Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T22:23:27.521Z Has data issue: false hasContentIssue false

Topical Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adlan, A. M., Lip, G. Y., Paton, J. F., Kitas, G. D., & Fisher, J. P. (2014). Autonomic function and rheumatoid arthritis: a systematic review. Seminars in Arthritis and Rheumatism, 44: 283304.Google Scholar
Anane, L. H., Edwards, K. M., Burns, V. E., Zanten, J. J., Drayson, M. T., & Bosch, J. A. (2010). Phenotypic characterization of gammadelta T cells mobilized in response to acute psychological stress. Brain, Behavior, and Immunity, 24: 608614.CrossRefGoogle ScholarPubMed
Andersson, U. & Tracey, K. J. (2012). Neural reflexes in inflammation and immunity. Journal of Experimental Medicine, 209: 10571068.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Rajkowski, J., Kubiak, P., Valentino, R. J., & Shipley, M. T. (1996). Role of the locus coeruleus in emotional activation, Progress in Brain Research, 107: 379402.CrossRefGoogle ScholarPubMed
Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host–bacterial mutualism in the human intestine. Science, 307: 19151920.CrossRefGoogle ScholarPubMed
Banks, W. A. & Farrell, C. L. (2003). Impaired transport of leptin across the blood–brain barrier in obesity is acquired and reversible. American Journal of Physiology: Endocrinology and Metabolism, 285: E10E15.Google ScholarPubMed
Bautista, D. M., Wilson, S. R., & Hoon, M. A. (2014). Why we scratch an itch: the molecules, cells and circuits of itch. Nature Neuroscience, 17: 175182.CrossRefGoogle ScholarPubMed
Bernard, C. (1878). Leçons sur les phénomènes de la vie communes aux animaux et aux végétaux. Paris: B. Baillière et Fils. Trans. Hoff, H. E., Guillemin, R., and Guillemin, L. as Lectures on the Phenomena of Life Common to Animals and Plants. Springfield, IL: Charles C. Thomas, 1974.Google Scholar
Berntson, G. G. (2006). Reasoning about brains. In Cacioppo, J. T., Visser, P. S., & Pickett, C. L. (eds.), Social Neuroscience: People Thinking about People (pp. 111). Cambridge, MA: MIT Press.Google Scholar
Berntson, G. G., Boysen, S. T., & Cacioppo, J. T. (1993a). Neurobehavioral organization and the cardinal principle of evaluative bivalence. Annals of the New York Academy of Sciences, 702: 75102.Google Scholar
Berntson, G. G. & Cacioppo, J. T. (2007). Integrative physiology: homeostasis, allostasis, and the orchestration of systemic physiology. In Cacioppo, J. T., Berntson, G. G., & Tassinary, L. G. (eds.), Handbook of Psychophysiology, 3rd edn. (pp. 433452). Cambridge University Press.CrossRefGoogle Scholar
Berntson, G. G. & Cacioppo, J. T. (2013). The functional neuroarchitecture of evaluative processes. In Elliot, A. J. (ed.), Handbook of Approach and Avoidance Motivation (pp. 307–21). New York: Psychology Press.Google Scholar
Berntson, G. G., Cacioppo, J. T., Binkley, P. F., Uchino, B. N., Quigley, K. S., & Fieldstone, A. (1994a). Autonomic cardiac control: III. Psychological stress and cardiac response in autonomic space as revealed by pharmacological blockades. Psychophysiology, 31: 599608.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinism: the modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98: 459487.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993b). Cardiac psychophysiology and autonomic space in humans: empirical perspectives and conceptual implications. Psychological Bulletin, 114: 296322.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1994b). Autonomic cardiac control: I. Estimation and validation from pharmacological blockades. Psychophysiology 31: 572585.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., Quigley, K. S., & Fabro, V. J. (1994c). Autonomic space and psychophysiological response. Psychophysiology, 31: 4461.Google Scholar
Berntson, G. G., Norman, G. J., Hawkley, L. C., & Cacioppo, J. T. (2008). Cardiac autonomic balance versus cardiac regulatory capacity. Psychophysiology, 45: 643652.CrossRefGoogle ScholarPubMed
Berntson, G. G., Sarter, M., & Cacioppo, J. T. (1998). Anxiety and cardiovascular reactivity: the basal forebrain cholinergic link. Behavioural Brain Research, 94: 225248.Google Scholar
Berntson, G. G., Sarter, M., & Cacioppo, J. T. (2003). Ascending visceral regulation of cortical affective information processing. European Journal of Neuroscience, 18: 21032109.Google Scholar
Berthoud, H. R., Bereiter, D. A., Trimble, E. R., Siegel, E. G., & Jeanrenaud, B. (1981). Cephalic phase, reflex insulin secretion. Neuroanatomical and Physiological Characterization. Diabetologia, 20: 393401.Google Scholar
Blascovich, J., Mendes, W. B., Hunter, S. B., & Salomon, K. (1999). Social “facilitation” as challenge and threat. Journal of Personality and Social Psychology, 77: 6877.CrossRefGoogle ScholarPubMed
Bohus, B., Benus, R. F., Fokkema, D. S., Koolhaas, J. M., Nyakas, G. A., van Oortmerssen, G. A., … & Steffens, A. B. (1988). Neuroendocrine states and behavioral and physiological stress responses. In Wiegant, M. & de Wied, D. (eds.), Progress in Brain Research, vol. 72 (pp. 5770). Amsterdam: Elsevier.Google Scholar
Bosch, J. A. (2014). The use of saliva markers in psychobiology: mechanisms and methods. Monographs in Oral Science, 24: 99108.Google Scholar
Bosch, J. A., Berntson, G. G., Cacioppo, J. T., Dhabhar, F. S., & Marucha, P. T. (2003a). Acute stress evokes a selective mobilization of T cells that differ in chemokine receptor expression: a potential pathway linking immunologic reactivity to cardiovascular disease. Brain, Behavior, and Immunity, 17: 251259.Google Scholar
Bosch, J. A., Berntson, G. G., Cacioppo, J. T., & Marucha, P. T. (2005). Differential mobilization of functionally distinct natural killer subsets during acute psychologic stress. Psychosomatic Medicine, 67: 366375.Google Scholar
Bosch, J. A., de Geus, E. J., Carroll, D., Goedhart, A. D., Anane, L. A., van Zanten, J. J., … & Edwards, K. M. (2009). A general enhancement of autonomic and cortisol responses during social evaluative threat. Psychosomatic Medicine, 71: 877885.Google Scholar
