Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T22:27:18.891Z Has data issue: false hasContentIssue false

14 - Ambulatory and Non-Contact Recording Methods

from Systemic Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aardal, O., Paichard, Y., Brovoll, S., Berger, T., Lande, T. S., & Hamran, S.-E. (2013). Physical working principles of medical radar. IEEE Transactions on Biomedical Engineering, 60: 11421149.Google Scholar
Aarts, L. A. M., Jeanne, V., Cleary, J. P., Lieber, C. S., Nelson, J. S., Oetomo, S. B., & Verkruysse, W. (2013). Non-contact heart rate monitoring utilizing camera photoplethysmography in the neonatal intensive care unit: a pilot study. Early Human Development, 89: 943948.CrossRefGoogle ScholarPubMed
Adib, F., Kabelac, Z., Katabi, D., & Miller, R. C. (2014). 3D tracking via body radio reflections. Paper presented at the Usenix NSDI.Google Scholar
Adib, F., Mao, H., Kabelac, Z., Katabi, D., & Miller, R. C. (2015). Smart homes that monitor breathing and heart rate. Paper presented at the Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems.Google Scholar
Alametsa, J., Värri, A., Viik, J., Hyttinen, J., & Palomaki, A. (2009). Ballistocardiographic studies with acceleration and electromechanical film sensors. Medical Engineering & Physics, 31: 11541165.Google Scholar
Alekseev, S. I., Szabo, I., & Ziskin, M. C. (2008). Millimeter wave reflectivity used for measurement of skin. Skin Research and Technology, 14: 390396.Google Scholar
Alihanka, J., Vaahtoranta, K., & Saarikivi, I. (1981). A new method for long-term monitoring of the ballistocardiogram, heart rate, and respiration. American Journal of Physiology, 240: R384R392.Google Scholar
Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 28: R1R39.Google Scholar
Allen, J. & Murray, A. (2003). Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites. Physiological Measurement, 24: 297307.Google Scholar
Allen, J. A., Grimley, J. F., & Roddie, I. C. (1971). A body balance to measure sweat rates in man. Biomedical Engineering, 6: 468471.Google Scholar
Almeida, V. G., Pereira, H. C., Pereira, T., Figueiras, E., Borges, E., Cardoso, J. M. R., & Correia, C. (2011). Piezoelectric probe for pressure waveform estimation in flexible tubes and its application to the cardiovascular system. Sensors and Actuators A: Physical, 169: 217226.Google Scholar
Andersson, C., Lyass, A., Larson, M. G., Spartano, N. L., Vita, J. A., Benjamin, E. J., … & Hamburg, N. M. (2015). Physical activity measured by accelerometry and its associations with cardiac structure and vascular function in young and middle-aged adults. Journal of the American Heart Association, 4: e001528.Google Scholar
Andre, T., De Wan, M., Lefevre, P., & Thonnard, J.-L. (2008). Moisture evaluator: a direct measure of fingertip skin hydration during object manipulation. Skin Research and Technology, 14: 385389.Google Scholar
ANSI (2000). Safe Use of Lasers – ANSI Z136.1 (2000). New York: American National Standards Institute.Google Scholar
Arimoto, H. (2007). Estimation of water content distribution in the skin using dualband polarization imaging. Skin Research and Technology, 13: 4954.Google Scholar
Arnold, M. B. (1945). Physiological differentiation of emotional states. Psychological Review, 52: 3548.Google Scholar
Ax, A. F. (1953). The physiological differentiation between fear and anger in humans. Psychosomatic Medicine, 15: 433442.Google Scholar
Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P. A., McKendrick, R., & Parasuraman, R. (2013). Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: empirical examples and a technological development. Frontiers in Human Neuroscience, 7: 871.Google Scholar
Baek, H. J., Chung, G. S., Kim, K. K., Kim, J. S., & Park, K. S. (2009). Photoplethysmogram measurement without direct skin-to-sensor contact using an adaptive light source intensity control. IEEE Transactions on Information Technology in Biomedicine, 6: 10851088.Google Scholar
Baek, H. J., Kim, K. K., Kim, J. S., Lee, B., & Park, K. S. (2010). Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors. Physiological Measurement, 31: 145157.Google Scholar
Baquero, G. A., Banchs, J. E., Ahmed, S., Naccarelli, G. V., & Luck, J. C. (2015). Surface 12 lead electrocardiogram recordings using smart phone technology. Journal of Electrocardiology, 48: 17.Google Scholar
Baruch, M., Kwon, K. W., Abdel-Rahman, E., & Isaacs, R. (2007). The structure of the radial pulse: a novel noninvasive ambulatory blood pressure device. In Westwood, J. D., Haluck, R. S., Hoffman, H. M., Mogel, G. T., Phillips, R., Robb, R. A., & Vosburgh, K. G. (eds.), Medicine Meets Virtual Reality 15, vol. 125 (pp. 4042). Amsterdam: IOS Press.Google Scholar
Baulmann, J., Schillings, U., Rickert, S., Uen, S., Dusing, R., Illyes, M., … & Mengden, T. (2008). A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. Journal of Hypertension, 26: 523528.Google Scholar
Bettini, C. & Riboni, D. (2015). Privacy protection in pervasive systems: state of the art and technical challenges. Pervasive and Mobile Computing, 17: 159174.Google Scholar
Blix, A. S., Stromme, S. B., & Ursin, H. (1974). Additional heart rate: an indicator of psychological activation. Aerospace Medicine, 11: 12191222.Google Scholar
Bloch, K. E., Jugoon, S., de Socarraz, H., Manning, K., & Sackner, M. A. (1998). Thoracocardiography: noninvasive monitoring of left ventricular stroke volume. Journal of Critical Care, 13: 147157.Google Scholar
Bogler, C., Mehnert, J., Steinbrink, J., & Haynes, J.-D. (2014). Decoding vigilance with NIRS. PloS One, 9: e101729.Google Scholar
Bohannon, J. (2015). Credit card study blows holes in anonymity. Science, 347: 468.CrossRefGoogle ScholarPubMed
Boiten, F. A., Frijda, N. H., & Wientjes, C. J. E. (1994). Emotions and respiratory patterns: a review and critical analysis. International Journal of Psychophysiology, 17: 103128.Google Scholar
Bort-Roig, J., Gilson, N. D., Puig-Ribera, A., Contreras, R. S., & Trost, S. G. (2014). Measuring and influencing physical activity with smartphone technology: a systematic review. Sports Medicine, 44: 671686.Google Scholar
Bosch, J. A., Veerman, E. C., de Geus, E. J., & Proctor, G. B. (2011). α-amylase as a reliable and convenient measure of sympathetic activity: don’t start salivating just yet! Psychoneuroendocrinology, 36: 449453.Google Scholar
Boucsein, W. (1992). Electrodermal Activity. New York: Plenum Press.Google Scholar
Boulos, M. N. K., Brewer, A. C., Karimkhani, C., Buller, D. B., & Dellavalle, R. P. (2014). Mobile medical and health apps: state of the art, concerns, regulatory control and certification. Online Journal of Public Health Informatics, 5: 229.Google Scholar
Bousefsaf, F., Maaoui, C., & Pruski, A. (2014). Remote detection of mental workload changes using cardiac parameters assessed with a low-cost webcam. Computers in Biology and Medicine, 53: 154163.Google Scholar
Branagan, M., Chenery, D. H., & Nicholson, S. (2000). Use of infrared attenuated total reflectance spectroscopy for the in vivo measurement of hydration level and silicon distribution in the stratum corneum following skin coverage by polymeric dressings. Skin Pharmacology and Applied Skin Physiology, 13: 157164.Google Scholar
Brenner, J. (1987). Behavioral energetics: some effects of uncertainty on the mobilization and distribution of energy. Psychophysiology, 24: 499512.Google Scholar
Brink, M., Muller, C., & Schierz, C. (2006). Contact-free measurement of heart rate, respiration rate, and body movements during sleep. Behavior Research Methods, 38: 511521.Google Scholar
Brovoll, S., Berger, T., Paichard, Y., Aardal, O., Lande, T. S., & Hamran, S.-E. (2014). Time-lapse imaging of human heart motion with switched array UWB radar. IEEE Transactions on Biomedical Circuits and Systems, 8: 704715.CrossRefGoogle ScholarPubMed
Brown, H. R., Zeidman, P., Smittenaar, P., Adams, R. A., McNab, F., Rutledge, R. B., & Dolan, R. J. (2014). Crowdsourcing for cognitive science: the utility of smartphones. PloS One, 9: e100662.CrossRefGoogle ScholarPubMed
Bruining, N., Caiani, E., Chronaki, C., Guzik, P., & van der Velde, E. (2014). Acquisition and analysis of cardiovascular signals on smartphones: potential, pitfalls and perspectives. By the Task Force of the e-Cardiology Working Group of European Society of Cardiology. European Journal of Preventive Cardiology, 21: 413.Google Scholar
Bruser, C., Stadlthanner, K., de Waele, S., & Leonhardt, S. (2011). Adaptive beat-to-beat heart rate estimation in ballistocardiograms. IEEE Transactions on Information Technology in Biomedicine, 15: 778786.Google Scholar
Buckberg, G., Hoffmann, J. I. E., Mahajan, A., Saleh, S., & Coghlan, C. (2008). Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation, 118: 25712587.Google Scholar
Buxi, D., Redouté, J.-M., & Yuce, M. R. (2015). A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time. Physiological Measurement, 36: R1R26.Google Scholar
