Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T22:15:54.302Z Has data issue: false hasContentIssue false

15 - Behavior Genetics: From Heritability to Gene Finding

from Systemic Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreassen, O. A., Thompson, W. K., Schork, A. J., Ripke, S., Mattingsdal, M., Kelsoe, J. R., … & Dale, A. M. (2013). Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genetics, 9: e1003455.CrossRefGoogle ScholarPubMed
Anokhin, A., Steinlein, O., Fischer, C., Mao, Y., Vogt, P., Schalt, E., & Vogel, F. (1992). A genetic study of the human low-voltage electroencephalogram. Human Genetics, 90: 99112.Google Scholar
Anokhin, A. P. (2014). Genetic psychophysiology: Advances, problems, and future directions. International Journal of Psychophysiology, 93: 173197.Google Scholar
Begleiter, H., Porjesz, B., Reich, T., Edenberg, H. J., Goate, A., Blangero, J., … & Bloom, F. E. (1998). Quantitative trait loci analysis of human event-related brain potentials: P3 voltage. Electroencephalography & Clinical Neurophysiology/Evoked Potentials Section, 108: 244250.CrossRefGoogle ScholarPubMed
Blokland, G. A., de Zubicaray, G. I., McMahon, K. L., & Wright, M. J. (2012). Genetic and environmental influences on neuroimaging phenotypes: a meta-analytical perspective on twin imaging studies. Twin Research and Human Genetics, 15: 351371.Google Scholar
Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., … & Fox, J. (2011). OpenMx: an open source extended structural equation modeling framework. Psychometrika, 76: 306317.Google Scholar
Bollen, K. A. (1989). Structural Equations with Latent Variables. New York: John Wiley.Google Scholar
Boomsma, D., Busjahn, A., & Peltonen, L. (2002). Classical twin studies and beyond. Nature Reviews Genetics, 3: 872882.Google Scholar
Boomsma, D. I., De Geus, E. J., Van Baal, G. C., & Koopmans, J. R. (1999). A religious upbringing reduces the influence of genetic factors on disinhibition: evidence for interaction between genotype and environment on personality. Twin Research, 2: 115125.Google Scholar
Boomsma, D. I. & Gabrielli, W. F. (1985). Behavioral genetic approaches to psychophysiological data. Psychophysiology, 22: 249260.Google Scholar
Boomsma, D. I. & Molenaar, P. C. (1986). Using LISREL to analyze genetic and environmental covariance structure. Behavior Genetics, 16: 237250.Google Scholar
Boomsma, D. I. & Molenaar, P. C. (1987). The genetic analysis of repeated measures: I. Simplex models. Behavior Genetics, 17: 111123.Google Scholar
Bouchard, T. J. & McGue, M. (2003). Genetic and environmental influences on human psychological differences. Journal of Neurobiology, 54: 445.Google Scholar
Browne, M. W. (1973). Generalized least squares estimators in the analysis of covariance structures. ETS Research Bulletin Series, 1: 136.Google Scholar
Bulik-Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Perry, J. R., … & Neale, B. M. (2015a). An atlas of genetic correlations across human diseases and traits. Nature Genetics, 47: 12361241.Google Scholar
Bulik-Sullivan, B., Loh, P. R., Finucane, H., Ripke, S., Yang, J., Patterson, N., … & Neale, B. M. (2015b). LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics, 47: 291295.Google Scholar
Carey, G. (1986). Sibling imitation and contrast effects. Behavior Genetics, 16: 319341.Google Scholar
Cederlof, R., Friberg, L., & Lundman, T. (1977). The interactions of smoking, environment and heredity and their implications for disease etiology: a report of epidemiological studies on the Swedish twin registries. Acta Medica Scandinavica. Supplementum, 612: 1128.Google ScholarPubMed