Bosch, J. A., de Geus, E. J., Kelder, A., Veerman, E. C., Hoogstraten, J., & Amerongen, A. V. (2001). Differential effects of active versus passive coping on secretory immunity. Psychophysiology, 38: 836846.Google Scholar
Bosch, J. A., de Geus, E. J., Ligtenberg, T. J., Nazmi, K., Veerman, E. C., Hoogstraten, J., & Amerongen, A. V. (2000). Salivary MUC5B-mediated adherence (ex vivo) of Helicobacter pylori during acute stress. Psychosomatic Medicine, 62: 4049.CrossRefGoogle ScholarPubMed
Bosch, J. A., de Geus, E. J., Veerman, E. C., Hoogstraten, J., & Nieuw Amerongen, A. V. (2003b). Innate secretory immunity in response to laboratory stressors that evoke distinct patterns of cardiac autonomic activity. Psychosomatic Medicine, 65: 245258.CrossRefGoogle ScholarPubMed
Bosch, J. A., Veerman, E. C., de Geus, E. J., & Proctor, G. B. (2011). Alpha-amylase as a reliable and convenient measure of sympathetic activity: don’t start salivating just yet! Psychoneuroendocrinology, 36: 449453.Google Scholar
Boychuk, C. R., Gyarmati, P., Xu, H., & Smith, B. N. (2015). Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii. Journal of Neurophysiology, 114: 9991007.Google Scholar
Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45: 602607.Google Scholar
Bradley, P. B. & Elkes, J. (1953). The effect of atropine, hyoscyamine, physostigmine, and neostigmine on the electrical activity of the brain of the conscious cat. Journal of Physiology, 120: 1415.Google Scholar
Brody, S., Keller, U., Degen, L., Cox, D. J., & Schächinger, H. (2004). Selective processing of food words during insulin-induced hypoglycemia in healthy humans. Psychopharmacology, 173: 217220.Google Scholar
Brydon, L. (2011). Adiposity, leptin and stress reactivity in humans. Biological Psychology, 86: 114120.Google Scholar
Burdakov, D., Luckman, S. M., & Verkhratsky, A. (2005). Glucose-sensing neurons of the hypothalamus. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360: 22272235.CrossRefGoogle ScholarPubMed
Butler, J. E. (2007). Drive to the human respiratory muscles. Respiratory Physiology & Neurobiology, 159: 115126.Google Scholar
Cacioppo, J. T. (1994). Social neuroscience: autonomic, neuroendocrine, and immune responses to stress. Psychophysiology, 31: 113128.Google Scholar
Cacioppo, J. T., Berntson, G. G., Binkley, P. F., Quigley, K. S., Uchino, B. N., & Fieldstone, A. (1994). Autonomic cardiac control: II. Basal response, noninvasive indices, and autonomic space as revealed by autonomic blockades. Psychophysiology, 31: 586598.Google Scholar
Cacioppo, J. T., Berntson, G. G., & Klein, D. J. (1992). What is an emotion? The role of somatovisceral afference, with special emphasis on somatovisceral “illusions.” Review of Personality and Social Psychology, 14: 6398.Google Scholar
Cacioppo, J. T., Berntson, G. G., Sheridan, J. F., & McClintock, M. K. (2000). Multi-level integrative analyses of human behavior: the complementing nature of social and biological approaches. Psychological Bulletin, 126: 829843.Google Scholar
Cacioppo, J. T., Malarkey, W. B., Kiecolt-Glaser, J. K., Uchino, B. N., Sgoutas-Emch, S. A., Sheridan, J. F., Berntson, G. G., & Glaser, R. (1995). Heterogeneity in neuroendocrine and immune responses to brief psychological stressors as a function of autonomic cardiac activation. Psychosomatic Medicine, 57: 154164.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. & Sandman, C. A. (1978). Physiological differentiation of sensory and cognitive tasks as a function of warning, processing demands, and reported unpleasantness. Biological Psychology, 6: 181192.Google Scholar
Cacioppo, J. T. & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45: 1628.Google Scholar
Cacioppo, J. T., Tassinary, L. G., Stonebraker, T. B., & Petty, R. E. (1987). Self-report and cardiovascular measures of arousal: fractionation during residual arousal. Biological Psychology, 25: 135151.CrossRefGoogle ScholarPubMed
Cannon, W. B. (1914). The interrelations of emotions as suggested by recent physiological researches. American Journal of Psychology, 25: 256282.Google Scholar
Cannon, W. B. (1928). The mechanism of emotional disturbance of bodily functions. New England Journal of Medicine, 198: 877884.CrossRefGoogle Scholar
Cannon, W. B. (1929a). Bodily Changes in Pain, Hunger, Fear, and Rage. Boston, MA: Charles T. Brandford Company.Google Scholar
Cannon, W. B. (1929b). Organization for physiological homeostasis. Physiological Reviews, 9: 399431.Google Scholar
Cannon, W. B. (1939). The Wisdom of the Body, 2nd edn. London: Kegan Paul, Trench, Trubner & Co.Google Scholar
Cannon, W. B. (1942). Voodoo death. American Anthropologist, 44: 169181.Google Scholar
Carroll, D. (2011). A brief commentary on cardiovascular reactivity at a crossroads. Biological Psychology, 86: 149151.Google Scholar
Carruthers, M. & Taggart, P. (1973). Vagotonicity of violence: biochemical and cardiac responses to violent films and television programmes. British Medical Journal, 3: 384389.Google Scholar
Chida, Y, & Steptoe, A. (2010). Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: a meta-analysis of prospective evidence. Hypertension, 55: 10261032.Google Scholar
Christian, L. M., Galley, J. D., Hade, E. M., Schoppe-Sullivan, S., Kamp Dush, C., & Bailey, M. T. (2015). Gut microbiome composition is associated with temperament during early childhood. Brain, Behavior, and Immunity, 45: 118127.Google Scholar
Cofer, C. N. & Appley, M. H. (1964). Motivation: Theory and Research. New York: John Wiley.Google Scholar
Cohen, S. & Herbert, T. B. (1996). Health psychology: psychological factors and physical disease from the perspective of human psychoneuroimmunology. Annual Review of Psychology, 47: 113142.Google Scholar
Contrada, R. J. (2011). Stress, adaptation, and health. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 19). New York: Springer.Google Scholar
Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3: 655666.Google Scholar
Craig, A. D. (2003). Interoception: the sense of the physiological condition of the body. Current Opinion in Neurobiology, 13: 500505.Google Scholar
Craig, A. D. (2014). How Do You Feel? An Interoceptive Moment with Your Neurobiological Self. Princeton University Press.Google Scholar