Cacioppo, J. T., Uchino, B. N., & Berntson, G. G. (1994). Individual differences in the autonomic origins of heart rate reactivity: the psychometrics of respiratory sinus arrhythmia and preejection period. Psychophysiology, 31: 412419.Google Scholar
Caldwell, J. A., Prazinko, B., & Caldwell, J. L. (2003). Body posture affects electroencephalographic activity and psychomotor vigilance task performance in sleep deprived subjects. Clinical Neurophysiology, 114: 2331.Google Scholar
Campbell, A., Choudhury, T., Hu, S., Lu, H., Mukerjee, M. K., Rabbi, M., & Raizada, R. D. (2010). NeuroPhone: brain–mobile phone interface using a wireless EEG headset. Paper presented at the Proceedings of the 2nd ACM SIGCOMM workshop on Networking, Systems, and Applications on Mobile Handhelds.Google Scholar
Cardone, D., Pinti, P., & Merla, A. (2015). Thermal infrared imaging-based computational psychophysiology for psychometrics. Computational and Mathematical Methods in Medicine, 2015: 984353.Google Scholar
Carroll, D., Phillips, A. C., & Balanos, G. M. (2009). Metabolically exaggerated cardiac reactions to acute psychological stress revisited. Psychophysiology, 46: 270275.Google Scholar
Casaccia, S., Sirevaag, E. J., Frank, M. G., Richter, E. J., O’Sullivan, J. A., Scalise, L., & Rohrbaugh, J. W. (2015). Noncontact sensing of facial muscle activity using laser Doppler vibrometry. Submitted.Google Scholar
Casaccia, S., Sirevaag, E. J., Richter, E. J., O’Sullivan, J. A., Scalise, L., & Rohrbaugh, J. W. (2014). Decoding carotid waveforms recorded by laser Doppler vibrometry: effects of rebreathing. Paper presented at the 11th International Conference on Vibration Measurements by Laser and Noncontact Techniques – AIVELA 2014: Advances and Applications, Ancona, Italy.Google Scholar
Case, M. A., Burwick, H. A., Volpp, K. G., & Patel, M. S. (2015). Accuracy of smartphone applications and wearable devices for tracking physical activity data. Journal of the American Medical Association, 313: 625626.Google Scholar
Castiglioni, P., Meriggi, P., Rizzo, F., Vaini, E., Faini, A., Parati, G., … & Di Rienzo, M. (2011). Cardiac sounds from a wearable device for sternal seismocardiography. Paper presented at the Engineering in Medicine and Biology Society. Annual International Conference of the IEEE.Google Scholar
Cennini, G., Arguel, J., Akşit, K., & van Leest, A. (2010). Heart rate monitoring via remote photoplethysmography with motion artifacts reduction. Optics Express, 18: 48674875.Google Scholar
Cescon, C., Farina, D., Gobbo, M., Merletti, R., & Orizio, C. (2004). Effect of accelerometer location on mechanomyogram variables during voluntary, constant-force contractions in three human muscles. Medical & Biological Engineering & Computing, 42: 121127.Google Scholar
Choi, B. & Jo, S. (2013). A low-cost EEG system-based hybrid brain–computer interface for humanoid robot navigation and recognition. PloS One, 8: e74583.Google Scholar
Clark, R. P., Goff, M. R., & MacDermot, K. D. (1990). Identification of functioning sweat pores in X-linked hypohidrotic ectodermal dysplasia by whole body thermography. Human Genetics, 86: 713.Google Scholar
Clarys, P., Clijsen, R., & Barel, A. O. (2011). Influence of probe application pressure on in vitro and in vivo capacitance (Corneometer CM 825®) and conductance (Skicon 200 EX®) measurements. Skin Research and Technology, 17: 445450.Google Scholar
Cotter, G., Schachner, A., Sasson, L., Dekel, H., & Moshkovitz, Y. (2006). Impedance cardiography revisited. Physiological Measurement, 27: 817827.Google Scholar
Coyle, S., Curto, V., Benito-Lopez, F., Florea, L., & Diamond, D. (2014). Wearable bio and chemical sensors. In Sazonoov, E. & Neuman, M. R. (eds.), Wearable Sensors: Fundamentals, Implementation and Application (pp. 6583). Amsterdam: Academic Press.Google Scholar
Curone, D., Secco, E. L., Tognetti, A., & Magenes, G. (2013). An activity classifier based on heart rate and accelerometer data fusion. International Journal of Bioelectromagnetism, 15: 712.Google Scholar
Cybulski, G. (2011). Ambulatory Impedance Cardiograph: The Sytems and their Applications. Berlin: Springer-Verlag.Google Scholar
Darrow, C. W. (1964). The rationale for treating the change in galvanic skin response as a change in conductance. Psychophysiology, 1: 3138.Google Scholar
de Groot, J. H. B., Smeets, M. A. M., Rowson, M. J., Bulsing, P. J., Blonk, C. G., Wilkinson, J. E., & Semin, G. R. (2015). A sniff of happiness. Psychological Science, 26: 684700.CrossRefGoogle ScholarPubMed
de Haan, G. & van Leest, A. (2014). Improved motion robustness of remote-PPG by using the blood volume pulse signature. Physiological Measurement, 35: 19131926.Google Scholar
De Melis, M., Morbiducci, U., & Scalise, L. (2007). Identification of cardiac events by optical vibrocardiography: comparison with phonocardiography. Paper presented at the 29th Annual International Conference of the IEEE Engineering and Biomedicine Society, Lyon, France, August 23–26.Google Scholar
Dehkordi, P., Marzencki, M., Tavakolian, K., Kaminska, M., & Kaminska, B. (2012). Monitoring torso acceleration for estimating the respiratory flow and efforts for sleep apnea detection. Paper presented at the Engineering in Medicine and Biology Society. Annual International Conference of the IEEE.CrossRefGoogle Scholar
Di Rienzo, M., Meriggi, P., Rizzo, F., Vaini, E., Faini, A., Merati, G., … & Castiglioni, P. (2011). A wearable system for the seismocardiogram assessment in daily life conditions. Paper presented at the Engineering in Medicine and Biology Society. Annual International Conference of the IEEE.Google Scholar
Di Rienzo, M., Vaini, E., Castiglioni, P., Merati, G., Meriggi, P., Parati, G., … & Rizzo, F. (2013). Wearable seismocardiography: towards a beat-by-beat assessment of cardiac mechanics in ambulant subjects. Autonomic Neuroscience, 178: 5059.Google Scholar
Dittmar, A., Gehin, C., Delhomme, G., Boivin, D., Dumont, G., & Mott, C. (2006). A noninvasive wearable sensor for the measurement of brain temperature. Paper presented at the Engineering in Medicine and Biology Society, 28th Annual International Conference of the IEEE.Google Scholar
Dräbenstedt, A., Sauer, J., & Rembe, C. (2012). Remote-sensing vibrometry at 1550 nm wavelength. Paper presented at the 10th International Conference on Vibration Measurements by Laser and Noncontact Techniques – AIVELA, AIP Conference Proceedings.Google Scholar
Drysdale, D. (2014). Transcutaneous carbon dioxide monitoring: literature review. Oral Health and Dental Management, 13: 453457.Google Scholar
Duschek, S. & Schandry, R. (2003). Functional transcranial Doppler sonography as a tool in psychophysiological research. Psychophysiology, 40: 436454.CrossRefGoogle ScholarPubMed
Duvinage, M., Castermans, T., Dutoit, T., Petieau, M., Hoellinger, T., De Saedeleer, C., … & Cheron, G. (2012). A P300-based quantitative comparison between the Emotiv Epoc headset and a medical EEG device. Biomedical Engineering, 765: 20122764.Google Scholar
Eddleman, E. E. J. (1974). Kinetocardiography. In Weissler, A. M. (ed.), Noninvasive Cardiology (pp. 227273). New York: Grune & Stratton.Google Scholar
Edelberg, R. & Wright, D. J. (1964). Two galvanic skin response effector organs and their stimulus specificity. Psychophysiology, 1: 3947.Google Scholar
Edens, J. L., Larkin, K. T., & Abel, J. L. (1992). The effect of social support and physical touch on cardiovascular reactions to mental stress. Journal of Psychosomatic Research, 36: 371382.Google Scholar
Ekandem, J. I., Davis, T. A., Alvarez, I., James, M. T., & Gilbert, J. E. (2012). Evaluating the ergonomics of BCI devices for research and experimentation. Ergonomics, 55: 592598.Google Scholar
Ekman, P., Friesen, W. V., & Hager, J. C. (2002). Facial Action Coding System: The Manual. Salt Lake City, UT: Research Nexus.Google Scholar
Ernst, J. M., Litvack, D. A., Lozano, D. L., Cacioppo, J. T., & Berntson, G. G. (1999). Impedance pneumography: noise as signal in impedance cardiography. Psychophysiology, 36: 333338.Google Scholar
Etemadi, M., Inan, O. T., Heller, J. A., Hersek, S., Klein, L., & Roy, S. (2016). A wearable patch to enable long-term monitoring of environmental, activity and hemodynamics variables. IEEE Transactions on Biomedical Circuits and Systems, 10: 8088.Google Scholar
Fei, J. & Pavlidis, I. (2010). Thermistor at a distance: unobtrusive measurement of breathing. IEEE Transactions on Biomedical Engineering, 57: 988998.Google Scholar
Fei, J., Zhu, Z., & Pavlidis, I. (2005). Imaging breathing rate in the CO2 absorption band. Paper presented at the Engineering in Medicine and Biology Society, 27th Annual International Conference of the IEEE.Google Scholar
Feldman, Y., Puzenko, A., Ben Ishai, P., Caduff, A., & Agranat, A. J. (2008). Human skin as arrays of helical antennas in the millimeter and submillimeter wave range. Physical Review Letters, 100: 128102.Google Scholar
Ferscha, A. (2014). Attention, please! IEEE Pervasive Computing, 13: 4854.Google Scholar
Fowles, D. C. (1986). The eccrine system and electrodermal activity. In Coles, M. G. H., Donchin, E., & Porges, S. W. (eds.), Psychophysiology: Systems, Processes, and Applications (pp. 5196). New York: Guilford Press.Google Scholar
