Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T22:19:43.505Z Has data issue: false hasContentIssue false

4 - Discrete subgroups of semisimple Lie groups, beyond lattices

Published online by Cambridge University Press:  21 November 2024

C. M. Campbell
Affiliation:
University of St Andrews, Scotland
M. R. Quick
Affiliation:
University of St Andrews, Scotland
E. F. Robertson
Affiliation:
University of St Andrews, Scotland
C. M. Roney-Dougal
Affiliation:
University of St Andrews, Scotland
D. I. Stewart
Affiliation:
University of Manchester
Get access

Summary

Discrete subgroups of $\SL(2,\R)$ are well understood, and classified by the geometry of the corresponding hyperbolic surfaces. Discrete subgroups of higher-rank semisimple Lie groups, such as $\SL(n,\R)$ for $n>2$, remain more mysterious. While lattices in this setting are rigid, there also exist more flexible, ``thinner discrete subgroups, which may have large and interesting deformation spaces, giving rise in particular to so-called higher Teichm\uller theory. We survey recent progress in constructing and understanding such discrete subgroups from a geometric and dynamical viewpoint.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Agol, I., “Systoles of hyperbolic 4-manifolds”, arXiv:0612290.Google Scholar
[2] Arzhantseva, G., Minasyan, A., Osin, D., “The SQ-universality and residual properties of relatively hyperbolic groups”, J. Algebra 315 (2007), 165177.CrossRefGoogle Scholar
[3] Bader, U., Caprace, P.-E., Furman, A., Sisto, A., “Hyperbolic actions of higher-rank lattices come from rank-one factors”, arXiv:2206.06431.CrossRefGoogle Scholar
[4] Bader, U., Furman, A., Gelander, T., Monod, N., “Property (T) and rigidity for actions on Banach spaces”, Acta Math. 198 (2007), 57105.CrossRefGoogle Scholar
[5] Ballas, S., Cooper, D., Leitner, A., “Generalized cusps on convex projective manifolds: Classification”, J. Topol. 13 (2020), 14551496.CrossRefGoogle Scholar
[6] Ballas, S., Marquis, L., “Convex projective bendings of hyperbolic manifolds”, Groups Geom. Dyn. 14 (2020), 653688.CrossRefGoogle Scholar
[7] van den Ban, E. P., Flensted-Jensen, M., Schlichtkrull, H., “Harmonic analysis on semisimple symmetric spaces: A survey of some general results”, in “Representation theory and automorphic forms”, Proceedings of an instructional conference (Edinburgh, UK, 1996), 191217, Proceedings of Symposia in Pure Mathematics, vol. 61, American Mathematical Society, Providence, RI, 1997.Google Scholar
[8] Barbot, T., “Flag structures on Seifert manifolds”, Geom. Topol. 5 (2001), 227266.Google Scholar
[9] Barbot, T., “Deformations of Fuchsian AdS representations are quasi Fuchsian”, J. Differential Geom. 101 (2015), 146.CrossRefGoogle Scholar
[10] Barbot, T., Mérigot, Q., “Anosov AdS representations are quasi-Fuchsian”, Groups Geom. Dyn. 6 (2012), 441483.CrossRefGoogle Scholar
[11] Bass, H., Milnor, J. W., Serre, J.-P., “Solution of the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2)”, Pub. Math. Inst. Hautes Études Sci. 33 (1967), 59137.Google Scholar
[12] Behrstock, J., Druţu, C., Mosher, L., “Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity”, Math. Ann. 344 (2009), 543595.CrossRefGoogle Scholar
[13] Belolipetsky, M. V., Thomson, S. A., “Systoles of hyperbolic manifolds”, Algebr. Geom. Topol. 11 (2010).Google Scholar