Critchley, H. D. & Harrison, N. A. (2013). Visceral influences on brain and behavior. Neuron, 77: 624638.Google Scholar
Cryan, J. F. & Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, 13: 701712.Google Scholar
Damasio, A. R. (1998). Emotion in the perspective of an integrated nervous system. Brain Research Reviews, 26: 8386.Google Scholar
Damasio, A. R. (2010). Self Comes to Mind: Contructing the Conscious Brain. New York: Heinemann.Google Scholar
Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience, 9: 4656.Google Scholar
Davis, M., Falls, W. A., Campeau, S., & Kim, M. (1993). Fear-potentiated startle: a neural and pharmacological analysis. Behavioural Brain Research, 58: 175198.Google Scholar
de Lecea, L., Carter, M. E., & Adamantidis, A. (2012). Shining light on wakefulness and arousal. Biological Psychiatry, 71: 10461052.Google Scholar
de Wit, L., Luppino, F., van Straten, A., Penninx, B., Zitman, F., & Cuijpers, P. (2010). Depression and obesity: a meta-analysis of community-based studies. Psychiatry Research, 178: 230235.Google Scholar
Dhabhar, F. S. (2014). Effects of stress on immune function: the good, the bad, and the beautiful. Immunology Research, 58: 193210.Google Scholar
Dickerson, S. S. & Kemeny, M. E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130: 355391.CrossRefGoogle ScholarPubMed
Dienstbier, R. A. (1989). Arousal and physiological toughness: implications for mental and physical health. Psychological Review, 96: 84100.Google Scholar
DiGirolamo, D. J., Clemens, T. L., & Kousteni, S. (2012). The skeleton as an endocrine organ. Nature Reviews Rheumatology, 8: 674683.Google Scholar
Dinan, T. G. & Cryan, J. F. (2012). Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology, 37: 13691378.Google Scholar
Dror, O. E. (2014). The Cannon–Bard thalamic theory of emotions: a brief genealogy and reappraisal. Emotion Review, 6: 1320.Google Scholar
Duffy, E. (1962). Activation and Behavior. New York: John Wiley.Google Scholar
Dworkin, B. R. (1993). Learning and Physiological Regulation. University of Chicago Press.Google Scholar
Dworkin, B. R. & Dworkin, S. (1999). Heterotopic and homotopic classical conditioning of the baroreflex. Integrative Physiology and Behavioral Scinece, 34: 158176.CrossRefGoogle ScholarPubMed
Dworkin, B. R., Elbert, T., Rau, H., Birbaumer, N., Pauli, P., Droste, C., & Brunia, C. H. (1994). Central effects of baroreceptor activation in humans: attenuation of skeletal reflexes and pain perceptions. Proceedings of the National Academy of Sciences of the USA, 91: 63296333.Google Scholar
Edwards, K. M., Bosch, J. A., Engeland, C. G., Cacioppo, J. T., & Marucha, P. T. (2010). Elevated macrophage migration inhibitory factor (MIF) is associated with depressive symptoms, blunted cortisol reactivity to acute stress, and lowered morning cortisol. Brain, Behavior, and Immunity, 24: 12021208.Google Scholar
Edwards, L., McIntyre, D., Carroll, D., Ring, C., & Martin, U. (2002). The human nociceptive flexion reflex threshold is higher during systole than diastole. Psychophysiology, 39: 678681.CrossRefGoogle ScholarPubMed
Engel, G. L. (1977). Emotional stress and sudden death. Psychology Today, 11: 114118.Google Scholar
Erny, D., Hrabe de Angelis, A. L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., … & Prinz, M. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18: 965977.Google Scholar
Farr, O. M., Tsoukas, M. A., & Mantzoros, C. S. (2015). Leptin and the brain: influences on brain development, cognitive functioning and psychiatric disorders. Metabolism, 64: 114130.Google Scholar
Feldman, S. M. & Waller, H. J. (1962). Dissociation of electrocortical activation and behavioral arousal. Nature, 196: 13201322.Google Scholar
Ferguson, A. V. (2014). Circumventricular organs: integrators of circulating signals controlling hydration, energy balance, and immune function. In De Luca, L. A., Menani, J. V., & Johnson, A. K. (eds.), Neurobiology of Body Fluid Homeostasis: Transduction and Integration (pp. 2336). Boca Raton, FL: CRC Press.Google Scholar
Field, B. C., Chaudhri, O. B., & Bloom, S. R. (2010). Bowels control brain: gut hormones and obesity. Nature Reviews Endocrinology, 6: 444453.Google Scholar
Fisher, L. (1990). Stress and cardiovascular physiology in animals. In Brown, M., Koob, G., & Rivier, C. (eds.), Stress: Neurobiology and Neuroendocrinology (pp. 463474). New York: Marcel Dekker.Google Scholar
Folkow, B. (2000). Perspectives on the integrative functions of the “sympatho-adrenomedullary system.” Autonomic Neuroscience, 83: 101115.Google Scholar
Frankenhaeuser, M. (1982). Challenge–control interaction as reflected in sympathetic-adrenal and pituitary-adrenal activity: comparison between the sexes. Scandinavian Journal of Psychology, Supp. 1: 158164.Google Scholar
Friedman, B. H. & Kreibig, S. D. (2010). The biopsychology of emotion: current theoretical, empirical, and methodological perspectives. Biological Psychology, 84: 381382.Google Scholar
Galley, J. D. & Bailey, M. T. (2014). Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes, 5: 390396.Google Scholar
Gerin, W. (2011). Acute stress responses in the psychophysiological laboratory. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 501514). New York: Springer.Google Scholar
Gianaros, P. J., Onyewuenyi, I. C., Sheu, L. K., Christie, I. C., & Critchley, H. D. (2012). Brain systems for baroreflex suppression during stress in humans. Human Brain Mapping, 33: 17001716.Google Scholar
Goedhart, A. D., Willemsen, G., Houtveen, J. H., Boomsma, D. I., & De Geus, E. J. (2008). Comparing low frequency heart rate variability and preejection period: two sides of a different coin. Psychophysiology, 45: 10861090.Google Scholar
Goldstein, D. S. & Kopin, I. J. (2007). Evolution of concepts of stress. Stress, 10: 109120.Google Scholar
Gray, J. A. & McNaughton, N. (1996). The neuropsychology of anxiety: reprise. Nebraska Symposium on Motivation, 43: 61134.Google Scholar
Gray, T. S. & Bingaman, E. W. (1996). The amygdala: corticotropin-releasing factor, steroids, and stress. Critical Reviews in Neurobiology, 10: 155168.Google Scholar