Freedman, L. W., Scerbo, A. S., Dawson, M. E., Raine, A., McClure, W. O., & Venables, P. H. (1994). The relationship of sweat gland count to electrodermal activity. Psychophysiology, 31: 186200.Google Scholar
Fujikawa, T., Tochikubo, O., Kura, N., Kiyokura, T., Shimada, J., & Umemura, S. (2009). Measurement of hemodynamics during postural changes using a new wearable cephalic laser blood flowmeter. Circulation Journal, 73: 19501955.Google Scholar
Gale, A. & Baker, S. (1981). In vivo or in vitro? Some effects of laboratory environments, with particular reference to the psychophysiology experiment. In Christie, M. J. & Mellett, P. G. (eds.), Foundations of Psychosomatics (pp. 363384). London: John Wiley.Google Scholar
Gallace, A. & Spence, C. (2010). The science of interpersonal touch: an overview. Neuroscience & Biobehavioral Reviews, 34: 246259.Google Scholar
Gandhi, N., Khe, C., Chung, D., Chi, Y. M., & Cauwenberghs, G. (2011). Properties of dry and non-contact electrodes for wearable physiological sensors. Paper presented at the International Conference on Body Sensor Networks (BSN).Google Scholar
Garbey, M., Merla, A., & Pavlidis, I. T. (2004). Estimation of blood flow speed and vessel location from thermal video. Paper presented at the IEEE Conference on Computer Vision and Pattern Recognition.Google Scholar
Gesche, H., Grosskurth, D., Küchler, G., & Patzak, A. (2012). Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method. European Journal of Applied Physiology, 112: 309315.Google Scholar
Giannattasio, C., Vincenti, A., Failla, M., Capra, A., Ciro, A., De Ceglia, S., … & Mancia, G. (2003). Effects of heart rate changes on arterial distensibility in humans. Hypertension, 42: 253256.Google Scholar
Giovangrandi, L., Inan, O. T., Wiard, R. M., Etemadi, M., & Kovacs, G. T. A. (2011). Ballistocardiography: a method worth revisiting. Paper presented at the 33rd Annual International Conference of the IEEE EMBS, Boston, MA.Google Scholar
Goodwin, M. S., Velicer, W. F., & Intille, S. S. (2008). Telemetric monitoring in the behavior sciences. Behavior Research Methods, 40: 328341.Google Scholar
Gosse, P., Guillo, P., Ascher, G., & Clementy, J. (1994). Assessment of arterial distensibility by monitoring the timing of Korotkoff sounds. American Journal of Hypertension, 7: 228233.Google Scholar
Grabell, M. & Salewski, C. (2011). Sweating bullets: body scanners can see perspiration as a potential weapon. ProPublica, December 19. Retrieved from www.propublica.org/article/sweating-bullets-body-scanners-can-see-perspiration-as-a-potential-weapon,22900.Google Scholar
Gramann, K., Gwin, J. T., Ferris, D. P., Oie, K., Jung, T.-P., Lin, C.-T., … & Makeig, S. (2011). Cognition in action: imaging brain/body dynamics in mobile humans. Reviews in the Neurosciences, 22: 593608.CrossRefGoogle ScholarPubMed
Greneker, E. F. (1997). Radar sensing of heartbeat and respiration at a distance with applications of the technology. Paper presented at the Radar 97 Conference.Google Scholar
Gribok, A., Rumpler, W., Hines, W., Hoyt, R., & Buller, M. (2014). Subcutaneous glucose concentration as a predictor variable for energy expenditure during resistance exercise in humans. Paper presented at the 11th International Conference on Wearable and Implantable Body Sensor Networks (BSN).Google Scholar
Gurovich, A. N., Beck, D. T., & Braith, R. W. (2009). Aortic pulse wave analysis is not a surrogate for central arterial pulse wave velocity. Experimental Biology and Medicine, 234: 13391344.Google Scholar
Hagenaars, M. A., Oitzl, M., & Roelofs, K. (2014). Updating freeze: aligning animal and human research. Neuroscience & Biobehavioral Reviews, 47, 165176.Google Scholar
Hasegawa, M., Rodbard, D., & Kinoshita, Y. (1991). Timing of the carotid arterial sounds in normal adult men: measurement of left ventricular ejection, pre-ejection period and pulse transmission time. Cardiology, 78: 138149.Google Scholar
Hayashi, N., Someya, N., Maruyama, T., Hirooka, Y., Endo, M. Y., & Fukuba, Y. (2009). Vascular responses to fear-induced stress in humans. Physiology & Behavior, 98: 441446.Google Scholar
He, D. D., Winokur, E. S., & Sodini, C. G. (2011). A continuous, wearable, and wireless heart monitor using head ballistogram (BCG) and head electrocardiogram (ECG). Paper presented at the 33rd Annual International Conference of the IEEE EMBS, Boston, MA.Google Scholar
Head, G. A. (2014). Ambulatory blood pressure is ready to replace clinic blood pressure in the diagnosis of hypertension: pro side of the argument. Hypertension, 64: 11751181.Google Scholar
Heffernan, K. S., Spartano, N. L., Augustine, J. A., Lefferts, W. K., Hughes, W. E., Mitchell, G. F., … & Gump, B. B. (2015). Carotid artery stiffness and hemodynamic pulsatility during cognitive engagement in healthy adults: a pilot investigation. American Journal of Hypertension, 28: 615622.Google Scholar
Hennig, J., Friebe, J., Ryl, I., Kramer, B., Bottcher, J., & Netter, P. (2000). Upright posture influences salivary cortisol. Psychoneuroendocrinology, 25: 6983.Google Scholar
Heo, Y. J. & Takeuchi, S. (2013). Towards smart tattoos: implantable biosensors for continuous glucose monitoring. Advanced Healthcare Materials, 2: 4356.Google Scholar
Hertenstein, M. J., Verkamp, J. M., Kerestes, A. M., & Holmes, R. M. (2006). The communicative functions of touch in humans, nonhuman primates, and rats: a review and synthesis of the empirical research. Genetic, Social, and General Psychology Monographs, 132: 594.Google Scholar
Hirabayashi, M., Fujiwara, C., Ohtani, N., Kagawa, S., & Kamide, M. (2009). Transcutaneous PCO2 monitors are more accurate than end-tidal PCO2 monitors. Journal of Anesthesia, 23: 198202.Google Scholar
Hirschberg, D. L., Betts, K., Emanuel, P., & Caples, M. (2014). Assessment of Wearable Sensor Technologies for Biosurveillance (ECBC-TR-1275). Aberdeen, MD: Edgewood Chemical Biological Center.Google Scholar
Holland, C. & Komogortsev, O. (2012). Eye tracking on unmodified common tablets: challenges and solutions. Paper presented at the Proceedings of the Symposium on Eye Tracking Research and Applications.Google Scholar
Holter, N. J. (1961). New method for heart studies. Science, 134: 12141220.Google Scholar
Hope, S. A., Meredith, I. T., & Cameron, J. D. (2004). Effect of non-invasive calibration of radial waveforms on error in transfer-function-derived central aortic waveform characteristics. Clinical Science, 107: 205211.Google Scholar
Houtveen, J. H. & de Geus, E. J. C. (2009). Noninvasive psychophysiological ambulatory recordings: study design and data analysis strategies. European Psychologist, 14: 132141.Google Scholar
Houtveen, J. H., Hamaker, E. L., & Van Doornen, L. J. P. (2010). Using multilevel path analysis in analyzing 24-h ambulatory physiological recordings applied to medically unexplained symptoms. Psychophysiology, 47: 570578.Google Scholar
Hu, Y., Kim, E. G., Cao, G., Liu, S., & Xu, Y. (2014). Physiological acoustic sensing based on accelerometers: a survey for mobile healthcare. Annals of Biomedical Engineering, 42: 22642277.CrossRefGoogle ScholarPubMed
Huis In ’t Veld, E. M. J., van Boxtel, G. J. M., & de Gelder, B. (2014). The Body Action Coding System II: muscle activations during the perception and expression of emotion. Frontiers in Behavioral Neuroscience, 8: 330.Google Scholar
Humeau-Heurtier, A., Guerreschi, E., Abraham, P., & Mahe, G. (2013). Relevance of laser Doppler and laser speckle techniques for assessing vascular function: state of the art and future trends. IEEE Transactions on Biomedical Engineering, 60: 659666.Google Scholar
Inan, O. T., Etemadi, M., Wiard, R. M., Giovangrandi, L., & Kovacs, G. T. A. (2009). Robust ballistocardiogram acquisition for home monitoring. Physiological Measurement, 30: 169185.Google Scholar
Intille, S. S. (2012). Emerging technology for studying daily life. In Mehl, M. R. & Conner, T. S. (eds.), Handbook of Research Methods for Studying Daily Life (pp. 267282). New York: Guilford Press.Google Scholar
Ioannou, S., Gallese, V., & Merla, A. (2014). Thermal infrared imaging in psychophysiology: potentialities and limits. Psychophysiology, 51: 951963.Google Scholar
Ionescu, V., Tarlea, M., Palaghita, M., & Moraru, N. (1985). Phonocardiographic changes induced by neuropsychic stress. Physiologie, 22: 249255.Google Scholar
Irani, R., Nasrollahi, K., & Moeslund, T. B. (2014). Improved pulse detection from head motions using DCT. Paper presented at the 9th International Conference on Computer Vision Theory and Applications.Google Scholar
Jain, A., Schmidt, T. F. H., Johnston, D. W., Brabant, G., & von zur Mühlen, A. (1998). The relationship between heart rate and blood pressure reactivity in the laboratory and in the field: evidence using continuous measures of blood pressure, heart rate and physical activity. Journal of Psychophysiology, 12: 362375.Google Scholar