Cloninger, C. R., Rice, J., & Reich, T. (1979). Multifactorial inheritance with cultural transmission and assortative mating: II. A general model of combined polygenic and cultural inheritance. American Journal of Human Genetics, 31: 176198.Google Scholar
De Bakker, P. I., Ferreira, M. A., Jia, X., Neale, B. M., Raychaudhuri, S., & Voight, B. F. (2008). Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Human Molecular Genetics, 17: R122R128.CrossRefGoogle ScholarPubMed
De Moor, M. H., Boomsma, D. I., Stubbe, J. H., Willemsen, G., & De Geus, E. J. (2008). Testing causality in the association between regular exercise and symptoms of anxiety and depression. Archives of General Psychiatry, 65: 897905.Google Scholar
de Zeeuw, E. L., van Beijsterveldt, C. E., Glasner, T. J., Bartels, M., Ehli, E. A., Davies, G. E., … & Boomsma, D. I. (2014). Polygenic scores associated with educational attainment in adults predict educational achievement and ADHD symptoms in children. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 165: 510520.Google Scholar
den Braber, A., Bohlken, M. M., Brouwer, R. M., van’t Ent, D., Kanai, R., Kahn, R. S., … & Boomsma, D. I. (2013). Heritability of subcortical brain measures: a perspective for future genome-wide association studies. NeuroImage, 83: 98102.Google Scholar
den Hoed, M., Eijgelsheim, M., Esko, T., Brundel, B. J., Peal, D. S., Evans, D. M., … & Loos, R. J. (2013). Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nature Genetics, 45: 621631.Google Scholar
Dolan, C. V., de Kort, J. M., Van Beijsterveldt, T. C., Bartels, M., & Boomsma, D. I. (2014). GE covariance through phenotype to environment transmission: an assessment in longitudinal twin data and application to childhood anxiety. Behavior Genetics, 44: 240253.Google Scholar
Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. PLoS Genetics, 9: e1003348.Google Scholar
Eaves, L. J. (1976). A model for sibling effects in man. Heredity, 36: 205214.Google Scholar
Eaves, L. J. (1987). Including the environment in models for genetic segregation. Journal of Psychiatric Research, 21: 639647.Google Scholar
Ehli, E. A., Abdellaoui, A., Hu, Y., Hottenga, J. J., Kattenberg, M., van Beijsterveldt, T., … & Davies, G. E. (2012). De novo and inherited CNVs in MZ twin pairs selected for discordance and concordance on attention problems. European Journal of Human Genetics, 20: 10371043.Google Scholar
Euesden, J., Lewis, C. M., & O’Reilly, P. F. (2014). PRSice: Polygenic Risk Score software. Bioinformatics, 31: 14661468.Google Scholar
Falconer, D. S. & Mackay, T. F. (1996). Introduction to Quantitative Genetics. Harlow: Longman.Google Scholar
Finucane, H. K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P. R., … & Price, A. L. (2015). Partitioning heritability by functional category using GWAS summary statistics. Nature Genetics, 47: 12281235.Google Scholar
Fisher, R. A. (1918). The correlation of relatives on the assumption of Mendelian inheritance. Philosophical Transactions of the Royal Society of Edinburgh, 52: 399433.Google Scholar
Franić, S., Dolan, C. V., Broxholme, J., Hu, H., Zemojtel, T., Davies, G. E., … & Boomsma, D. I. (2015). Mendelian and polygenic inheritance of intelligence: a common set of causal genes? Using next-generation sequencing to examine the effects of 168 intellectual disability genes on normal-range intelligence. Intelligence, 49: 1022.Google Scholar
Freund, J., Brandmaier, A. M., Lewejohann, L., Kirste, I., Kritzler, M., Krüger, A., … & Kempermann, G. (2013). Emergence of individuality in genetically identical mice. Science, 340: 756759.Google Scholar