Gregg, M. E., Matyas, T. A., & James, J. E. (2002). A new model of individual differences in hemodynamic profile and blood pressure reactivity. Psychophysiology, 39: 6472.Google Scholar
Guyton, A. C. (1991). Blood-pressure control: special role of the kidneys and body fluids. Science, 252: 18131816.Google Scholar
Haapakoski, R., Mathieu, J., Ebmeier, K. P., Alenius, H., & Kivimaki, M. (2015). Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain, Behavior, and Immunity, 49: 206215.Google Scholar
Hagenaars, M. A., Oitzl, M., & Roelofs, K. (2014). Updating freeze: aligning animal and human research. Neuroscience & Biobehavioral Reviews, 47: 165176.Google Scholar
Hanlin, L., Price, J., Zhang, G., Assaf, N., Mitchell, J., & Rohleder, N. (2015). Fasting modulates interleukin-6 and cortisol reactivity to the Trier Social Stress Test. Psychoneuroendocrinology, 61: 69.Google Scholar
Harrison, N. A., Brydon, L., Walker, C., Gray, M. A., Steptoe, A., & Critchley, H. D. (2009). Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biological Psychiatry, 66: 407414.Google Scholar
Harrison, N. A., Cooper, E., Voon, V., Miles, K., & Critchley, H. D. (2013). Central autonomic network mediates cardiovascular responses to acute inflammation: relevance to increased cardiovascular risk in depression? Brain, Behavior, and Immunity, 31: 189196.Google Scholar
Harrison, N. A., Gray, M. A., Gianaros, P. J., & Critchley, H. D. (2010). The embodiment of emotional feelings in the brain. Journal of Neuroscience, 30: 1287812884.Google Scholar
Harshaw, C. (2015). Interoceptive dysfunction: toward an integrated framework for understanding somatic and affective disturbance in depression. Psychological Bulletin, 141: 311363.Google Scholar
Heany, S. J., van Honk, J., Stein, D. J., & Brooks, S. J. (2016). A quantitative and qualitative review of the effects of testosterone on the function and structure of the human social-emotional brain. Metabolic Brain Disease, 31: 157167.CrossRefGoogle ScholarPubMed
Henry, J. P. (1986). Neuroendocrine patterns of emotional response. In Plutchick, R. & Kellerman, H. (eds.), Emotion: Theory, Research and Experiences (pp. 3760). San Diego, CA: Academic Press.Google Scholar
Hofer, P., Lanzenberger, R., & Kasper, S. (2013). Testosterone in the brain: neuroimaging findings and the potential role for neuropsychopharmacology. European Neuropsychopharmacology, 23: 7988.Google Scholar
Howren, M. B., Lamkin, D. M., & Suls, J. (2009). Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosomatic Medicine, 71: 171186.Google Scholar
Inagaki, T. K., Muscatell, K. A., Irwin, M. R., Cole, S. W., & Eisenberger, N. I. (2012). Inflammation selectively enhances amygdala activity to socially threatening images. NeuroImage, 59: 32223226.Google Scholar
Iriki, M. & Simon, E. (2012). Differential control of efferent sympathetic activity revisited. Journal of Physiological Science, 62: 275298.CrossRefGoogle ScholarPubMed
Iwata, J. & LeDoux, J. E. (1988). Dissociation of associative and nonassociative concomitants of classical fear conditioning in the freely behaving rat. Behavioral Neuroscience, 102: 6676.Google Scholar
James, W. (1884). What is an emotion? Mind, 9: 188205.Google Scholar
Joels, M. & Baram, T. Z. (2009). The neuro-symphony of stress. Nature Reviews Neuroscience, 10: 459466.Google Scholar
Jones, B. E. (2003). Arousal systems. Frontiers in Bioscience, 8: S438S451.Google Scholar
Karsenty, G. & Ferron, M. (2012). The contribution of bone to whole-organism physiology. Nature, 481: 314320.Google Scholar
Kataoka, N., Hioki, H., Kaneko, T., & Nakamura, K. (2014). Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metabolism, 20: 346358.CrossRefGoogle ScholarPubMed
Kawai, M. & Rosen, C. J. (2010). Minireview: a skeleton in serotonin’s closet? Endocrinology, 151: 41034108.Google Scholar
Kirschbaum, C., Gonzalez Bono, E., Rohleder, N., Gessner, C., Pirke, K. M., Salvador, A., & Hellhammer, D. H. (1997). Effects of fasting and glucose load on free cortisol responses to stress and nicotine. Journal of Clinical Endocrinology and Metabolism, 82: 11011105.Google Scholar
Knox, D., Sarter, M., & Berntson, G. G. (2004). Visceral afferent bias on cortical processing: role of adrenergic afferents to the basal forebrain cholinergic system. Behavioral Neuroscience, 118: 14551459.Google Scholar
Kohler, O., Benros, M. E., Nordentoft, M., Farkouh, M. E., Iyengar, R. L., Mors, O., & Krogh, J. (2014). Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry, 71: 13811391.Google Scholar
Koizumi, K. & Kollai, M. (1981). Control of reciprocal and non-reciprocal action of vagal and sympathetic efferents: study of centrally induced reactions, Journal of the Autonomic Nervous System, 3: 483501.Google Scholar
Koizumi, K. & Kollai, M. (1992). Multiple modes of operation of cardiac autonomic control: development of the ideas from Cannon and Brooks to the present, Journal of the Autonomic Nervous System, 41: 1930.Google Scholar
Kopin, I. J. (1995). Definitions of stress and sympathetic neuronal responses. Annals of the New York Academy of Sciences, 771: 1930.Google Scholar
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: a review. Biological Psychology, 84: 394421.Google Scholar
Lacey, J. I. (1959). Psychophysiological approaches to the evaluation of psychotherapeutic process and outcome. In Rubinstein, E. A. & Parloff, M. B. (eds.), Research in Psychotherapy (pp. 160208). Washington: APA.Google Scholar
Lacey, J. I. (1967). Somatic response patterning and stress: some revisions of activation theory. In Appley, M. H. & Trumbull, R. (eds.), Psychological Stress: Issues in Research (pp. 444). New York: Appleton-Century-Crofts.Google Scholar
Lacey, J. I., Kagan, J., Lacey, B. C., & Moss, H. A. (1963). The visceral level: situational determinants and behavioral correlates of autonomic response patterns. In Knapp, P. H. (ed.), Expression of Emotions in Man (pp. 161196). New York: International University Press.Google Scholar
Lacourt, T. E., Houtveen, J. H., Veldhuijzen van Zanten, J. J., Bosch, J. A., Drayson, M. T., & Van Doornen, L. J. (2015). Negative affectivity predicts decreased pain tolerance during low-grade inflammation in healthy women. Brain, Behavior, and Immunity, 44: 3236.Google Scholar