Jakovljevic, D. G., Moore, S., Hallsworth, K., Fattakhova, G., Thoma, C., & Trenell, M. I. (2012). Comparison of cardiac output determined by bioimpedance and bioreactance methods at rest and during exercise. Journal of Clinical Monitoring and Computing, 26: 6368.Google Scholar
Jatoi, N.-A., Kyvelou, S.-M., & Feely, J. (2014). The acute effects of mental arithmetic, cold pressor and maximal voluntary contraction on arterial stiffness in young healthy subjects. Artery Research, 8: 4450.Google Scholar
Jean-Louis, G., Kripke, D. F., Mason, W. J., Elliott, J. A., & Youngstedt, S. D. (2001). Sleep estimation from wrist movement quantified by different actigraphic modalities. Journal of Neuroscience Methods, 105: 185191.Google Scholar
Jeanne, V., Asselman, M., den Brinker, B., & Bulut, M. (2013). Camera-based heart rate monitoring in highly dynamic light conditions. Paper presented at the International Conference on Connected Vehicles and Expo (ICCVE).Google Scholar
Jerrard-Dunne, P., Mahmud, A., & Feely, J. (2008). Ambulatory stiffness index, pulse wave velocity and augmentation index: interchangeable or mutually exclusive measures? Journal of Hypertension, 26: 529534.Google Scholar
Johnson, C. & Shuster, S. (1969). The measurement of transepidermal water loss. British Journal of Dermatology, 81: 4046.Google Scholar
Jones, A. Y. M. & Dean, E. (2004). Body position change and its effects on hemodynamic and metabolic status. Heart & Lung, 33: 281290.Google Scholar
Juen, J., Cheng, Q., Prieto-Centurion, V., Krishnan, J. A., & Schatz, B. (2014). Health monitors for chronic disease by gait analysis with mobile phones. Telemedicine and e-Health, 20: 10351041.Google Scholar
Junnila, S., Akhbardeh, A., & Värri, A. (2009). An electromechanical film sensor based wireless ballistocardiographic chair: implementation and performance. Journal of Signal Processing and Systems, 57: 305320.Google Scholar
Kamshilin, A. A., Miridonov, S., Teplov, V., Saarenheimo, R., & Nippolainen, E. (2011). Photoplethysmographic imaging of high spatial resolution. Biomedical Optics Express, 2: 9961006.Google Scholar
Kaniusas, E., Pfutzner, H., Mehnen, L., Kosel, J., Varoneckas, G., Alonderis, A., & Zakarevicius, L. (2008). Cardiovascular oscillations of the carotid artery assessed by magnetoelastic skin curvature sensor. IEEE Transactions on Biomedical Engineering, 55: 369372.Google Scholar
Kaplan, R. M. & Stone, A. A. (2013). Bringing the laboratory and clinic to the community: mobile technologies for health promotion and disease prevention. Annual Review of Psychology, 64: 471498.Google Scholar
Kashima, H., Hamada, Y., & Hayashi, N. (2014). Palatability of tastes is associated with facial circulatory responses. Chemical Senses, 39: 243248.Google Scholar
Katranas, G. S., Meydan, T., Ovari, T.-A., & Borza, F. (2008). Applications of the bi-layer thin film sensor system for registering cardio-respiratory activity. Sensors and Actuators A: Physical, 142: 455458.Google Scholar
Kaur, B., Hutchinson, J. A., Leonard, K. R., & Nelson, J. K. (2011). Human facial skin detection in thermal video to effectively measure electrodermal activity (EDA). Paper presented at the SPIE Defense, Security, and Sensing Conference.Google Scholar
Kelly, R., Karamanoglu, M., Gibbs, H. H., Avolio, A. P., & O’Rourke, M. F. (1989). Noninvasive carotid pressure wave registration as an indicator of ascending aortic pressure. Journal of Vascular Medicine and Biology, 1: 241247.Google Scholar
Kerassidis, S. (1994). Is palmar and plantar sweating thermoregulatory? Acta Physiologia Scandinavica, 152: 259263.Google Scholar
Khan, W. Z., Xiang, Y., Aalsalem, M. Y., & Arshad, Q. (2013). Mobile phone sensing systems: a survey. IEEE Communications Surveys & Tutorials, 15(1): 402427.Google Scholar
Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., … & Islam, A. (2011). Epidermal electronics. Science, 333: 838843.Google Scholar
Kim, J. S., Chee, Y. J., Park, J. W., Choi, J. W., & Park, K. S. (2006). A new approach for non-intrusive monitoring of blood pressure on a toilet seat. Physiological Measurement, 27: 203213.Google Scholar
Kim, K.-K., Chee, Y.-J., Lim, Y.-G., Choi, J.-W., & Park, K.-S. (2006). A new method for unconstrained pulse arrival time (PAT) measurement on a chair. Journal of Biomedical Engineering Research, 27: 8388.Google Scholar
Kohler, T. & Schuschel, I. (1994). Changes in the number of active sweat glands (palmar sweat index, PSI) during a distressing film. Biological Psychology, 37: 133145.Google Scholar
Krishna, S., Boren, S. A., & Balas, E. A. (2009). Healthcare via cell phones: a systematic review. Telemedicine and e-Health, 15: 231240.Google Scholar
Krzywicki, A. T., Berntson, G. G., & O’Kane, B. L. (2014). A non-contact technique for measuring eccrine sweat gland activity using passive thermal imaging. International Journal of Psychophysiology, 94: 2534.Google Scholar
Kudo, H. & Mitsubayashi, K. (2012). Flexible and wearable chemical sensors for noninvasive monitoring. In Lai, D. T. H., Begg, R., & Palaniswami, M. (eds.), Healthcare Sensor Networks: Challenges Toward Practical Implementation (pp. 139157). Boca Raton, FL: CRC Press.Google Scholar
Kuipers, N. T., Sauder, C. L., Carter, J. R., & Ray, C. A. (2008). Neurovascular responses to mental stress in the supine and upright postures. Journal of Applied Physiology, 104: 11291136.Google Scholar
Kundi, M. (2009). The controversy about a possible relationship between mobile phone use and cancer. Environmental Health Perspectives, 117: 316324.Google Scholar
Kuno, Y. (1956). Human Perspiration. Springfield, IL: Charles C. Thomas.Google Scholar
Kurylyak, Y., Lamonaca, F., & Grimaldi, D. (2013). A neural network-based method for continuous blood pressure estimation from a PPG signal. Paper presented at the IEEE International Conference on Instrumentation and Measurement Technology (I2MTC).Google Scholar
Labrador, M. A. & Lara Yejas, O. D. (2014). Human Activity Recognition Using Wearable Sensors and Smartphones. Boca Raton, FL: CRC Press.Google Scholar
Lakens, D. (2013). Using a smartphone to measure heart rate changes during relived happiness and anger. IEEE Transactions on Affective Computing, 4: 238241.Google Scholar
Lamonaca, F., Barbe, K., Kurylyak, Y., Grimaldi, D., Van Moer, W., Furfaro, A., & Spagnuolo, V. (2013). Application of the Artificial Neural Network for blood pressure evaluation with smartphones. Paper presented at the IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS).Google Scholar
Lane, J. D., Greenstadt, L., Shapiro, D., & Rubenstein, E. (1983). Pulse transit time and blood pressure: an intensive analysis. Psychophysiology, 20: 4549.Google Scholar
Lee, Y.-D. & Chung, W.-Y. (2009). Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring. Sensors and Actuators B: Chemical, 140: 390395.Google Scholar
Leite, I., Martinho, C., & Paiva, A. (2013). Social robots for long-term interaction: a survey. International Journal of Social Robotics, 5: 291308.Google Scholar
Lemay, M., Mertschi, M., Sola, J., Renevey, P., Parak, J., & Korhonen, I. (2014). Application of optical heart rate monitoring. In Sazonov, E. & Neuman, M. R. (eds.), Wearable Sensors: Fundamentals, Implemenation and Applications (pp. 105129). Amsterdam: Academic Press.Google Scholar
Lewis, G. F., Gatto, R., & Porges, S. W. (2011). A novel method for extracting respiration rate and relative tidal volume from infrared thermography. Psychophysiology, 48: 877887.Google Scholar
Lim, Y. G., Hong, K. H., Kim, K. K., Shin, J. H., Lee, S. M., Chung, G. S., … & Park, K. S. (2011). Monitoring physiological signals using nonintrusive sensors installed in daily life equipment. Biomedical Engineering Letters, 1: 1120.Google Scholar
Lin, J. & Wu, W. (2014). Vital sign radars: past, present, and future. Paper presented at the IEEE 15th Annual Conference on Wireless and Microwave Technology (WAMICON).Google Scholar
Liu, H., Ivanov, K., Wang, Y., & Wang, L. (2015). A novel method based on two cameras for accurate estimation of arterial oxygen saturation. Biomedical Engineering Online, 14: 52.Google Scholar
Liu, J., Wang, Y., Chen, Y., Yang, J., Chen, X., & Cheng, J. (2015). Tracking vital signs during sleep leveraging off-the-shelf WiFi. Paper presented at the Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing.Google Scholar
Logan, A. G. (2013). Transforming hypertension management using mobile health technology for telemonitoring and self-care support. Canadian Journal of Cardiology, 29: 579585.Google Scholar
Lovett, P. B., Buchwald, J. M., Sturmann, K., & Bijur, P. (2005). The vexatious vital: neither clinical measurements by nurses nor an electronic monitor provides accurate measurements of respiratory rate of triage. Annals of Emergency Medicine, 45: 6876.Google Scholar
Lu, L., Li, C., & Lie, D. Y. (2010). Experimental demonstration of noncontact pulse wave velocity monitoring using multiple Doppler radar sensors. Paper presented at the Engineering in Medicine and Biology Society, Annual International Conference of the IEEE.Google Scholar
Luisada, A. A., MacCanon, D. M., Coleman, B., & Feigen, L. P. (1971). New studies on the first heart sound. American Journal of Cardiology, 28: 140149.Google Scholar