[14] Benakli, N., Kapovich, I., “Boundaries of hyperbolic groups”, in “Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001)”, 39–93, Contemporary Mathematics, vol. 296, American Mathematical Society, Providence, RI, 2002.Google Scholar
[15] Benoist, Y., “Propriétés asymptotiques des groupes linéaires”, Geom. Funct. Anal. 7 (1997), 147.CrossRefGoogle Scholar
[16] Benoist, Y., “Convexes divisibles I”, in “Algebraic groups and arithmetic”, Tata Inst. Fund. Res. Stud. Math. 17 (2004), 339374.Google Scholar
[17] Benoist, Y., “Convex divisibles III”, Ann. Sci. Éc. Norm. Supér. 38 (2005), 793832.Google Scholar
[18] Benoist, Y., “Convexes divisibles IV”, Invent. Math. 164 (2006), 249278.CrossRefGoogle Scholar
[19] Benoist, Y., “Five lectures on lattices in semisimple Lie groups”, in “Géométries a‘ courbure négative ou nulle, groupes discrets et rigidités”, 117176, Séminaires et Congrès, vol. 18, Société Mathématique de France, Paris, 2009.Google Scholar
[20] Bergeron, N., Haglund, F., Wise, D. T., “Hyperplane sections in arithmetic hyperbolic manifolds”, J. Lond. Math. Soc. 83 (2011), 431448.CrossRefGoogle Scholar
[21] Beyrer, J., Kassel, F., “p,q-convex cocompactness and higher higher Teichmüller spaces”, arXiv:2305.15031.Google Scholar
[22] Beyrer, J., Pozzetti, M. B., “Positive surface group representations in PO(p,q)”, arXiv:2106.14725.CrossRefGoogle Scholar
[23] Blayac, P.-L., Viaggi, G., “Divisible convex sets with properly embedded cones”, arXiv:2302.07177.CrossRefGoogle Scholar
[24] Bobb, M. D., “Convex projective manifolds with a cusp of any nondiagonalizable type”, J. Lond. Math. Soc. 100 (2019), 183202.CrossRefGoogle Scholar
[25] Bochi, J., Gourmelon, N., “Some characterizations of domination”, Math. Z. 263 (2009), 221231.CrossRefGoogle Scholar
[26] Bochi, J., Potrie, R., Sambarino, A., “Anosov representations and dominated splittings”, J. Eur. Math. Soc. 21 (2019), 33433414.CrossRefGoogle Scholar
[27] Bonahon, F., Dreyer, G., “Parameterizing Hitchin components”, Duke Math. J. 163 (2014), 29352975.CrossRefGoogle Scholar
[28] Borel, A., “Density properties for certain subgroups of semi-simple groups without compact components”, Ann. of Math. 72 (1960), 179188.CrossRefGoogle Scholar
[29] Borel, A., “Compact Clifford–Klein forms of symmetric spaces”, Topology 2 (1963), 111122.CrossRefGoogle Scholar
[30] Borel, A., Harish-Chandra, “Arithmetic subgroups of algebraic groups”, Ann. of Math. 75 (1962), 485535.CrossRefGoogle Scholar
[31] Bowditch, B. H., “Geometrical finiteness with variable negative curvature”, Duke Math. J. 77 (1995), 229274.CrossRefGoogle Scholar
[32] Bradlow, S., “Global properties of Higgs bundle moduli spaces”, arXiv:2312.00762, to appear in a volume in honor of Peter Newstead on the occasion of his 80th birthday.Google Scholar
[33] Bradlow, S., Collier, B., García-Prada, O., Gothen, P. B., Oliveira, A., “A general Cayley correspondence and higher Teichmüller spaces”, to appear in Ann. Math.CrossRefGoogle Scholar
[34] Bradlow, S. B., García-Prada, O., Gothen, P. B., “Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces”, Geom. Dedicata 122 (2006), 185213.CrossRefGoogle Scholar
[35] Bridgeman, M., Canary, R. D., Labourie, F., Sambarino, A., “The pressure metric for Anosov representations”, Geom. Funct. Anal. 25 (2015), 10891179.CrossRefGoogle Scholar