Ladwig, K. H., Marten-Mittag, B., Lowel, H., Doring, A., & Koenig, W. (2003). Influence of depressive mood on the association of CRP and obesity in 3205 middle aged healthy men. Brain, Behavior, and Immunity, 17: 268275.Google Scholar
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1998). Emotion, motivation, and anxiety: brain mechanisms and psychophysiology. Biological Psychiatry, 44: 12481263.Google Scholar
Levenson, R. W. (2014). The autonomic nervous system and emotion. Emotion Review, 6: 100112.Google Scholar
Licht, C. M., Vreeburg, S. A., van Reedt Dortland, A. K., Giltay, E. J., Hoogendijk, W. J., DeRijk, R. H., … & Penninx, B. W. (2010). Increased sympathetic and decreased parasympathetic activity rather than changes in hypothalamic-pituitary-adrenal axis activity is associated with metabolic abnormalities. Journal of Clinical Endocrinology and Metabolism, 95: 24582466.Google Scholar
Light, K. C. & Obrist, P. A. (1980). Cardiovascular response to stress: effects of opportunity to avoid, shock experience, and performance feedback. Psychophysiology, 17: 243252.Google Scholar
Loewy, A. D. (1990). Autonomic control of the eye. In Loewy, A. D. & Spyer, K. M. (eds.), Central Regulation of Autonomic Function (pp. 268285). Oxford University Press.Google Scholar
Lucini, D., Norbiato, G., Clerici, M., & Pagani, M. (2002). Hemodynamic and autonomic adjustments to real life stress conditions in humans. Hypertension, 39: 184188.Google Scholar
Luppino, F. S., de Wit, L. M., Bouvy, P. F., Stijnen, T., Cuijpers, P., Penninx, B. W., & Zitman, F. G. (2010). Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Archives of General Psychiatry, 67: 220229.Google Scholar
Magoun, H. W. (1963). The Waking Brain. Springfield, IL: Charles C. Thomas.Google Scholar
Malliani, A. (2005). Heart rate variability: from bench to bedside. European Journal of Internal Medicine, 16: 1220.Google Scholar
Mason, J. W. (1975a). A historical view of the stress field: part 1. Journal of Human Stress, 1: 612.Google Scholar
Mason, J. W. (1975b). A historical view of the stress field: part 2. Journal of Human Stress, 1: 2236.CrossRefGoogle Scholar
Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F., & Tillisch, K. (2014). Gut microbes and the brain: paradigm shift in neuroscience. Journal of Neuroscience, 34: 1549015496.Google Scholar
McCabe, P. M. & Schneiderman, P. (1985). Psychophysiologic reactions to stress. In Schneiderman, N. & Tapp, J. T. (eds.), Behavioral Medicine: The Biopsychosocial Approach (pp. 99131). London: Lawrence Erlbaum Associates.Google Scholar
McCusker, R. H. & Kelley, K. W. (2013). Immune–neural connections: how the immune system’s response to infectious agents influences behavior. Journal of Experimental Biology, 216: 8498.Google Scholar
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338: 171179.Google Scholar
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: central role of the brain. Physiological Reviews, 87: 873904.Google Scholar
McEwen, B. S. & Gianaros, P. J. (2010). Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Annals of the New York Academy of Sciences, 1186: 190222.Google Scholar
McEwen, B. S. & Wingfield, J. C. (2010). What is in a name? Integrating homeostasis, allostasis and stress. Hormones and Behavior, 57: 105111.Google Scholar
McInnis, C. M., Thoma, M. V., Gianferante, D., Hanlin, L., Chen, X., Breines, J. G., … & Rohleder, N. (2014). Measures of adiposity predict interleukin-6 responses to repeated psychosocial stress. Brain, Behavior, and Immunity, 42: 3340.Google Scholar
Miller, G. E., Freedland, K. E., Carney, R. M., Stetler, C. A., & Banks, W. A. (2003). Pathways linking depression, adiposity, and inflammatory markers in healthy young adults. Brain, Behavior, and Immunity, 17: 276285.Google Scholar
Moieni, M., Irwin, M. R., Jevtic, I., Breen, E. C., & Eisenberger, N. I. (2015). Inflammation impairs social cognitive processing: a randomized controlled trial of endotoxin. Brain, Behavior, and Immunity, 48: 132138.Google Scholar
Nagy, T., van Lien, R., Willemsen, G., Proctor, G., Efting, M., Fulop, M., … & Bosch, J. A. (2015). A fluid response: alpha-amylase reactions to acute laboratory stress are related to sample timing and saliva flow rate. Biological Psychology, 109: 111119.Google Scholar
Nater, U. M., Ditzen, B., Strahler, J., & Ehlert, U. (2013). Effects of orthostasis on endocrine responses to psychosocial stress. International Journal of Psychophysiology, 90: 341346.Google Scholar
Neumann, I. D. & Slattery, D. A. (2016). Oxytocin in general anxiety and social fear: a translational approach. Biological Psychiatry, 79: 213221.Google Scholar
Norman, G. J., Berntson, G. G., & Cacioppo, J. T. (2014). Emotion, somatovisceral afference, and autonomic regulation. Emotion Review, 6: 113123.Google Scholar
Norman, G. J., Cacioppo, J. T., Morris, J. S., Malarkey, W. B., Berntson, G. G., & DeVries, A. C. (2011a). Oxytocin increases autonomic cardiac control: moderation by loneliness. Biological Psychology, 86(3): 174180.Google Scholar
Norman, G. J., DeVries, A. C., Cacioppo, J. T., & Berntson, G. G. (2011b). Multilevel analyses of stress. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 619634). New York: Springer.Google Scholar
Norman, G. J., Hawkley, L. C., Cole, S. W., Berntson, G. G., & Cacioppo, J. T. (2012). Social neuroscience: the social brain, oxytocin, and health. Social Neuroscience, 7: 1829.Google Scholar
Obrist, P. A. (1981). Cardiovascular Psychophysiology: A Perspective. New York: Plenum Press.Google Scholar
Ottaviani, C., Shapiro, D., Goldstein, I. B., James, J. E., & Weiss, R. (2006). Hemodynamic profile, compensation deficit, and ambulatory blood pressure. Psychophysiology, 43: 4656.Google Scholar
Pacak, K. & Palkovits, M. (2001). Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocrine Reviews, 22: 502548.Google Scholar
Packard, M. G. & Goodman, J. (2012). Emotional arousal and multiple memory systems in the mammalian brain. Frontiers in Behavioral Neuroscience, 6: 14.Google Scholar
Paine, N. J., Bosch, J. A., & Van Zanten, J. J. (2012). Inflammation and vascular responses to acute mental stress: implications for the triggering of myocardial infarction. Current Pharmaceutical Design, 18: 14941501.Google Scholar