Machado-Moreira, C. A., Barry, R. J., Vosselman, M. J., Ruest, R. M., & Taylor, N. A. S. (2015). Temporal and thermal variations in site-specific thermoregulatory sudomotor thresholds: precursor versus discharged sweat production. Psychophysiology, 52: 117123.Google Scholar
MacKerron, G. & Mourato, S. (2013). Happiness is greater in natural environments. Global Environmental Change, 23: 9921000.Google Scholar
Mackinnon, A. D., Aaslid, R., & Markus, H. S. (2004). Long-term ambulatory monitoring for cerebral emboli using transcranial Doppler ultrasound. Stroke, 35: 7378.Google Scholar
Makikawa, M., Shiozawa, N., & Okada, S. (2014). Fundamentals of wearable sensors for the monitoring of physical and physiological changes in daily life. In Sazonov, E. & Neuman, M. R. (eds.), Wearable Sensors: Fundamentals, Implementation and Applications (pp. 517541). Amsterdam: Academic Press.Google Scholar
Marciano, F., Cammarota, S., Migaux, M. L., Ferro, G., & Rentsch, W. (1992). Pulse transducers for long term measurement of systolic time intervals: applications to Holter recordings. Paper presented at the IEEE Engineering in Medicine and Biology Conference.Google Scholar
Mateu, L., Drager, T., Mayordomo, I., & Pollak, M. (2014). Energy harvesting at the human body. In Sazonov, E. & Neuman, M. R. (eds.), Wearable Sensors: Fundamentals, Implementation and Applications (pp. 235298). Amsterdam: Academic Press.Google Scholar
Maton, B., Petitjean, M., & Cnockaert, J. C. (1990). Phonomyogram and electromyogram relationships with isometric force reinvestigated in man. European Journal of Applied Physiology, 60: 194201.Google Scholar
Matzeu, G., Florea, L., & Diamond, D. (2015). Advances in wearable chemical sensor design for monitoring biological fluids. Sensors and Actuators B: Chemical, 211: 403418.Google Scholar
McCaffrey, C., Chevalerias, O., Mathuna, C. O., & Twomey, K. (2008). Swallowable-capsule technology. IEEE Pervasive Computing, 7: 2329.Google Scholar
McDuff, D., Gontarek, S., & Picard, R. W. (2014a). Improvements in remote cardiopulmonary measurement using a five band digital camera. IEEE Transactions on Biomedical Engineering, 61: 25932601.Google Scholar
McDuff, D., Gontarek, S., & Picard, R. (2014b). Remote measurement of cognitive stress via heart rate variability. Paper presented at the Engineering in Medicine and Biology Society, 36th Annual International Conference of the IEEE.Google Scholar
McGregor, I. A. (1952). The sweating reactions of the forehead. Journal of Physiology, 116: 2634.Google Scholar
McKay, W. P., Gregson, P. H., McKay, B. W., & Militzer, J. (1999). Sternal acceleration ballistocardiography and arterial pressure wave analysis to determine stroke volume. Clinical and Investigative Medicine, 22: 414.Google Scholar
McKendrick, R., Ayaz, H., Olmstead, R., & Parasuraman, R. (2014). Enhancing dual-task performance with verbal and spatial working memory training: continuous monitoring of cerebral hemodynamics with NIRS. NeuroImage, 85: 10141026.Google Scholar
McKendrick, R., Parasuraman, R., & Ayaz, H. (2015). Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): expanding vistas for neurocognitive augmentation. Frontiers in Systems Neuroscience, 9: 27.Google Scholar
McLaughlin, J., McNeill, M., Braun, B., & McCormack, P. D. (2003). Piezoelectric sensor determination of arterial pulse wave velocity. Physiological Measurement, 24: 693702.Google Scholar
McNair, D. M., Droppleman, L. F., & Pillard, R. C. (1967). Differential sensitivity of two palmar sweat measures. Psychophysiology, 3: 280284.Google Scholar
Mehl, M. R. & Conner, T. S. (2012). Handbook of Research Methods for Studying Daily Life. New York: Guilford Press.Google Scholar
Merla, A., Di Donato, L., Romani, G. L., & Rossini, P. M. (2003). Recording of the sympathetic thermal response by means of infrared functional imaging. Paper presented at the Engineering in Medicine and Biology, 25th Annual International Conference of the IEEE, Cancun, Mexico.Google Scholar
Merla, A., Di Romualdo, L., Proietti, M., Salsano, F., & Romani, G. L. (2007). Combined thermal and laser Doppler imaging in the assessment of cutaneous tissue perfusion. Paper presented at the 29th Annual International Conference of the IEEE EMBS, Lyon, France, August 23–26.Google Scholar
Meyer, T., Davison, R. C., & Kindermann, W. (2005). Ambulatory gas exchange measurements: current status and future options. International Journal of Sports Medicine, 26: S19S27.Google Scholar
Millasseau, S. & Agnoletti, D. (2015). Non-invasive estimation of aortic blood pressures: a close look at current devices and methods. Current Pharmaceutical Design, 21: 709718.Google Scholar
Miller, G. (2012). The smartphone psychology manifesto. Perspectives on Psychological Science, 7: 221237.Google Scholar
Mitchem, J. C. & Tuttle, W. W. (1954). Influence of exercises, emotional stress, and age on static neuromuscular tremor magnitude. Research Quarterly of the American Association for Health, Physical Education, & Recreation, 25: 6574.Google Scholar
Miyamoto, N. & Oda, S. (2003). Mechanomyographic and electromyographic responses of the triceps surae during maximal voluntary contractions. Journal of Electromyography and Kinesiology, 13: 451459.Google Scholar
Morrison, I., Löken, L. S., & Olausson, H. (2010). The skin as a social organ. Experimental Brain Research, 204: 305314.Google Scholar
Muehlhan, M., Marxen, M., Landsiedel, J., Malberg, H., & Zaunseder, S. (2014). The effect of body posture on cognitive performance: a question of sleep quality. Frontiers in Human Neuroscience, 8: 171.Google Scholar
Muiesan, M. L., Salvetti, M., Bertacchini, F., Agabiti-Rosei, C., Mauruelli, G., & Colonetti, E. (2014). Central blood pressure assessment using 24-hour brachial pulse wave analysis. Journal of Vascular Diagnostics, 2: 141148.Google Scholar
Murthy, J. N., van Jaarsveld, J., Fei, J., Pavlidis, I., Harrykissoon, R. I., Lucke, J. F., … & Castriotta, R. J. (2009). Thermal infrared imaging: a novel method to monitor airflow during polysomnography. Sleep, 32: 15211527.Google Scholar
Nakajima, K., Maekawa, T., & Miike, H. (1997). Detection of apparent skin motion using optical flow analysis: blood pulsation signal obtained from optical flow sequence. Review of Scientific Instruments, 68: 13311336.Google Scholar
Nam, Y., Lee, J., & Chon, K. H. (2014). Respiratory rate estimation from the built-in cameras of smartphones and tablets. Annals of Biomedical Engineering, 42: 885898.Google Scholar
Narayan, O., Casan, J., Szarski, M., Dart, A. M., Meredith, I. T., & Cameron, J. D. (2014). Estimation of central aortic blood pressure: a systematic meta-analysis of available techniques. Journal of Hypertension, 32: 17271740.Google Scholar
Ng, K.-G. (2011). Review of measurement methods and clinical validation studies of noninvasive blood pressure monitors: accuracy requirements and protocol considerations for devices that require patient-specific calibration by a secondary method or device before use. Blood Pressure Monitoring, 16: 291303.Google Scholar
Ng, K.-G., Ting, C.-M., Yeo, J.-H., Sim, K.-W., Peh, W.-L., Chua, N.-H., … & Kwong, F. (2004). Progress on the development of the MediWatch ambulatory blood pressure monitor and related devices. Blood Pressure Monitoring, 9: 149165.Google Scholar
Nichols, W. W., O’Rourke, M. F., & Vlachopoulos, C. (2011). McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 6th edn. New York: CRC Press.Google Scholar
Nilsen, W. J. & Vrana, S. R. (1998). Some touching situations: the relationship between gender and contextual variables in cardiovascular responses to human touch. Annals of Behavioral Medicine, 20: 270276.Google Scholar
Nilsson, L. (1982). Relationship between evoked skin-conductance response and evaporative-water-loss response following acoustic stimulation. Medical & Biomedical Engineering & Computing, 20: 687692.Google Scholar
Nilsson, L. M. (2013). Respiration signals from photoplethysmography. Anesthesia & Analgesia, 117: 859865.Google Scholar
Obrist, P. A., Light, K. C., McCubbin, J. A., Hutcheson, J. S., & Hoffer, J. L. (1978). Pulse transit time: relationship to blood pressure. Behavior Research Methods and Instrumentation, 10: 623626.Google Scholar
Odinaka, I., Lai, P.-H., Kaplan, A. D., O’Sullivan, J. A., Sirevaag, E. J., & Rohrbaugh, J. W. (2012). ECG biometric recognition: a comparative analysis. IEEE Transactions on Information Forensics and Security, 7: 18121824.Google Scholar
Ogata, A., Sugenoya, J., Nishimura, N., & Matsumoto, T. (2005). Low and high frequency acupuncture stimulation inhibits mental stress-induced sweating in humans via different mechanisms. Autonomic Neuroscience: Basic and Clinical, 118: 93101.Google Scholar
Ohhashi, T., Sakaguchi, M., & Tsuda, T. (1998). Human perspiration measurement. Physiological Measurement, 19: 449461.Google Scholar