[36] Burelle, J.-P., Kassel, F., “Crooked surfaces and symplectic Schottky groups”, in preparation.Google Scholar
[37] Burger, M., Iozzi, A., Labourie, F., Wienhard, A., “Maximal representations of surface groups: Symplectic Anosov structures”, Pure Appl. Math. Q. 1 (2005), special issue in memory of Armand Borel, 543590.CrossRefGoogle Scholar
[38] Burger, M., Iozzi, A., Wienhard, A., “Surface group representations with maximal Toledo invariant”, Ann. of Math. 172 (2010), 517566.CrossRefGoogle Scholar
[39] Burger, M., Iozzi, A., Wienhard, A., “Higher Teichmüller spaces: from SL(2, ℝ) to other Lie groups”, in “Handbook of Teichmüller theory IV”, 539–618, IRMA Lectures in Mathematics and Theoretical Physics, vol. 19, EMS Publishing House, Zürich, 2014.Google Scholar
[40] Burger, M., Pozzetti, M. B., “Maximal representations, non Archimedean Siegel spaces, and buildings”, Geom. Topol. 21 (2017), 35393599.Google Scholar
[41] Canary, R. D., “Hitchin representations of Fuchsian groups”, EMS Surv. Math. Sci. 9 (2022), 355388, special issue in honor of Dennis Sullivan on the occasion of his 80th birthday.CrossRefGoogle Scholar
[42] Canary, R. D., Lee, M., Sambarino, A., Stover, M., “Projective Anosov Schottky groups and strongly amalgam Anosov representations”, appendix to “Amalgam Anosov representations” by Canary, Lee and Stover, Geom. Topol. 21 (2017), 240248.Google Scholar
[43] Canary, R. D., Zhang, T., Zimmer, A., “Cusped Hitchin representations and Anosov representations of geometrically finite Fuchsian groups”, Adv. Math. 404 (2022), 167.CrossRefGoogle Scholar
[44] Cantat, S., “Progrès récents concernant le programme de Zimmer [d’après A. Brown, D. Fisher et S. Hurtado]”, Séminaire Bourbaki, Exposé 1136, Astérisque 414 (2019), 148.Google Scholar
[45] Chevalley, C., “Théorie des groupes de Lie : II. Groupes algébriques”, Actualités Scientifiques et Industrielles, vol. 1152, Hermann & Cie, Paris, 1951.Google Scholar
[46] Choi, S., Goldman, W. M., “Convex real projective structures on closed surfaces are closed”, Proc. Amer. Math. Soc. 118 (1993), 657661.CrossRefGoogle Scholar
[47] Collier, B., Tholozan, N., Toulisse, J., “The geometry of maximal representations of surface groups into SO0(2, n)”, Duke Math. J. 168 (2019), 28732949.CrossRefGoogle Scholar
[48] Cooper, D., Long, D. D., Tillmann, S., “On convex projective manifolds and cusps”, Adv. Math. 277 (2015), 181251.CrossRefGoogle Scholar
[49] Cooper, D., Long, D., Tillmann, S., “Deforming convex projective manifolds”, Geom. Topol. 22 (2018), 13491404.Google Scholar
[50] Cooper, D., Tillmann, S., “The space of properly-convex structures”, arXiv:2009.06568.Google Scholar
[51] Coornaert, M., Delzant, T., Papadopoulos, A., “Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov”, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990.Google Scholar
[52] Crampon, M., Marquis, L., “Finitude géométrique en géométrie de Hilbert”, with an appendix by Vernicos, C., Ann. Inst. Fourier 64 (2014), 22992377.CrossRefGoogle Scholar
[53] Danciger, J., Guéritaud, F., Kassel, F., “Convex cocompactness in pseudo-Riemannian hyperbolic spaces”, Geom. Dedicata 192 (2018), 87126, special issue “Geometries: A Celebration of Bill Goldman’s 60th Birthday”.CrossRefGoogle Scholar
[54] Danciger, J., Guéritaud, F., Kassel, F., “Convex cocompact actions in real projective geometry”, Ann. Sci. Éc. Norm. Supér. 57 (2024), 17511841.Google Scholar