Paine, N. J., Ring, C., Bosch, J. A., Drayson, M. T., Aldred, S., & Veldhuijzen van Zanten, J. J. (2014). Vaccine-induced inflammation attenuates the vascular responses to mental stress. International Journal of Psychophysiology, 93: 340348.Google Scholar
Pape, H. C., Jungling, K., Seidenbecher, T., Lesting, J., & Reinscheid, R. K. (2010). Neuropeptide S: a transmitter system in the brain regulating fear and anxiety. Neuropharmacology, 58: 2934.Google Scholar
Parvizi, J. & Damasio, A. (2001). Consciousness and the brainstem. Cognition, 79: 135160.Google Scholar
Pedersen, B. K. & Febbraio, M. A. (2012). Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology, 8: 457465.Google Scholar
Pfaff, D. W., Kieffer, B. L., & Swanson, L. W. (2008). Mechanisms for the regulation of state changes in the central nervous system: an introduction. Annals of the New York Academy of Sciences, 1129: 17.Google Scholar
Qureshi, I. A. & Mehler, M. F. (2013). Towards a “systems”-level understanding of the nervous system and its disorders. Trends in Neurosciences, 36: 674684.Google Scholar
Raison, C. L. & Miller, A. H. (2013). Role of inflammation in depression: implications for phenomenology, pathophysiology and treatment. Modern Trends in Pharmacopsychiatry, 28: 3348.Google Scholar
Ramsay, D. S. & Woods, S. C. (2014). Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychological Review, 121: 225247.Google Scholar
Reagan, L. P. (2007). Insulin signaling effects on memory and mood. Current Opinion in Pharmacology, 7: 633637.Google Scholar
Rethorst, C. D., Toups, M. S., Greer, T. L., Nakonezny, P. A., Carmody, T. J., Grannemann, B. D., … & Trivedi, M. H. (2013). Pro-inflammatory cytokines as predictors of antidepressant effects of exercise in major depressive disorder. Molecular Psychiatry, 18: 11191124.Google Scholar
Riddell, N. E., Burns, V. E., Wallace, G. R., Edwards, K. M., Drayson, M., Redwine, L. S., … & Bosch, J. A. (2015). Progenitor cells are mobilized by acute psychological stress but not beta-adrenergic receptor agonist infusion. Brain, Behavior, and Immunity, 49: 4953.Google Scholar
Ring, C., Burns, V. E., & Carroll, D. (2002). Shifting hemodynamics of blood pressure control during prolonged mental stress. Psychophysiology, 39: 585590.Google Scholar
Robbins, T. W., Granon, S., Muir, J. L., Durantou, F., Harrison, A., & Everitt, B. J. (1998). Neural systems underlying arousal and attention: implications for drug abuse. Annals of the New York Academy of Sciences, 846: 222237.Google Scholar
Robinson, B. F., Epstein, S. E., Beiser, G. D., & Braunwald, E. (1966). Control of heart rate by the autonomic nervous system. Circulation Research, 14: 400411.CrossRefGoogle Scholar
Rohleder, N., Wolf, J. M., Maldonado, E. F., & Kirschbaum, C. (2006). The psychosocial stress-induced increase in salivary alpha-amylase is independent of saliva flow rate. Psychophysiology, 43: 645652.Google Scholar
Romanovsky, A. A. (2004). Do fever and anapyrexia exist? Analysis of set point-based definitions. American Journal of Physiology: Regulatory and Integrative Comparative Physiology, 287: R992R995.Google Scholar
Roosterman, D., Goerge, T., Schneider, S. W., Bunnett, N. W., & Steinhoff, M. (2006). Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiological Reviews, 86: 13091379.Google Scholar
Rosen, C. J. (2009). Bone: serotonin, leptin and the central control of bone remodeling. Nature Reviews Rheumatology, 5: 657658.Google Scholar
Sacco, M., Meschi, M., Regolisti, G., Detrenis, S., Bianchi, L., Bertorelli, M., … & Caiazza, A. (2013). The relationship between blood pressure and pain. Journal of Clinical Hypertension (Greenwich), 15: 600605.CrossRefGoogle ScholarPubMed
Santisteban, M. M., Ahmari, N., Carvajal, J. M., Zingler, M. B., Qi, Y., Kim, S., … & Zubcevic, J. (2015). Involvement of bone marrow cells and neuroinflammation in hypertension. Circulation Research, 117: 178191.Google Scholar
Saper, C. B. (2002). The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annual Review of Neuroscience, 25: 433469.Google Scholar
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21: 5589.Google ScholarPubMed
Sarter, M., Berntson, G. G., & Cacioppo, J. T. (1996). Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure. American Psychologist, 51: 1321.Google Scholar
Sarter, M., Bruno, J. P., & Berntson, G. G. (2003). Reticular activating system. In Nadel, L. (ed.), Encyclopedia of Cognitive Science, vol. 3 (pp. 963967). London: Nature Publishing Group.Google Scholar
Satpute, A. B., Wager, T. D., Cohen-Adad, J., Bianciardi, M., Choi, J. K., Buhle, J. T., … & Feldman Barrett, L. (2013). Identification of discrete functional subregions of the human periaqueductal gray. Proceedings of the National Academy of Sciences of the USA, 110: 1710117106.Google Scholar
Schaible, H. G. (2014). Nociceptive neurons detect cytokines in arthritis. Arthritis Research & Therapy, 16: 470.Google Scholar
Schellekens, H., Finger, B. C., Dinan, T. G., & Cryan, J. F. (2012). Ghrelin signalling and obesity: at the interface of stress, mood and food reward. Pharmacology & Therapeutics, 135: 316326.Google Scholar
Schneiderman, N., Ironson, G., & Siegel, S. D. (2005). Stress and health: psychological, behavioral, and biological determinants. Annual Review of Clinical Psychology, 1: 607628.Google Scholar
Schneiderman, N. & McCabe, P. M. (1989). Psychophysiologic strategies in laboratory research. In Schneiderman, N., Weiss, S. M., & Kaufman, P. G. (eds.), Handbook of Research Methods in Cardiovascular Behavioral Medicine (pp. 349364). New York: Plenum Press.Google Scholar
Schommer, N. C., Hellhammer, D. H., & Kirschbaum, C. (2003). Dissociation between reactivity of the hypothalamus–pituitary–adrenal axis and the sympathetic–adrenal–medullary system to repeated psychosocial stress. Psychosomatic Medicine, 65: 450460.Google Scholar
Schroeder, J. P. & Packard, M. G. (2003). Systemic or intra-amygdala injections of glucose facilitate memory consolidation for extinction of drug-induced conditioned reward. European Journal of Neuroscience, 17: 14821488.Google Scholar