Ohkubo, T., Imai, Y., Tsuji, I., Nagai, K., Kato, J., Kikuchi, N., … & Kikuya, M. (1998). Home blood pressure measurement has a stronger predictive power for mortality than does screening blood pressure measurement: a population-based observation in Ohasama, Japan. Journal of Hypertension, 16: 971975.Google Scholar
Omboni, S., Gazzola, T., Carabelli, G., & Parati, G. (2013). Clinical usefulness and cost effectiveness of home blood pressure telemonitoring: meta-analysis of randomized controlled studies. Journal of Hypertension, 31: 455468.Google Scholar
Orizio, C., Gobbo, M., Diemont, B., Esposito, F., & Veicsteinas, A. (2003a). The surface mechanomyogram as a tool to describe the infuence of fatigue on biceps brachii motor unit activation strategy: historical basis and novel evidence. European Journal of Applied Physiology, 90: 326336.Google Scholar
Orizio, C., Gobbo, M., Veicsteinas, A., Baratta, R. V., Zhou, B. H., & Solomonow, M. (2003b). Transients of the force and surface mechanomyogram during cat gastrocnemius tetanic stimulation. European Journal of Applied Physiology, 88: 601606.CrossRefGoogle ScholarPubMed
Ouwerkerk, M., Dandine, P., Bolio, D., Kocielnik, R., Mercurio, J., Huijgen, H., & Westerink, J. (2013). Wireless multi sensor bracelet with discreet feedback. Paper presented at the Proceedings of the 4th Conference on Wireless Health.Google Scholar
Paalasmaa, J. (2010). A respiratory latent variable model for mechanically measured heartbeats. Physiological Measurement, 31: 13311344.Google Scholar
Pakrashi, V. & Wirth, G. (2013). Enhanced laser Doppler vibrometer technology enables non-contact vibration measurements on large distances. Paper presented at the Experimental Vibration Analysis for Civil Engineering Structures Conference, Oura Preta, Brazil.Google Scholar
Papathanassoglou, E. D. E. & Mpouzika, M. D. A. (2012). Interpersonal touch: physiological effects in critical care. Biological Research for Nursing, 14: 431443.Google Scholar
Parati, G., Pomidossi, G., Casadei, R., & Mancia, G. (1985). Lack of alerting reactions to intermittent cuff inflations during noninvasive blood pressure monitoring. Hypertension, 7: 597601.Google Scholar
Paukkunen, M., Parkkila, P., Kettunen, R., & Sepponen, R. (2015). Unified frame of reference improves inter-subject variability of seismocardiograms. Biomedical Engineering Online, 14: 16.Google Scholar
Pauling, J. D., Shipley, J. A., Raper, S., Watson, M. L., Ward, S. G., Harris, N. D., & McHugh, N. J. (2012). Comparison of infrared thermography and laser speckle contrast imaging for the dynamic assessment of digital microvascular function. Microvascular Research, 83: 162167.Google Scholar
Paulson, C. N., Chang, J. T., Romero, C. E., Watson, J., Pearce, F. J., & Levin, N. (2005). Ultra-wideband radar methods and techniques of medical sensing and imaging. Paper presented at the Optics East Conference.Google Scholar
Peck, E. M., Afergan, D., Yuksel, B. F., Lalooses, F., & Jacob, R. J. K. (2014). Using fNIRS to measure mental workload in the real world. In Fairclough, S. H. & Gilleade, K. (eds.), Advances in Physiological Computing (pp. 117139). Heidelberg: Springer.Google Scholar
Pereira, T., Cabeleira, M., Matos, P., Borges, E., Almeida, V., Pereira, H. C., … & Correia, C. (2013). Non-contact pulse wave velocity assessment using optical methods. In Fred, A., Philipe, J., & Gamboa, H. (eds.), Biomedical Engineering Systems and Technologies (pp. 246257). Berlin: Springer.Google Scholar
Perloff, J. K. (2000). Physical Examination of the Heart and Circulation, 3rd edn. Philadelphia, PA: W. B. Saunders.Google Scholar
Picard, R. (1997). Affective Computing. Cambridge, MA: MIT Press.Google Scholar
Picton, T. W. & Hillyard, S. A. (1972). Cephalic skin potentials in electroencephalography. Electroencephalography & Clinical Neurophysiology, 33: 419424.Google Scholar
Pietrangelo, S. J. (2013). An Electronically Steered, Wearable Transcranial Doppler Ultrasound System. Cambridge, MA: Massachusetts Institute of Technology.Google Scholar
Pinheiro, E, Postolache, O., & Girao, P. (2010). Theory and developments in an unobtrusive cardiovascular system representation: ballistocardiography. Open Biomedical Engineering Journal, 4: 201216.Google Scholar
Pinheiro, E., Postolache, O., & Girao, P. (2013). Contactless impedance cardiography using embedded sensors. Measurement Science Review, 13: 157164.Google Scholar
Pino, C. & Kavasidis, I. (2012). Improving mobile device interaction by eye tracking analysis. Paper presented at the Federated Conference on Computer Science and Information Systems (FedCSIS).Google Scholar
Poh, M.-Z., McDuff, D. J., & Picard, R. W. (2010a). Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Optics Express, 18: 1076210774.Google Scholar
Poh, M.-Z., McDuff, D. J., & Picard, R. W. (2011). Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Transactions on Biomedical Engineering, 58: 711.Google Scholar
Poh, M.-Z., Swenson, N. C., & Picard, R. W. (2010b). A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Transactions on Biomedical Engineering, 57: 12431252.Google Scholar
Poon, C. C. Y., Zhang, Y.-T., Wong, G., & Poon, W. S. (2008). The beat-to-beat relationship between pulse transit time and systolic blood pressure. Paper presented at the International Conference on Information Technology and Applications in Biomedicine.Google Scholar
Popovic, Z., Momenroodaki, P., & Scheeler, R. (2014). Toward wearable wireless thermometers for internal body temperature measurements. IEEE Communications Magazine, 52: 118125.Google Scholar
Protogerou, A. D., Argyris, A., Nasothimiou, E., Vrachatis, D., Papaioannou, T. G., Tzamouranis, D., … & Stergiou, G. S. (2012). Feasibility and reproducibility of noninvasive 24-h ambulatory aortic blood pressure monitoring with a brachial cuff-based oscillometric device. American Journal of Hypertension, 25: 876882.Google Scholar
Protogerou, A. D., Argyris, A. A., Papaioannou, T. G., Kollias, G. E., Konstantonis, G. D., Nasothimiou, E., … & Sfikakis, P. P. (2014). Left-ventricular hypertrophy is associated better with 24-h aortic pressure than 24-h brachial pressure in hypertensive patients: the SAFAR study. Journal of Hypertension, 32: 18051814.Google Scholar
Ramachandran, G., Swarnamani, S., & Singh, M. (1991). Reconstruction of out-of-plane cardiac displacement patterns as observed on the chest wall during various phases of ECG by capacitance transducer. IEEE Transactions on Biomedical Engineering, 38: 383385.Google Scholar
Rasooly, A. & Herold, K. E. (2015). Mobile Health Technologies: Methods and Protocols. New York: Springer.Google Scholar
Rebolledo-Mendez, G., Reyes, A., Paszkowicz, S., Domingo, M. C., & Skrypchuk, L. (2014). Developing a body sensor network to detect emotions during driving. IEEE Transactions on Intelligent Transportation Systems, 15: 18501854.Google Scholar
Redon, J. & Lurbe, E. (2014). Ambulatory blood pressure monitoring is ready to replace clinic blood pressure in the diagnosis of hypertension: con side of the argument. Hypertension, 64: 11691174.Google Scholar
Rickles, W. H. J. & Day, J. L. (1968). Electrodermal activity in non-palmer skin sites. Psychophysiology, 4: 421435.Google Scholar
Ring, E. F. J. (2006). The historical development of thermometry and thermal imaging in medicine. Journal of Medical Engineering & Technology, 30: 192198.Google Scholar
Roddie, I. C. (1977). Human responses to emotional stress. Irish Journal of Medical Science, 146: 395417.Google Scholar
Rogers, J. A. (2015). Electronics for the human body. Journal of the American Medical Association, 313: 561562.Google Scholar
Rohrbaugh, J. W., Sirevaag, E. J., & Richter, E. J. (2013). Laser Doppler vibrometry measurement of the mechanical myogram. Review of Scientific Instruments, 84: 121706.Google Scholar
Rose, D. P., Ratterman, M., Griffin, D. K., Hou, L., Kelley-Loughnane, N., Naik, R. R., … & Heikenfeld, J. (2014). Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Transactions on Biomedical Engineering, 62: 14571465.Google Scholar
Sadeh, A., Hauri, P. J., Kripke, D. F., & Lavie, P. (1995). The role of actigraphy in the evaluation of sleep disorders. Sleep, 18: 288302.Google Scholar
Safrai, E., Ishai, P. B., Caduff, A., Puzenko, A., Polsman, A., Agranat, A. J., & Feldman, Y. (2012). The remote sensing of mental stress from the electromagnetic reflection coefficient of human skin in the sub-THz range. Bioelectromagnetics, 33: 375382.Google Scholar
Saito, A., Ianov, A., & Sankai, Y. (2009). Measurement of brain activity using optical and electrical method. Paper presented at the IEEE International Conference on Robotics and Biomimetics (ROBIO).Google Scholar
Sarbin, T. R. (1944). The logic of prediction in psychology. Psychological Review, 51: 210228.Google Scholar
Sato, K., Kang, W., Saga, K., & Sato, K. T. (1989). Biology of sweat glands and their disorders: I. Normal sweat gland function. Journal of the American Academy of Dermatology, 20: 537563.Google Scholar
Sato, K. & Sato, F. (1983). Individual variations in structure and function of human eccrine sweat gland. American Journal of Physiology, 14: R203R208.Google Scholar