[55] Danciger, J., Guéritaud, F., Kassel, F., “Combination theorems in convex projective geometry”, arXiv:2407.09439.Google Scholar
[56] Danciger, J., Guéritaud, F., Kassel, F., Lee, G.-S., Marquis, L., “Convex cocompactness for Coxeter groups”, to appear in J. Eur. Math. Soc.Google Scholar
[57] Deligne, P., Mostow, G. D., “Monodromy of hypergeometric functions and non-lattice integral monodromy”, Publ. Math. Inst. Hautes Études Sci. 63 (1986), 589.Google Scholar
[58] Deraux, M., “A new non-arithmetic lattice in PU(3,1)”, Algebr. Geom. Topol. 20 (2020), 925963.Google Scholar
[59] Deraux, M., Parker, J. R., Paupert, J., “New non-arithmetic complex hyperbolic lattices”, Invent. Math. 203 (2016), 681771.CrossRefGoogle Scholar
[60] Desgroseilliers, M., Haglund, F., “On some convex cocompact groups in real hyperbolic space”, Geom. Topol. 17 (2013), 24312484.Google Scholar
[61] Dey, S., Kapovich, M., “Klein–Maskit combination theorem for Anosov subgroups: Free products”, Math. Z. 305 (2023), article number 35.CrossRefGoogle Scholar
[62] Dey, S., Kapovich, M., “Klein–Maskit combination theorem for Anosov subgroups: Amalgams”, arXiv:2301.02345.CrossRefGoogle Scholar
[63] Douba, S., “Systoles of hyperbolic hybrids”, arXiv:2309.16051.Google Scholar
[64] Douba, S., Fléchelles, B., Weisman, T., Zhu, F., “Cubulated hyperbolic groups admit Anosov representations”, arXiv:2309.03695.Google Scholar
[65] Druţu, C., Kapovich, M., “Geometric group theory”, American Mathematical Society Colloquium Publications, vol. 63, American Mathematical Society, Providence, RI, 2018.Google Scholar
[66] Eberlein, P. B., “Geometry of nonpositively curved manifolds”, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago, IL, 1996.Google Scholar
[67] Fisher, D., “Superrigidity, arithmeticity, normal subgroups: results, ramifications and directions”, in “Dynamics, geometry, number theory — The impact of Margulis on modern mathematics”, 9–46, Chicago University Press, Chicago, IL 2022.Google Scholar
[68] Fisher, D., “Rigidity, lattices and invariant measures beyond homogeneous dynamics”, Proceedings of the International Congress of Mathematicians 2022 (ICM 2022), 34843507, EMS Publishing House, Berlin, 2023.CrossRefGoogle Scholar
[69] Fisher, D., Margulis, G. A., “Local rigidity for cocycles”, in “Surveys in differential geometry, vol. VIII” (Boston, MA, 2002), 191234, Surveys in Differential Geometry, vol. 8, International Press, Somerville, MA, 2003.Google Scholar
[70] Fock, V. V., Goncharov, A. B., “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1211.Google Scholar
[71] Fraczyk, M., Gelander, T., “Infinite volume and infinite injectivity radius”, Ann. of Math. 197 (2023), 389421.CrossRefGoogle Scholar
[72] Frances, C., “The conformal boundary of Margulis space-times”, C. R. Acad. Sci. Paris 336 (2003), 751756.CrossRefGoogle Scholar
[73] Furman, A., “A survey of measured group theory”, in “Geometry, rigidity, and group actions”, 296–374, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2011.Google Scholar
[74] García-Prada, O., “Higgs bundles and higher Teichmüller spaces”, Handother of Teichmüller theory VII”, 239–285, IRMA Lectures in Mathematics and Theoretical Physics, vol. 30, EMS Publishing House, Zürich, 2020.Google Scholar
[75] García-Prada, O., Gothen, P. B., I. Mundet i Riera, “The Hitchin-Kobayashi correspondence, Higgs pairs and surface group representations”, arXiv:0909.4487.Google Scholar