Fulker, D. W., Baker, L. A., & Bock, R. D. (1983). Estimating components of covariance using LISREL. Data Analyst, 1: 58.Google Scholar
Genomes Project Consortium (2012). An integrated map of genetic variation from 1,092 human genomes. Nature, 491: 5665.Google Scholar
Groen-Blokhuis, M. M., Middeldorp, C. M., van Beijsterveldt, C. E., & Boomsma, D. I. (2011). Evidence for a causal association of low birth weight and attention problems. Journal of the American Academy of Child & Adolescent Psychiatry, 50: 12471254.Google Scholar
Gusev, A., Lee, S. H., Neale, B. M., Trynka, G., Vilhjalmsson, B. J., Finucane, H., … & Price, A. L. (2014). Regulatory variants explain much more heritability than coding variants across 11 common diseases. bioRxiv, 004309. doi: http://dx.doi.org/10.1101/004309Google Scholar
Hamer, D. H. & Sirota, L. (2000). Beware the chopsticks gene. Molecular Psychiatry, 5: 1113.Google Scholar
Haseman, J. K. & Elston, R. C. (1972). The investigation of linkage between a quantitative trait and a marker locus. Behavior Genetics, 2: 319.Google Scholar
Hewitt, J. K., Eaves, L. J., Neale, M. C., & Meyer, J. M. (1988). Resolving causes of developmental continuity or “tracking”: I. Longitudinal twin studies during growth. Behavior Genetics, 18: 133151.Google Scholar
Hibar, D. P., Stein, J. L., Renteria, M. E., Arias-Vasquez, A., Desrivières, S., Jahanshad, N., … & Medland, S. E. (2015). Common genetic variants influence human subcortical brain structures. Nature, 520: 224229.Google Scholar
Hodgkinson, C. A., Enoch, M. A., Srivastava, V., Cummins-Oman, J. S., Ferrier, C., Iarikova, P., … & Goldman, D. (2010). Genome-wide association identifies candidate genes that influence the human electroencephalogram. Proceedings of the National Academy of Sciences of the USA, 107: 86958700.Google Scholar
Hoggart, C. J., Clark, T. G., De Iorio, M., Whittaker, J. C., & Balding, D. J. (2008). Genome-wide significance for dense SNP and resequencing data. Genetic Epidemiology, 32: 179185.Google Scholar
Hottenga, J. J., Whitfield, J. B., Posthuma, D., Willemsen, G., De Geus, E. J., Martin, N. G., & Boomsma, D. I. (2007). Genome-wide scan for blood pressure in Australian and Dutch subjects suggests linkage at 5P, 14Q, and 17P. Hypertension, 49: 832838.Google Scholar
Howie, B., Fuchsberger, C., Stephens, M., Marchini, J., & Abecasis, G. R. (2012). Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nature Genetics, 44: 955959.Google Scholar
Iacono, W. G. (2014). Genome-wide scans of genetic variants for psychophysiological endophenotypes: introduction to this special issue of Psychophysiology. Psychophysiology, 51: 12011202.Google Scholar
International HapMap Consortium (2005). A haplotype map of the human genome. Nature, 437: 12991320.Google Scholar
Jinks, J. L. & Fulker, D. W. (1970). Comparison of the biometrical genetical, MAVA, and classical approaches to the analysis of the human behavior. Psychological Bulletin, 73: 311.Google Scholar
Kan, K. J., Dolan, C. V., Nivard, M. G., Middeldorp, C. M., van Beijsterveldt, C. E., Willemsen, G., & Boomsma, D. I. (2013). Genetic and environmental stability in attention problems across the lifespan: evidence from the Netherlands twin register. Journal of the American Academy of Child & Adolescent Psychiatry, 52: 1225.Google Scholar
Keller, M. C. & Coventry, W. L. (2005). Quantifying and addressing parameter indeterminacy in the classical twin design. Twin Research and Human Genetics, 8: 201213.Google Scholar
Keller, M. C., Medland, S. E., Duncan, L. E., Hatemi, P. K., Neale, M. C., Maes, H. H., & Eaves, L. J. (2009). Modeling extended twin family data: I. Description of the Cascade model. Twin Research and Human Genetics, 12: 818.Google Scholar