Schulkin, J. (ed.) (2004). Allostasis, Homeostasis, and the Costs of Physiological Adaptation. Cambridge University Press.Google Scholar
Schulkin, J. (2011). Social allostasis: anticipatory regulation of the internal milieu. Frontiers in Evolutionary Neuroscience, 2: 111.Google Scholar
Schwabe, L., Joels, M., Roozendaal, B., Wolf, O. T., & Oitzl, M. S. (2012). Stress effects on memory: an update and integration. Neuroscience & Biobehavioral Reviews, 36: 17401749.Google Scholar
Selye, H. (1950). Stress and the general adaptation syndrome. British Medical Journal, 1: 13831392.Google Scholar
Selye, H. (1956). The Stress of Life. New York: McGraw-Hill.Google Scholar
Selye, H. (1973). Homeostasis and heterostasis. Perspectives in Biology and Medicine, 16: 441445.Google Scholar
Selye, H. (1975). Confusion and controversy in the stress field. Journal of Human Stress, 1: 3744.Google Scholar
Selye, H. (1976). Stress in Health and Disease. Boston, MA: Butterworths.Google Scholar
Shelton, R. C. & Miller, A. H. (2011). Inflammation in depression: is adiposity a cause? Dialogues in Clinical Neuroscience, 13: 4153.Google Scholar
Shih, C. D., Chan, S. H., & Chan, J. Y. (1995). Participation of hypothalamic paraventricular nucleus in locus ceruleus-induced baroreflex suppression in rats. American Journal of Physiology, 269: H4652.Google Scholar
Slominski, A. T., Zmijewski, M. A., Skobowiat, C., Zbytek, B., Slominski, R. M., & Steketee, J. D. (2012). Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Advances in Anatomy, Embryology, and Cell Biology, 212: v, vii, 1115.Google Scholar
Sokolov, E. N. (1963). Perception and the Conditioned Reflex. New York: Macmillan.Google Scholar
Spencer, S. J., Emmerzaal, T. L., Kozicz, T., & Andrews, Z. B. (2015). Ghrelin’s role in the hypothalamic–pituitary–adrenal axis stress response: implications for mood disorders. Biological Psychiatry, 78: 1927.Google Scholar
Steenbergen, L., Sellaro, R., van Hemert, S., Bosch, J. A., & Colzato, L. S. (2015). A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain, Behavior, and Immunity, 48: 258264.Google Scholar
Steinberg, B. E., Tracey, K. J., & Slutsky, A. S. (2014). Bacteria and the neural code. New England Journal of Medicine, 371: 21312133.Google Scholar
Sterling, P. (2004). Principles of allostasis: optimal design, predictive regulation, pathophysiology and rational therapeutics. In Schulkin, J. (ed.), Allostasis, Homeostasis, and the Costs of Physiological Adaptation (pp. 1764). Cambridge University Press.Google Scholar
Sterling, P. (2012). Allostasis: a model of predictive regulation. Physiology & Behavior, 106(1), 515.Google Scholar
Sterling, P. & Eyer, J. (1988). Allostasis: a new paradigm to explain arousal pathology. In Fisher, S. & Reason, J. (eds.), Handbook of Life Stress, Cognition and Health (pp. 629649). New York: John Wiley.Google Scholar
Stern, R. M. & Sison, C. E. E. (1990). Response patterning. In Cacioppo, J. T. & Tassinary, L. G. (eds.), Principles of Psychophysiology: Physical, Social, and Inferential Elements (pp. 193216). Cambridge University Press.Google Scholar
Strawbridge, R., Arnone, D., Danese, A., Papadopoulos, A., Herane Vives, A., & Cleare, A. J. (2015). Inflammation and clinical response to treatment in depression: a meta-analysis. European Neuropsychopharmacology, 25: 15321543.CrossRefGoogle ScholarPubMed
Sved, A. F., Cano, G., & Card, J. P. (2001). Neuroanatomical specificity of the circuits controlling sympathetic outflow to different targets. Clinical and Experimental Pharmacology & Physiology, 28: 115119.Google Scholar
Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A., & Updegraff, J. A. (2000). Biobehavioral responses to stress in females: tend-and-befriend, not fight-or-flight. Psychological Review, 107: 411429.Google Scholar
Thayer, J. F. & Fischer, J. E. (2009). Heart rate variability, overnight urinary norepinephrine and C-reactive protein: evidence for the cholinergic anti-inflammatory pathway in healthy human adults. Journal of Internal Medicine, 265: 439447.Google Scholar
Uchino, B. N., Cacioppo, J. T., & Kiecolt-Glaser, J. K. (1996). The relationship between social support and physiological processes: a review with emphasis on underlying mechanisms and implications for health. Psychological Bulletin, 119: 488531.CrossRefGoogle ScholarPubMed
Ulrich-Lai, Y. M. & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10: 397409.Google Scholar
Van Roon, A. M., Mulder, L. J., Althaus, M., & Mulder, G. (2004). Introducing a baroreflex model for studying cardiovascular effects of mental workload. Psychophysiology, 41: 961981.Google Scholar
Van Roon, A. M., Mulder, L. J. M., Veldman, J. B. P., & Mulder, G. (1995). Beat-to-beat blood-pressure measurements applied in studies on mental workload. Homeostasis in Health and Disease, 36: 316324.Google Scholar
Vingerhoets, A. J. (1985). The role of the parasympathetic division of the autonomic nervous system in stress and the emotions. International Journal of Psychosomatics, 32: 2834.Google Scholar
Vingerhoets, A. J., Ratliff-Crain, J., Jabaaij, L., Menges, L. J., & Baum, A. (1996). Self-reported stressors, symptom complaints and psychobiological functioning: I. Cardiovascular stress reactivity. Journal of Psychosomatic Research, 40: 177190.Google Scholar
Vrijkotte, T. G., van den Born, B. J., Hoekstra, C. M., Gademan, M. G., van Eijsden, M., de Rooij, S. R., & Twickler, M. (2015). Cardiac autonomic nervous system activation and metabolic profile in young children: the ABCD study. PLoS One, 10: e0138302.Google Scholar
Watson, D. & Pennebaker, J. W. (1989). Health complaints, stress, and distress: exploring the central role of negative affectivity. Psychological Review, 96: 234254.Google Scholar
Weiner, H. (1992). Perturbing the Organism: The Biology of Stressful Experience. University of Chicago Press.Google Scholar
Wenger, M. A. (1941). The measurement of individual differences in autonomic balance. Psychosomatic Medicine, 3: 427434.Google Scholar
Werner, J. (1988). Functional mechanisms of temperature regulation, adaptation and fever: complementary system theoretical and experimental evidence. Pharmacology & Therapeutics, 37: 123.Google Scholar