[76] Gardam, G., Kielak, D., Logan, A. D., “Algebraically hyperbolic groups”, arXiv:2112.01331.Google Scholar
[77] Goldman, W. M., “Discontinuous groups and the Euler class”, PhD thesis, University of California, Berkeley, 1980, see https://www.math.umd.edu/∼wmg/PhDthesis.pdfGoogle Scholar
[78] Goldman, W. M., “Geometric structures on manifolds”, Graduate Studies in Mathematics, vol. 227, American Mathematical Society, Providence, RI, 2022.Google Scholar
[79] Gromov, M., “Hyperbolic groups”, in “Essays in group theory”, 75–263, Mathematical Sciences Research Institute Publications, vol. 8, Springer, New York, 1987.Google Scholar
[80] Gromov, M., Piatetski-Shapiro, I., “Nonarithmetic groups in Lobachevsky spaces”, Publ. Math. Inst. Hautes Études Sci. 66 (1988), 93103.Google Scholar
[81] Guéritaud, F., Guichard, O., Kassel, F., Wienhard, A., “Anosov representations and proper actions”, Geom. Topol. 21 (2017), 485584.Google Scholar
[82] Guéritaud, F., Kassel, F., “Maximally stretched laminations on geometrically finite hyperbolic manifolds”, Geom. Topol. 21 (2017), 693840.Google Scholar
[83] Guichard, O., Labourie, F., Wienhard, A., “Positivity and representations of surface groups”, arXiv:2106.14584.Google Scholar
[84] Guichard, O., Wienhard, A., “Anosov representations : Domains of discontinuity and applications”, Invent. Math. 190 (2012), 357438.CrossRefGoogle Scholar
[85] Guichard, O., Wienhard, A., “Positivity and higher Teichmüller theory”, Proceedings of the European Congress of Mathematics (Zürich 2016), 289310, European Mathematical Society, 2018.Google Scholar
[86] Guichard, O., Wienhard, A., “Generalizing Lusztig’s total positivity”, arXiv:2208.10114.Google Scholar
[87] Haettel, T., “Hyperbolic rigidity of higher rank lattices”, with an appendix by Horbez, C. and Guirardel, V., Ann. Sci. Éc. Norm. Supér. 53 (2020), 437468.Google Scholar
[88] Hamilton, E., “Geometrical finiteness for hyperbolic orbifolds”, Topology 37 (1998), 635657.CrossRefGoogle Scholar
[89] Healy, B. B., Hruska, G. C., “Cusped spaces and quasi-isometries of relatively hyperbolic groups”, arXiv:2010.09876.Google Scholar
[90] Helgason, S., “Differential geometry, Lie groups, and symmetric spaces”, corrected reprint of the 1978 original, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001.Google Scholar
[91] Hinojosa, G., Verjovsky, A., “Actions of discrete groups on spheres and real projective spaces”, Bull. Braz. Math. Soc. (N. S.) 39 (2008), 157171.CrossRefGoogle Scholar
[92] Hitchin, N. J., “Lie groups and Teichmüller space”, Topology 31 (1992), 339365.CrossRefGoogle Scholar
[93] Islam, M., Zimmer, A., “Convex co-compact actions of relatively hyperbolic groups”, Geom. Topol. 27 (2023), 417511.Google Scholar
[94] Johnson, D., Millson, J. J., “Deformation spaces associated to compact hyperbolic manifolds”, in “Discrete groups in geometry and analysis”, 48106, Progress in Mathematics, vol. 67, Birkhäuser, Boston, MA, 1987.Google Scholar
[95] Kapovich, M., “Kleinian groups in higher dimensions”, in “Geometry and dynamics of groups and spaces”, 485562, Progress in Mathematics, vol. 265, Birkh¨auser Verlag, Basel, 2007.Google Scholar
[96] Kapovich, M., Leeb, B., “Discrete isometry groups of symmetric spaces”, in “Handbook of group actions IV”, 191290, Advanced Lectures in Mathematics, vol. 41, International Press, Boston, MA, 2018.Google Scholar