Kendler, K. S. & Eaves, L. J. (1986). Models for the joint effect of genotype and environment on liability to psychiatric illness. American Journal of Psychiatry, 143: 279289.Google Scholar
Kendler, K. S., Neale, M. C., MacLean, C. J., Heath, A. C., Eaves, L. J., & Kessler, R. C. (1993). Smoking and major depression: a causal analysis. Archives of General Psychiatry, 50: 3643.Google Scholar
Kochunov, P., Glahn, D., Winkler, A., Duggirala, R., Olvera, R. L., Cole, S., … & Blangero, J. (2009). Analysis of genetic variability and whole genome linkage of whole-brain, subcortical, and ependymal hyperintense white matter volume. Stroke, 40: 36853690.Google Scholar
Kruglyak, L. & Lander, E. S. (1995). Complete multipoint sib-pair analysis of qualitative and quantitative traits. American Journal of Human Genetics, 57: 439454.Google Scholar
Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M., & Wray, N. R. (2012). Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics, 28: 25402542.Google Scholar
Lippert, C., Listgarten, J., Liu, Y., Kadie, C. M., Davidson, R. I., & Heckerman, D. (2011). FaST linear mixed models for genome-wide association studies. Nature Methods, 8: 833835.Google Scholar
Lubke, G. H., Hottenga, J. J., Walters, R., Laurin, C., De Geus, E. J., Willemsen, G., … & Boomsma, D. I. (2012). Estimating the genetic variance of major depressive disorder due to all single nucleotide polymorphisms. Biological Psychiatry, 72: 707709.Google Scholar
Lynch, M. & Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. Sunderland, MA: Sinauer Associates.Google Scholar
Maes, H. H., Neale, M. C., Medland, S. E., Keller, M. C., Martin, N. G., Heath, A. C., & Eaves, L. J. (2009). Flexible Mx specification of various extended twin kinship designs. Twin Research and Human Genetics, 12: 2634.Google Scholar
Manolio, T. A., Rodriguez, L. L., Brooks, L., Abecasis, G., Ballinger, D., Daly, M., … & Collins, F. S. (2007). New models of collaboration in genome-wide association studies: the Genetic Association Information Network. Nature Genetics, 39: 10451051.Google Scholar
Marchini, J., Howie, B., Myers, S., McVean, G., & Donnelly, P. (2007). A new multipoint method for genome-wide association studies by imputation of genotypes. Nature Genetics, 39: 906913.Google Scholar
Martin, N. G., Boomsma, D. I., & Machin, G. (1997). A twin-pronged attack on complex traits. Nature Genetics, 17: 387392.Google Scholar
Martin, N. G. & Eaves, L. J. (1977). The genetical analysis of covariance structure. Heredity, 38: 7995.Google Scholar
Mather, K. & Jinks, J. L. (1977). Introduction to Biometrical Genetics. Cambridge University Press.Google Scholar
McArdle, J. J. (2006). Latent curve analyses of longitudinal twin data using a mixed-effects biometric approach. Twin Research and Human Genetics, 9: 343359.Google Scholar
McGue, M. & Bouchard, T. Jr. J. (1998). Genetic and environmental influences on human behavioral differences. Annual Review of Neuroscience, 21: 124.Google Scholar
Medland, S. E., Neale, M. C., Eaves, L. J., & Neale, B. M. (2009). A note on the parameterization of Purcell’s G×E model for ordinal and binary data. Behavior Genetics, 39: 220229.Google Scholar
Minicâ, C. C., Dolan, C. V., Kampert, M. M., Boomsma, D. I., & Vink, J. M. (2014). Sandwich corrected standard errors in family-based genome-wide association studies. European Journal of Human Genetics, 23: 388394.Google Scholar
Molenaar, D. & Dolan, C. V. (2014). Testing systematic genotype by environment interactions using item level data. Behavior Genetics, 44: 212231.Google Scholar
