multiplicative transfer. Comm. Algebra 21 (1993), no. 4, 13931420.CrossRefGoogle Scholar
Thévenaz, J., Some remarks on G-functors and the Brauer morphism. J. Reine Angew. Math. 384 (1988), 2456.Google Scholar
Thom, R., Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28 (1954), 1786.CrossRefGoogle Scholar
tom Dieck, T., Faserbündel mit Gruppenoperation. Arch. Math. (Basel) 20 (1969), 136143.CrossRefGoogle Scholar
tom Dieck, T., Bordism of G-manifolds and integrality theorems. Topology 9 (1970), 345358.CrossRefGoogle Scholar
tom Dieck, T., Orbittypen und äquivariante Homologie. I. Arch. Math. (Basel) 23 (1972), no. 1, 307317.CrossRefGoogle Scholar
tom Dieck, T., Orbittypen und äquivariante Homologie. II. Arch. Math. (Basel) 26 (1975), no. 6, 650662.CrossRefGoogle Scholar
tom Dieck, T., Transformation groups and representation theory. Lecture Notes in Mathematics, Vol. 766. Springer-Verlag, Berlin, 1979. viii+309 pp.CrossRefGoogle Scholar
tom Dieck, T., Transformation groups. De Gruyter Studies in Mathematics, 8. Walter de Gruyter & Co., Berlin, 1987. x+312 pp.CrossRefGoogle Scholar
tom Dieck, T., Algebraic topology. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2008. xii+567 pp.CrossRefGoogle Scholar
Ullman, J., Tambara functors and commutative ring spectra. arXiv:1304.4912Google Scholar
Verona, A., Triangulation of stratified fibre bundles. Manuscripta Math. 30 (1979/80), no. 4, 425445.CrossRefGoogle Scholar
Waner, S., Equivariant classifying spaces and fibrations. Trans. Amer. Math. Soc. 258 (1980), 385405.CrossRefGoogle Scholar
Wasserman, A. G., Equivariant differential topology. Topology 8 (1969), 127150.CrossRefGoogle Scholar
Webb, P., Two classifications of simple Mackey functors with applications to group cohomology and the decomposition of classifying spaces. J. Pure Appl. Algebra 88 (1993), no. 1–3, 265304.CrossRefGoogle Scholar
Wegge-Olsen, N. E., K-theory and C -algebras. A friendly approach. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xii+370 pp.CrossRefGoogle Scholar
Weibel, C. A., An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994. xiv+450 ppCrossRefGoogle Scholar
White, D., Model structures on commutative monoids in general model categories. J. Pure Appl. Algebra 221 (2017), no. 12, 31243168.CrossRefGoogle Scholar
Whitehead, J. H. C., Note on a theorem due to Borsuk. Bull. Amer. Math. Soc. 54 (1948), 11251132.CrossRefGoogle Scholar
Whitehead, J. H. C., Combinatorial homotopy. I. Bull. Amer. Math. Soc. 55, (1949). 213245.CrossRefGoogle Scholar
Wirthmüller, K., Equivariant homology and duality. Manuscripta Math. 11 (1974), 373390.CrossRefGoogle Scholar
Woolfson, R., Hyper-Γ-spaces and hyperspectra. Quart. J. Math. Oxford Ser. (2) 30 (1979), no. 118, 229255.CrossRefGoogle Scholar
Yang, Ch.-T., On a problem of Montgomery. Proc. Amer. Math. Soc. 8 (1957), 255257.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Stefan Schwede, Rheinische Friedrich-Wilhelms-Universität Bonn
  • Book: Global Homotopy Theory
  • Online publication: 22 August 2018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Stefan Schwede, Rheinische Friedrich-Wilhelms-Universität Bonn
  • Book: Global Homotopy Theory
  • Online publication: 22 August 2018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Stefan Schwede, Rheinische Friedrich-Wilhelms-Universität Bonn
  • Book: Global Homotopy Theory
  • Online publication: 22 August 2018
Available formats
×