[97] Kapovich, M., Leeb, B., “Relativizing characterizations of Anosov subgroups, I”, Groups Geom. Dyn. 17 (2023), 10051071.CrossRefGoogle Scholar
[98] Kapovich, M., Leeb, B., Porti, J., “Morse actions of discrete groups on symmetric spaces”, arXiv:1403.7671.Google Scholar
[99] Kapovich, M., Leeb, B., Porti, J., “Some recent results on Anosov representations”, Transform. Groups 21 (2016), 11051121.Google Scholar
[100] Kapovich, M., Leeb, B., Porti, J., “Dynamics on flag manifolds: domains of proper discontinuity and cocompactness”, Geom. Topol. 22 (2018), 157234.Google Scholar
[101] Kapovich, M., Leeb, B., Porti, J., “A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings”, Geom. Topol. 22 (2018), 38273923.Google Scholar
[102] Kassel, F., “Geometric structures and representations of discrete groups”, Proceedings of the International Congress of Mathematicians 2018 (ICM 2018), 11131150, World Scientific, 2019.Google Scholar
[103] Kassel, F., Pozzetti, M. B., Sambarino, A., Wienhard, A. (editors), “Arbeitsgemeinschaft: Higher rank Teichmüller theory”, Oberwolfach Rep. 19 (2022), 26872740.CrossRefGoogle Scholar
[104] Kassel, F., Potrie, R., “Eigenvalue gaps for hyperbolic groups and semigroups”, J. Mod. Dyn. 18 (2022), 161208.CrossRefGoogle Scholar
[105] Kleiner, B., Leeb, B., “Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings”, Publ. Math. Inst. Hautes Études Sci. 86 (1997), 115197.Google Scholar
[106] Kleiner, B., Leeb, B., “Rigidity of invariant convex sets in symmetric spaces”, Invent. Math. 163 (2006), 657676.CrossRefGoogle Scholar
[107] Kontorovich, A., Long, D. D., Lubotzky, A., Reid, A. W., “What is… a thin group?”, Notices Amer. Math. Soc. 66 (2019), 905910.CrossRefGoogle Scholar
[108] Kourouniotis, C., “Deformations of hyperbolic structures on manifolds of several dimensions”, Math. Proc. Cambridge Philos. Soc. 98 (1985), 247261.CrossRefGoogle Scholar
[109] Labourie, F., “Anosov flows, surface groups and curves in projective space”, Invent. Math. 165 (2006), 51114.CrossRefGoogle Scholar
[110] Lee, G.-S., Marquis, L., “Anti-de Sitter strictly GHC-regular groups which are not lattices”, Trans. Amer. Math. Soc. 372 (2019), 153186.CrossRefGoogle Scholar
[111] Lusztig, G., “Total positivity in reductive groups”, in “Lie theory and geometry”, 531568, Progress in Mathematics, vol. 123, Birkh¨auser, Boston, MA, 1994.Google Scholar
[112] Margulis, G. A., “Discrete subgroups of semisimple Lie groups”, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 17, Springer-Verlag, Berlin, 1991.Google Scholar
[113] Maskit, B., “Kleinian groups”, Grundlehren der mathematischen Wissenschaften, vol. 287, Springer-Verlag, Berlin, 1988.Google Scholar
[114] Mess, G., “Lorentz spacetimes of constant curvature” (1990), Geom. Dedicata 126 (2007), 345.CrossRefGoogle Scholar
[115] Monclair, D., Schlenker, J.-M., Tholozan, N., “Gromov–Thurston manifolds and anti-de Sitter geometry”, arXiv:2310.12003.Google Scholar
[116] Mostow, G. D., “On a remarkable class of polyhedra in complex hyperbolic space”, Pacific J. Math. 86 (1980), 171276.CrossRefGoogle Scholar
[117] Mumford, D., Series, C., Wright, D., “Indrás pearls. The vision of Felix Klein”, Cambridge University Press, 2002.CrossRefGoogle Scholar