Molenaar, D., van der Sluis, S., Boomsma, D. I., Haworth, C. M., Hewitt, J. K., Martin, N. G., … & Dolan, C. V. (2013). Genotype by environment interactions in cognitive ability: a survey of 14 studies from four countries covering four age groups. Behavior Genetics, 43: 208219.Google Scholar
Molenaar, P. C., Boomsma, D. I., & Dolan, C. V. (1993). A third source of developmental differences. Behavior Genetics, 23: 519524.Google Scholar
Nyholt, D. R. (2014). SECA: SNP effect concordance analysis using genome-wide association summary results. Bioinformatics, 30: 20862088.Google Scholar
Pe’er, I., Yelensky, R., Altshuler, D., & Daly, M. J. (2008). Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genetic Epidemiology, 32: 381385.CrossRefGoogle ScholarPubMed
Pennisi, E. (2015). New database links regulatory DNA to its target genes. Science, 348: 618619.Google Scholar
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2013). Behavioral Genetics. New York: McMillan Education.Google Scholar
Polderman, T. J., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47: 702709.Google Scholar
Posthuma, D., Beem, A. L., De Geus, E. J., Van Baal, G. C., von Hjelmborg, J. B., Iachine, I., & Boomsma, D. I. (2003). Theory and practice in quantitative genetics. Twin Research, 6: 361376.Google Scholar
Prescott, C. A. (2004). Using the Mplus computer program to estimate models for continuous and categorical data from twins. Behavior Genetics, 34: 1740.Google Scholar
Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38: 904909.Google Scholar
Purcell, S. (2002). Variance components models for gene–environment interaction in twin analysis. Twin Research, 5: 554571.Google Scholar
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., … & Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81: 559575.Google Scholar
Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O’Donovan, M. C., Sullivan, P. F., & Sklar, P. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460: 748752.Google Scholar
Scarr, S. & McCartney, K. (1983). How people make their own environments: a theory of genotype greater than environment effects. Child Development, 54: 424435.Google Scholar
Sham, P. C., Zhao, J. H., & Curtis, D. (1997). Optimal weighting scheme for affected sib-pair analysis of sibship data. Annals of Human Genetics, 61: 5967.Google Scholar
So, H. C., Li, M., & Sham, P. C. (2011). Uncovering the total heritability explained by all true susceptibility variants in a genome-wide association study. Genetic Epidemiology, 35: 447456.Google Scholar
Sullivan, P. F. (2010). The psychiatric GWAS consortium: big science comes to psychiatry. Neuron, 68: 182186.Google Scholar
Swagerman, S. C., Brouwer, R. M., de Geus, E. J. C., Hulshoff Pol, H. E., & Boomsma, D. I. (2014). Development and heritability of subcortical brain volumes at ages 9 and 12. Genes, Brain and Behavior, 13: 733742.Google Scholar
Towne, B., Almasy, L., Siervogel, R. M., & Blangero, J. (1999). Effects of genotype × sex interaction on linkage analysis of visual event-related evoked potentials. Genetic Epidemiology, 17: S355S360.Google Scholar
Van Beijsterveldt, C. E. M. & Boomsma, D. I. (1994). Genetics of the human electroencephalogram (EEG) and event-related brain potentials (ERPs): a review. Human Genetics, 94: 319330.CrossRefGoogle ScholarPubMed
van der Sluis, S., Dolan, C. V., Neale, M. C., Boomsma, D. I., & Posthuma, D. (2006). Detecting genotype–environment interaction in monozygotic twin data: comparing the Jinks and Fulker test and a new test based on marginal maximum likelihood estimation. Twin Research and Human Genetics, 9: 377392.Google Scholar
