from Part III - Gravitating extended objects of string theory
Published online by Cambridge University Press: 05 April 2015
Following our general plan, in Chapter 25 we have started to see classical solutions that describe the long-range fields generated by configurations of extended objects in string/M theory. In general, the solutions do not reflect some of the characteristics of the brane configuration which may be understood as “hair”, but in many cases of interest (in general, in the presence of unbroken supersymmetry), given a classical supergravity solution, we can tell which brane configurations give rise to it. This is in itself a very interesting development, but there is more, because, if the brane configurations only involve D-branes, they can be associated with two-dimensional CFTs (string theories) over which we have good control. Furthermore, each of the branes considered here (D- or not D-) has a worldvolume supersymmetric field theory associated with it. All this allows us to relate supergravity configurations to QFTs whose degrees of freedom can be understood as the microscopical degrees of freedom of the quantum (super)gravity theory contained in string/M theory. This is, roughly speaking, the basis of the AdS/CFT correspondence and generalizations [921, 234] and also the basis for the microscopical computations of BH entropies [1160], the subject of this chapter.
In this chapter we are going to present N = 2A/B, d = 10 SUEGRA solutions associated with configurations of extended objects of type-II superstring theories that lead to BH solutions of maximal d = 5, 4 SUEGRAs (N = 4, d = 5 and N = 8, d = 4) (Section 26.2) upon toroidal compactification. The association can be understood as a strong-weak-coupling limit (see Fig. 26.1). We will carefully relate the solutions' integration constants to the physical parameters of the stringy sources and then, using our knowledge of the QFTs associated with those sources in the extreme and supersymmetric cases, we will count the states of these QFTs at each energy level, and the corresponding entropy will be shown to coincide with one quarter of the area of the BH's horizon (Section 26.3).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.