Scalise, L. (2012). Non contact heart monitoring. In Millis, R. (ed.), Advances in Electrocardiograms: Methods and Analysis (pp. 81106). Rijeka, Croatia: InTech.Google Scholar
Scalise, L., Casaccia, S., Marchionni, P., Ercoli, I., & Tomasini, E. P. (2013). Laser Doppler myography (LDMi): a novel non-contact measurement method for the muscle activity. Laser Therapy, 22: 261268.Google Scholar
Scalise, L., Ercoli, I., & Marchionni, P. (2010). Optical method for measurement of respiration rate. Paper presented at the IEEE International Workshop on Medical Measurements and Applications, Ottawa, April 30–May 1.Google Scholar
Schafer, A. & Vagedes, J. (2013). How accurate is pulse rate variability as an estimate of heart rate variabilty? A review on studies comparing photoplethysmographic technology with an electrocardiogram. International Journal of Cardiology, 166: 1529.Google Scholar
Schlotz, W. (2012). Ambulatory psychoneuroendocrinology: assessing salivary cortisol and other hormones in daily life. In Mehl, M. R. & Conner, T. S. (eds.), Handbook of Research Methods for Studying Daily Life (pp. 193209). New York: Guilford Press.Google Scholar
Scully, C., Lee, J., Meyer, J., Gorbach, A. M., Granquist-Fraser, D., Mendelson, Y., & Chon, K. H. (2012). Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Transactions on Biomedical Engineering, 59: 303306.Google Scholar
Searle, A. & Kirkup, L. (2000). A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiological Measurement, 21: 271283.Google Scholar
Secco, E. L., Curone, D., Tognetti, A., Bonfiglio, A., & Magenes, G. (2012). Validation of smart garments for physiological and activity-related monitoring of humans in harsh environment. American Journal of Biomedical Engineering, 2: 189196.Google Scholar
Sewell, W. & Komogortsev, O. (2010). Real-time eye gaze tracking with an unmodified commodity webcam employing a neural network. Paper presented at the CHI’10 Extended Abstracts on Human Factors in Computing Systems.Google Scholar
Shafiq, G. & Veluvolu, K. C. (2014). Surface chest motion decomposition for cardiovascular monitoring. Scientific Reports, 4: 5093.Google Scholar
Shao, D., Yang, Y., Liu, C., Tsow, F., Yu, H., & Tao, N. (2014). Non-contact monitoring breathing pattern, exhalation flow rate and pulse transit time. IEEE Transactions on Biomedical Engineering, 61: 27602767.Google Scholar
Sherwood, A. & Turner, J. R. (1993). Postural stability of hemodynamic responses during mental challenge. Psychophysiology, 30: 237244.Google Scholar
Shin, J. H., Lee, K. M., & Park, K. S. (2009). Non-constrained monitoring of systolic blood pressure on a weighing scale. Physiological Measurement, 30: 679693.Google Scholar
Silverman, I. (1974). The experimenter: a (still) neglected stimulus object. Canadian Psychologist, 15: 258270.Google Scholar
Singh, M. & Ramachandran, G. (1991). Reconstruction of sequential cardiac in-plane displacement patterns on the chest wall by laser speckle interferometry. IEEE Transactions on Biomedical Engineering, 38: 483489.Google Scholar
Sirevaag, E. J., Casaccia, S., Richter, E. J., O’Sullivan, J. A., Scalise, L., & Rohrbaugh, J. W. (2016). Cardio-respiratory interactions: non-contact assessment using laser Doppler vibrometry. Psychophysiology, 53: 847867.Google Scholar
Sloan, R. P., Shapiro, P. A., Bagiella, E., Fishkin, P. E., Gorman, J. M., & Myers, M. M. (1995). Consistency of heart rate and sympathovagal reactivity across different autonomic contexts. Psychophysiology, 32: 452459.Google Scholar
Smith, N. T. (1974). Ballistocardiography. In Weissler, A. M. (ed.), Noninvasive Cardiology (pp. 39148). New York: Grune & Stratton.Google Scholar
Sola, J., Proenca, M., Ferrario, D., Porchet, J.-A., Falhi, A., Grossenbacher, O., … & Sartori, C. (2013). Noninvasive and nonocclusive blood pressure estimation via a chest sensor. IEEE Transactions on Biomedical Engineering, 60: 35053513.Google Scholar
Sparks, S. A., Chandler, P., Bailey, T. G., Marchant, D. C., & Orme, D. (2013). The energy demands of portable gas analysis system carriage during walking and running. Ergonomics, 56: 19011907.Google Scholar
Squara, P. (2008). Bioreactance: a new method for non-invasive cardiac output monitoring. In Vincent, J.-L. (ed.), Yearbook of Intensive Care and Emergency Medicine (pp. 619630). Berlin: Springer.Google Scholar
Steffen, M., Aleksandrowicz, A., & Leonhardt, S. (2007). Mobile noncontact monitoring of heart and lung activity. IEEE Transactions on Biomedical Circuits and Systems, 1: 250257.Google Scholar
Stokes, M. & Blythe, M. (2001). Muscle Sounds in Physiology, Sports Science and Clinical Investigation. Oxford: Medintel.Google Scholar
Stopczynski, A., Stahlhut, C., Larsen, J. E., Petersen, M. K., & Hansen, L. K. (2014). The smartphone brain scanner: a portable real-time neuroimaging system. PloS One, 9: e86733.Google Scholar
Sun, Y., Papin, C., Azorin-Peris, V., Kalawsky, R., Greenwald, S., & Hu, S. (2012). Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam. Journal of Biomedical Optics, 17: 037005103700510.Google Scholar
Sutarman, & Thomson, M. L. (1952). A new technique for enumerating active sweat glands in man. Journal of Physiology, 117: 51P52P.Google Scholar
Suzuki, S., Matsui, T., Sugawara, K., Asao, T., & Kotani, K. (2011). An approach to remote monitoring of heart rate variability (HRV) using microwave radar during a calculation task. Journal of Physiological Anthropology, 30: 241249.Google Scholar
Takano, C. & Ohta, Y. (2007). Heart rate measurement based on a time-lapse image. Medical Engineering & Physics, 29: 853857.Google Scholar
Tamura, T., Maeda, Y., Sekine, M., & Yoshida, M. (2014). Wearable photoplethysmographic sensors: past and present. Electronics, 3: 282302.Google Scholar
Tanaka, S., Gao, S., Nogawa, M., & Yamakoshi, K.-I. (2005). Noninvasive measurement of instantaneous, radial artery blood pressure. IEEE Engineering in Medicine and Biology Magazine, 24: 3237.Google Scholar
Tapia, E. M., Intille, S. S., Haskell, W., Larson, K., Wright, J., King, A., & Friedman, R. (2007). Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor. Paper presented at the 11th IEEE International Symposium on Wearable Computers.Google Scholar
Tartz, R., Vartak, A., King, J., & Fowles, D. C. (2015). Effects of grip force on skin conductance measured from a handheld device. Psychophysiology, 52: 819.Google Scholar
Tassinary, L. G., Cacioppo, J. T., & Vanman, E. J. (2007). The skeletomotor system: Surface electromyography. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. (eds.), Handbook of Psychophysiology, 3rd edn. (pp. 267299). Cambridge University Press.Google Scholar
Tavakolian, K., Dumont, G., & Blaber, A. (2012). Analysis of seismocardiogram capability for trending stroke volume changes: a lower body negative pressure study. Paper presented at the Computing in Cardiology (CinC) Conference.Google Scholar
Tavakolian, K., Ngai, B., Blaber, A. P., & Kaminska, B. (2011). Infrasonic cardiac signals: complementary windows to cardiovascular dynamics. Paper presented at the Engineering in Medicine and Biology Society, Annual International Conference of the IEEE.Google Scholar
Tavel, M. E. (1972). Clinical Phonocardiography and External Pulse Recording, 2nd edn. Chicago: Year Book Medical Publishers.Google Scholar
Teichmann, D., De Matteis, D., Walter, M., & Leonhardt, S. (2014). A bendable and wearable cardiorespiratory monitoring device fusing two noncontact sensor principles. Paper presented at the 11th International Conference on Wearable and Implantable Body Sensor Networks (BSN).Google Scholar
Tharion, W. J., Buller, M. J., Potter, A. W., Karis, A. J., Goetz, V., & Hoyt, R. W. (2013). Acceptability and usability of an ambulatory health monitoring system for use by military personnel. IIE Transactions on Occupational Ergonomics and Human Factors, 1: 203214.Google Scholar
Thiel, F., Kreiseler, D., & Seifert, F. (2009). Non-contact detection of myocardium’s mechanical activity by ultrawideband RF-radar and interpretation applying electrocardiography. Review of Scientific Instruments, 80: 114302.Google Scholar
Thomas, P. E. & Korr, I. M. (1957). Relationship between sweat gland activity and electrical resistance of the skin. Journal of Applied Physiology, 10: 505510.Google Scholar
Tripathi, S. R., Miyata, E., Ishai, P. B., & Kawase, K. (2015). Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region. Scientific Reports, 5: 9071.Google Scholar
Trobec, R., Rashkovska, A., & Avebelj, V. (2012). Two proximal skin electrodes: A respiration rate sensor. Sensors, 12: 1381313828.Google Scholar
Trull, T. J. & Ebner-Priemer, U. (2013). Ambulatory assessment. Annual Review of Clinical Psychology, 9: 151176.Google Scholar
Turner, J. R., Sherwood, A., & Light, K. C. (1991). Generalization of cardiovascular response: supportive evidence for the reactivity hypothesis. International Journal of Psychophysiology, 11: 207212.Google Scholar
Ulbrich, M., Muhlsteff, J., Sipila, A., Kamppi, M., Koskela, A., Myry, M., … & Walter, M. (2014). The IMPACT shirt: textile integrated and portable impedance cardiography. Physiological Measurement, 35: 11811196.Google Scholar
