Published online by Cambridge University Press: 21 November 2024
It is well known that every finite simple group has a generating pair. Moreover, Guralnick and Kantor proved that every finite simple group has the stronger property, known as $\frac{3}{2}$-generation, that every nontrivial element is contained in a generating pair. More recently, this result has been generalised in three different directions, which form the basis of this survey article. First, we look at some stronger forms of $\frac{3}{2}$-generation that the finite simple groups satisfy, which are described in terms of spread and uniform domination. Next, we discuss the recent classification of the finite $\frac{3}{2}$-generated groups. Finally, we turn our attention to infinite groups, and we focus on the recent discovery that the finitely presented simple groups of Thompson are also $\frac{3}{2}$-generated, as are many of their generalisations. Throughout the article we pose open questions in this area, and we highlight connections with other areas of group theory.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.