[118] Osin, D., “Small cancellations over relatively hyperbolic groups and embedding theorems”, Ann. of Math. 172 (2010), 139.CrossRefGoogle Scholar
[119] Pansu, P., “Sous-groupes discrets des groupes de Lie : rigidité, arithméticité”, Séminaire Bourbaki, Exposé 778, Astérisque 227 (1995), 69105.Google Scholar
[120] Pozzetti, M. B., “Higher rank Teichmüller theories”, Séminaire Bourbaki, Exposé 1159, Astérisque 422 (2019), 327354.CrossRefGoogle Scholar
[121] Quint, J.-F., “Groupes convexes cocompacts en rang supérieur”, Geom. Dedicata 113 (2005), 119.CrossRefGoogle Scholar
[122] de Saint-Gervais, H. P., “Uniformization of Riemann surfaces. Revisiting a hundred-year old theorem”, Heritage of European Mathematics, European Mathematical Society, Zürich, 2016.Google Scholar
[123] Schwartz, R., “Pappus’s theorem and the modular group”, Publ. Math. Inst. Hautes Études Sci. 78 (1993), 187206.Google Scholar
[124] Seade, J., Verjovsky, A., “Complex Schottky groups”, Astérisque 287 (2003), 251272.Google Scholar
[125] Selberg, A., “On discontinuous groups in higher-dimensional symmetric spaces” (1960), in “Collected papers”, vol. 1, 475492, Springer-Verlag, Berlin, 1989.Google Scholar
[126] Series, C., “A crash course on Kleinian groups”, Rend. Istit. Mat. Univ. Trieste 37 (2005), 138.Google Scholar
[127] Sury, B., “The congruence subgroup problem — An elementary approach aimed at applications”, Texts and Readings in Mathematics, vol. 24, Hindustan Book Agency, New Delhi, 2003.Google Scholar
[128] Tits, J., “Free subgroups in linear groups”, J. Algebra 20 (1972), 250270.CrossRefGoogle Scholar
[129] Vinberg, E. B., “Discrete groups generated by reflections in Lobaˇcevsk˘ii spaces, Math. USSR Sb. 1 (1968), 429444.CrossRefGoogle Scholar
[130] Vinberg, E. B., “Discrete linear groups generated by reflections”, Math. Izv, USSR. 5 (1971), 10831119.Google Scholar
[131] Weisman, T., “Dynamical properties of convex cocompact actions in projective space”, J. Topol. 16 (2023), 9901047.CrossRefGoogle Scholar
[132] Weisman, T., “An extended definition of Anosov representation for relatively hyperbolic groups”, arXiv:2205.07183.Google Scholar
[133] Weisman, T., “Examples of extended geometrically finite representations”, arXiv:2311.18653.Google Scholar
[134] Wienhard, A., “An invitation to higher Teichmüller theory”, Proceedings of the International Congress of Mathematicians 2018 (ICM 2018), 10071034, World Scientific, 2019.Google Scholar
[135] Witte Morris, D., “Introduction to Arithmetic Groups”, Deductive Press, 2015.Google Scholar
[136] Wolf, A., “Convex projective geometrically finite structures”, PhD thesis, Stanford University, 2020.Google Scholar
[137] Zhu, F., “Relatively dominated representations”, Ann. Inst. Fourier 71 (2021), 21692235.CrossRefGoogle Scholar
[138] Zhu, F., “Relatively dominated representations from eigenvalue gaps and limit maps”, Geom. Dedicata 217 (2023), article number 39.CrossRefGoogle ScholarPubMed
[139] Zhu, F., Zimmer, A., “Relatively Anosov representations via flows I: theory”, arXiv:2207.14737.Google Scholar
[140] Zhu, F., Zimmer, A., “Relatively Anosov representations via flows II: examples”, arXiv:2207.14738.CrossRefGoogle Scholar
[141] Zimmer, A., “Projective Anosov representations, convex cocompact actions, and rigidity”, J. Differential Geom. 119 (2021), 513586.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×