Vainer, B. G. (2005). FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans. Physics in Medicine and Biology, 50: R63R94.Google Scholar
Van Lange, P. A. M., Finkenauer, C., Popma, A., & van Vugt, M. (2011). Electrodes as social glue: measuring heart rate promotes giving in the trust game. International Journal of Psychophysiology, 80: 246250.Google Scholar
Van Lien, R., Neijts, M., Willemsen, G., & De Gues, E. J. C. (2015). Ambulatory measurement of the ECG T-wave amplitude. Psychophysiology, 52: 225237.Google Scholar
Vassend, O. & Knardahl, S. (2005). Personality, affective response, and facial blood flow during brief cognitive tasks. International Journal of Psychophysiology, 55: 265278.Google Scholar
Verkruysse, W., Svaasand, L. O., & Nelson, J. S. (2008). Remote plethysmographic imaging using ambient light. Optics Express, 16: 2143421445.Google Scholar
Vlachopoulos, C., Alexopoulos, N., & Stefanadis, C. (2006). Lifestyle modification and arterial stiffness and wave reflections: a more natural way to prolong arterial health. Artery Research, 1: S15S22.Google Scholar
Vlachopoulos, C., Aznaouridis, K., & Stefanadis, C. (2010). Prediction of cardiovascular events and all-cause mortality with arterial sltiffness: a systematic review and meta-analysis. Journal of the American College of Cardiology, 55: 13181327.Google Scholar
Vlachopoulos, C., Xaplanteris, P., Alexopoulos, N., Aznaouridis, K., Vasiliadou, C., Baou, K., … & Stefanadis, C. (2009). Divergent effects of laughter and mental stress on arterial stiffness and central hemodynamics. Psychosomatic Medicine, 71: 446453.Google Scholar
Vural, E., Simske, S., & Schuckers, S. (2013). Verification of individuals from accelerometer measures of cardiac chest movements. Paper presented at the International Conference of the Biometrics Special Interest Group (BIOSIG).Google Scholar
Waldstein, S. R., Neumann, S. A., & Merrill, J. A. (1998). Postural effects on hemodynamic response to interpersonal interaction. Biological Psychology, 48: 5767.Google Scholar
Walsh, J. A. I., Topol, E. J., & Steinhubl, S. R. (2014). Novel wireless devices for cardiac monitoring. Circulation, 130: 573581.Google Scholar
Wang, S. & Zhou, G. (2015). A review on radio based activity recognition. Digital Communications and Networks, 1: 2029.Google Scholar
Wassertheurer, S., Kropf, J., Weber, T., Van der Giet, M., Baulmann, J., Ammer, M., … & Magometschnigg, D. (2010). A new oscillometric method for pulse wave analysis: comparison with a common tonometric method. Journal of Human Hypertension, 24: 498504.Google Scholar
Watanabe, T. & Watanabe, K. (2004). Noncontact method for sleep stage estimation. IEEE Transactions on Biomedical Engineering, 151: 17351748.Google Scholar
Weissler, A. M. (1974). Noninvasive Cardiology. New York: Grune & Stratton.Google Scholar
Wengrowski, E. (2014). A survey on device-free passive localization and gesture recognition via body wave reflections. ACM Transactions on Autonomous and Adaptive Systems, 5: 115.Google Scholar
Westerink, J., van Beek, W., Daemen, E., Janssen, J., de Vries, G.-J., & Ouwerkerk, M. (2014). The vitality bracelet: bringing balance to your life with psychophysiological measurements. In Fairclough, S. H. & Gilleade, K. (eds.), Advances in Physiological Computing (pp. 197209). London: Springer.Google Scholar
Wilcott, R. C. (1960). A comparison of palmar and nonpalmar skin conductance. Journal of Comparative and Physiological Psychology, 53: 3841.Google Scholar
Wilcott, R. C. (1962). Palmar skin sweating vs. palmar skin resistance and skin potential. Journal of Comparative and Physiological Psychology, 55: 327331.Google Scholar
Wilhelm, F. H., Grossman, P., & Muller, M. I. (2012). Bridging the gap between the laboratory and the real world: integrative ambulatory psychophysiology. In Mehl, M. R. & Conner, T. S. (eds.), Handbook of Research Methods for Studying Daily Life (pp. 210234). New York: Guilford Press.Google Scholar
Wilhelm, F. H., Roth, W. T., & Sackner, M. A. (2003). The LifeShirt: an advanced system for ambulatory measurement of respiratory and cardiac function. Behavior Modification, 27: 671691.Google Scholar
Wilkin, J. K. (1988). Why is flushing limited to a mostly facial cutaneous distribution? Journal of the American Academy of Dermatology, 10: 309313.Google Scholar
Wilson, A. D. & Baietto, M. (2011). Advances in electronic-nose technologies developed for biomedical applications. Sensors, 11: 11051176.Google Scholar
Winokur, E. S., He, D. D., & Sodini, C. G. (2012). A wearable vital signs monitor at the ear for continuous heart rate and pulse transit time measurements. Paper presented at the 34th Annual International Conference of the IEEE EMBS, San Diego, CA.Google Scholar
Wollburg, E., Roth, W. T., & Kim, S. (2009). End-tidal transcutaneous measurement of PCO2 during voluntary hypo- and hyperventilation. International Journal of Psychophysiology, 71: 103108.Google Scholar
Wongchoosuk, C., Lutz, M., & Kerdcharoen, T. (2009). Detection and classification of human body odor using an electronic nose. Sensors, 9: 72347249.Google Scholar
Wood, E. & Bulling, A. (2014). Eyetab: model-based gaze estimation on unmodified tablet computers. Paper presented at the Proceedings of the Symposium on Eye Tracking Research and Applications.Google Scholar
Wu, C., Yang, Z., Zhou, Z., Liu, X., Liu, Y., & Cao, J. (2015). Non-invasive detection of moving and stationary human with WiFi. IEEE Journal on Selected Areas in Communications, 33: 1.Google Scholar
Wu, H.-Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., & Freeman, W. (2012). Eulerian video magnification for revealing subtle changes in the world. ACM Transactions on Graphics, 31.Google Scholar
Xiao, S., Cai, S., & Liu, G. (2000). Studying the significance of cardiac contractility variability. IEEE Engineering in Medicine and Biology Magazine, 19: 102105.Google Scholar
Xiao, Y., Lin, J., Boric-Lubecke, O., & Lubecke, V. M. (2006). A Ka-band low power Doppler radar system for remote detection of cardiopulmonary motion. Paper presented at the Engineering in Medicine and Biology Society, 27th Annual International Conference of the IEEE.Google Scholar
Xu, S., Zhang, Y., Jia, L., Mathewson, K. E., Jang, K.-I., Kim, J., … & Wang, R. (2014). Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science, 344: 7074.Google Scholar
Yakymenko, I., Tsybulin, O., Sidorik, E., Henshel, D., Kyrylenko, O., & Kyrylenko, S. (2016). Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagnetic Biology and Medicine, 35: 186202.Google Scholar
Yeo, W. H., Kim, Y. S., Lee, J., Ameen, A., Shi, L., Li, M., … & Kang, Z. (2013). Multifunctional epidermal electronics printed directly onto the skin. Advanced Materials, 25: 27732778.Google Scholar
Yin, L., Huang, X., Xu, H., Zhang, Y., Lam, J., Cheng, J., & Rogers, J. A. (2014). Materials, designs, and operational characteristics for fully biodegradable primary batteries. Advanced Materials, 26: 38793884.Google Scholar
Zanetti, J. M. & Salerno, D. M. (1991). Seismocardiography: a technique for recording precordial acceleration. Paper presented at the Computer-Based Medical Systems, 4th Annual IEEE Symposium.Google Scholar
Zhang, J., Ser, W., & Goh, D. Y. T. (2011). A novel respiratory rate estimation method for sound-based wearable monitoring systems. Paper presented at the Engineering in Medicine and Biology Society, Annual International Conference of the IEEE.Google Scholar
Zhang, S. L., Meyers, C. L., Subramanyan, K., & Hancewicz, T. (2005). Near infrared imaging for measuring and visualizing skin hydration: a comparison with visual assessment and electrical methods. Journal of Biomedical Optics, 10: 031107.Google Scholar
Zhao, F., Li, M., Qian, Y., & Tsien, J. Z. (2013). Remote measurements of heart and respiration rates for telemedicine. PloS One, 8: e71384.Google Scholar
Zheng, J., Hu, S., Azorin-Peris, V., Echiadis, A., Chouliaras, V., & Summers, R. (2008). Remote simultaneous dual wavelength imaging photoplethysmography: a further step towards 3-D mapping of skin blood microcirculation. Paper presented at the Multimodal Biomedical Imaging III.Google Scholar
Zheng, Y.-L., Yan, B. P., Zhang, Y.-T., & Poon, C. C. Y. (2014). An armband wearable device for overnight and cuff-less blood pressure measurement. IEEE Transactions on Biomedical Engineering, 61: 21792186.Google Scholar
Zhou, D., Luo, J., Silenzio, V., Zhou, Y., Hu, J., Currier, G., & Kautz, H. (2015). Tackling mental health by integrating unobtrusive multimodal sensing. Paper presented at the 29th AAAI Conference on Artificial Intelligence.Google Scholar
Zito, D., Pepe, D., Mincica, M., Zito, F., De Rossi, D., Scilingo, E. P., & Tognetti, A. (2008). Wearable system-on-a-chip UWB radar for contact-less cardiopulmonary monitoring: present status. Paper presented at the Engineering in Medicine and Biology Society, 30th Annual International Conference of the IEEE.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×