Book contents
- Green Catalysis and Reaction Engineering
- Cambridge Series in Chemical Engineering
- Green Catalysis and Reaction Engineering
- Copyright page
- Dedication
- Contents
- Preface
- Acknowledgments
- 1 Sustainability Challenges of the Chemical Industry
- 2 Multiphase Catalytic Processes and Sustainability Challenges
- 3 Ethylene Production from Diverse Feedstocks and Energy Sources
- 4 Ethylene Epoxidation in Gas-Expanded Liquids with Negligible CO2 Formation as a Byproduct
- 5 Spray Reactor-Based Terephthalic Acid Production as a Greener Alternative to the Mid-Century Process
- 6 Sustainability Assessments of Hydrogen Peroxide-Based and Tertiary Butyl Hydroperoxide-Based Propylene Oxide Technologies
- 7 Separation of Propane/Propylene Mixture by Selective Propylene Hydroformylation in Gas-Expanded Liquids
- 8 A Greener Higher Olefin Hydroformylation Process
- 9 Solid Acid-Catalyzed Olefin/Isoparaffin Alkylation in Supercritical Carbon Dioxide
- 10 Epilogue
- Index
- References
5 - Spray Reactor-Based Terephthalic Acid Production as a Greener Alternative to the Mid-Century Process
Published online by Cambridge University Press: 15 September 2022
- Green Catalysis and Reaction Engineering
- Cambridge Series in Chemical Engineering
- Green Catalysis and Reaction Engineering
- Copyright page
- Dedication
- Contents
- Preface
- Acknowledgments
- 1 Sustainability Challenges of the Chemical Industry
- 2 Multiphase Catalytic Processes and Sustainability Challenges
- 3 Ethylene Production from Diverse Feedstocks and Energy Sources
- 4 Ethylene Epoxidation in Gas-Expanded Liquids with Negligible CO2 Formation as a Byproduct
- 5 Spray Reactor-Based Terephthalic Acid Production as a Greener Alternative to the Mid-Century Process
- 6 Sustainability Assessments of Hydrogen Peroxide-Based and Tertiary Butyl Hydroperoxide-Based Propylene Oxide Technologies
- 7 Separation of Propane/Propylene Mixture by Selective Propylene Hydroformylation in Gas-Expanded Liquids
- 8 A Greener Higher Olefin Hydroformylation Process
- 9 Solid Acid-Catalyzed Olefin/Isoparaffin Alkylation in Supercritical Carbon Dioxide
- 10 Epilogue
- Index
- References
Summary
Terephthalic acid (TPA) is a commodity chemical made by treating p-xylene (pX) with oxygen (O2) via the so-called Mid-Century (MC) process. TPA is a key ingredient to make polyethylene terephthalate plastic used in water bottles. The MC process uses a stirred reactor in which O2 is dispersed through an acetic acid solution of pX and catalyst (Co/Mn/Br). However, O2 starvation in the liquid phase causes incomplete oxidation necessitating product purification in a catalytic hydrogenation unit that accounts for nearly 50%, 16% and 33% of the overall capital investment, operating costs and greenhouse gas emissions, respectively. To mitigate O2 starvation, an alternate reactor technology is presented wherein the continuous and dispersed phases are reversed by spraying the liquid phase as fine droplets into a vapor phase containing O2 to increase the gas–liquid interfacial area. As a result, the spray reactor produces polymer-grade TPA in one step, eliminating the hydrogenation unit. Life cycle assessment confirms that the spray process without the hydrogenation unit significantly lowers global warming, acidification and other harmful emissions when compared to the MC process.
- Type
- Chapter
- Information
- Green Catalysis and Reaction EngineeringAn Integrated Approach with Industrial Case Studies, pp. 89 - 122Publisher: Cambridge University PressPrint publication year: 2022