Van Dongen, J., Jansen, R., Smit, D., Hottenga, J. J., Mbarek, H., Willemsen, G., … & de Geus, E. J. (2014). The contribution of the functional IL6R polymorphism rs2228145, eQTLs and other genome-wide SNPs to the heritability of plasma sIL-6R levels. Behavior Genetics, 44: 368382.Google Scholar
Van Dongen, J., Slagboom, P. E., Draisma, H. H., Martin, N. G., & Boomsma, D. I. (2012). The continuing value of twin studies in the omics era. Nature Reviews Genetics, 13: 640653.Google Scholar
Vink, J. M., Bartels, M., Van Beijsterveldt, T. C., Van Dongen, J., Van Beek, J. H., Distel, M. A., … & Boomsma, D. I. (2012). Sex differences in genetic architecture of complex phenotypes? PLoS One, 7: e47371.Google Scholar
Visscher, P. M., Brown, M. A., McCarthy, M. I., & Yang, J. (2012). Five years of GWAS discovery. American Journal of Human Genetics, 90: 724.Google Scholar
Visscher, P. M., Medland, S. E., Ferreira, M. A., Morley, K. I., Zhu, G., Cornes, B. K., … & Martin, N. G. (2006). Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genetics, 2: e41.Google Scholar
Visscher, P. M., Yang, J., & Goddard, M. E. (2010). A commentary on “common SNPs explain a large proportion of the heritability for human height” by Yang et al. (2010). Twin Research and Human Genetics, 13: 517524.Google Scholar
Wain, L. V., Verwoert, G. C., O’Reilly, P. F., Shi, G., Johnson, T., Johnson, A. D., … & vanDuijn, C. M. (2011). Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nature Genetics, 43: 10051011.Google Scholar
Wang, B., Liao, C., Zhou, B., Cao, W., Lv, J., Yu, C., … & Li, L. (2015). Genetic contribution to the variance of blood pressure and heart rate: a systematic review and meta-regression of twin studies. Twin Research and Human Genetics, 18: 158170.Google Scholar
Willer, C. J., Li, Y., & Abecasis, G. R. (2010). METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics, 26: 21902191.Google Scholar
Wray, N. R., Lee, S. H., Mehta, D., Vinkhuyzen, A. A., Dudbridge, F., & Middeldorp, C. M. (2014). Research review: polygenic methods and their application to psychiatric traits. Journal of Child Psychology and Psychiatry, 55: 10681087.Google Scholar
Wray, N. R., Middeldorp, C. M., Birley, A. J., Gordon, S. D., Sullivan, P. F., Visscher, P. M., … & Boomsma, D. I. (2008). Genome-wide linkage analysis of multiple measures of neuroticism of 2 large cohorts from Australia and the Netherlands. Archives of General Psychiatry, 65: 649658.Google Scholar
Wray, N. R., Yang, J., Hayes, B. J., Price, A. L., Goddard, M. E., & Visscher, P. M. (2013). Pitfalls of predicting complex traits from SNPs. Nature Reviews Genetics, 14: 507515.Google Scholar
Wu, T., Snieder, H., & de Geus, E. (2010). Genetic influences on cardiovascular stress reactivity. Neuroscience & Biobehavioral Reviews, 35: 5868.Google Scholar
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88: 7682.Google Scholar
Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M., & Price, A. L. (2014). Advantages and pitfalls in the application of mixed-model association methods. Nature Genetics, 46: 100106.Google Scholar
Zaitlen, N., Kraft, P., Patterson, N., Pasaniuc, B., Bhatia, G., Pollack, S., & Price, A. L. (2013). Using extended genealogy to estimate components of heritability for 23 quantitative and dichotomous traits. PLoS Genetics, 9: e1003520.Google Scholar
Zhu, Z., Bakshi, A., Vinkhuyzen, A. A., Hemani, G., Lee, S. H., Nolte, I. M., … & Yang, J. (2015). Dominance genetic variation contributes little to the missing heritability for human complex traits. American Journal of Human Genetics, 96: 377385.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×