Wheaton, B. & Montazer, S. (2009). Stressors, stress, and distress. In Scheid, T. L. & Brown, T. N. (eds.), A Handbook for the Study of Mental Health: Social Contexts, Theories, and Systems, 2nd edn. (pp. 171199). Cambridge University Press.Google Scholar
Winsky-Sommerer, R., Boutrel, B., & de Lecea, L. (2005). Stress and arousal: the corticotrophin-releasing factor/hypocretin circuitry. Molecular Neurobiology, 32: 285294.Google Scholar
Wirtz, P. H., Ehlert, U., Emini, L., & Suter, T. (2008). Higher body mass index (BMI) is associated with reduced glucocorticoid inhibition of inflammatory cytokine production following acute psychosocial stress in men. Psychoneuroendocrinology, 33: 11021110.Google Scholar
Zigman, J. M., Bouret, S. G., & Andrews, Z. B. (2016). Obesity impairs the action of the neuroendocrine Ghrelin system. Trends in Endocrinology and Metabolism, 27: 5463.Google Scholar

References

Ainley, V., Maister, L., Brokfeld, J., Farmer, H., & Tsakiris, M. (2013). More of myself: manipulating interoceptive awareness by heightened attention to bodily and narrative aspects of the self. Consciousness and Cognition, 22: 12311238.Google Scholar
Ainley, V., Tajadura-Jimenez, A., Fotopoulou, A., & Tsakiris, M. (2012). Looking into myself: changes in interoceptive sensitivity during mirror self-observation. Psychophysiology, 49: 16721676.Google Scholar
Antony, M. M., Brown, T. A., Craske, M. G., Barlow, D. H., Mitchell, W. B., & Meadows, E. A. (1995). Accuracy of heartbeat perception in panic disorder, social phobia and non-anxious subjects. Journal of Anxiety Disorders, 9: 355371.Google Scholar
Armstrong, A. M. & Dienes, Z. (2013). Subliminal understanding of negation: unconscious control by subliminal processing of word pairs. Consciousness and Cognition, 22: 10221040.Google Scholar
Avery, J. A., Drevets, W. C., Moseman, S. E., Bodurka, J., Barcalow, J. C., & Simmons, W. K. (2014). Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula. Biological Psychiatry, 76: 258266.Google Scholar
Barrett, L. F., Gross, J., Christensen, T. C., & Benvenuto, M. (2001). Knowing what you’re feeling and knowing what to do about it: mapping the relation between emotion differentiation and emotion regulation. Cognition & Emotion, 15: 713724.Google Scholar
Barrett, L. F. & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16: 419429.Google Scholar
Barsky, A. J., Cleary, P. D., Sarnie, M. K., & Ruskin, J. N. (1994). Panic disorder, palpitations, and the awareness of cardiac activity. Journal of Nervous and Mental Disease, 182: 6371.Google Scholar
Beacher, F. D. C. C., Gray, M. A., Mathias, C. J., & Critchley, H. D. (2009). Vulnerability to simple faints is predicted by regional differences in brain anatomy. NeuroImage, 47: 937945.Google Scholar
Bechara, A. & Damasio, A. R. (2005). The somatic marker hypothesis: a neural theory of economic decision. Games and Economic Behavior, 52: 336372.Google Scholar
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50: 715.Google Scholar
Berntson, G. G., Sarter, M., & Cacioppo, J. T. (2003). Ascending visceral regulation of cortical affective information processing. European Journal of Neuroscience, 18: 21032109.Google Scholar
Birch, L. L., Fisher, J. O., & Davison, K. K. (2003). Learning to overeat: maternal use of restrictive feeding practices promotes girls’ eating in the absence of hunger. American Journal of Clinical Nutrition, 78: 215220.Google Scholar
Bornemann, B., Herbert, B. M., Mehling, W. E., & Singer, T. (2015). Differential changes in self-reported aspects of interoceptive awareness through 3 months of contemplative training. Frontiers in Psychology, 5: 1504.Google Scholar
Brannigan, M., Stevenson, R. J., & Francis, H. (2015). Thirst interoception and its relationship to a Western-style diet. Physiology & Behavior, 139: 423429.Google Scholar
Brener, J. & Kluvitse, C. (1988). Heartbeat detection: judgments of the simultaneity of external stimuli and heartbeats. Psychophysiology, 25: 554561.Google Scholar
Brener, J., Knapp, K., & Ring, C. (1995). The effects of manipulating beliefs about heart-rate on the accuracy of heartbeat counting in the Schandry task. Psychophysiology, 32: S22.Google Scholar
Brener, J., Liu, X. Q., & Ring, C. (1993). A method of constant stimuli for examining heartbeat detection: comparison with the Brener-Kluvitse and Whitehead methods. Psychophysiology, 30: 657665.Google Scholar
Brener, J. & Ring, C. (eds.) (1995). Perception and Heart Beat Detection. Frankfurt: Peter Lang.Google Scholar
Brydon, L., Harrison, N. A., Walker, C., Steptoe, A., & Critchley, H. D. (2008). Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biological Psychiatry, 63: 10221029.Google Scholar
Buchanan, T. W., Etzel, J. A., Adolphs, R., & Tranel, D. (2006). The influence of autonomic arousal and semantic relatedness on memory for emotional words. International Journal of Psychophysiology, 61: 2633.Google Scholar
Cameron, O. G. (2001). Visceral Sensory Neuroscience: Interoception. Oxford University Press.Google Scholar
Canales-Johnson, A., Silva, C., Huepe, D., Rivera-Rei, A., Noreika, V., Garcia, M. D., … & Bekinschtein, T. A. (2015). Auditory feedback differentially modulates behavioral and neural markers of objective and subjective performance when tapping to your heartbeat. Cerebral Cortex, 25: 44904503.Google Scholar
Cannon, W. B. (1931). Again the James–Lange and the thalamic theories of emotion. Psychological Review, 38: 281295.Google Scholar
Ceunen, E., Van Diest, I., & Vlaeyen, J. W. S. (2013). Accuracy and awareness of perception: related, yet distinct (commentary on Herbert et al., 2012). Biological Psychology, 92: 426427.Google Scholar
Couto, B., Adolfi, F., Sedeno, L., Salles, A., Canales-Johnson, A., Alvarez-Abut, P., … & Ibanez, A. (2015). Disentangling interoception: insights from focal strokes affecting the perception of external and internal milieus. Frontiers in Psychology, 6: 503.Google Scholar
Couto, B., Salles, A., Sedeno, L., Peradejordi, M., Barttfeld, P., Canales-Johnson, A., … & Ibanez, A. (2014). The man who feels two hearts: the different pathways of interoception. Social Cognitive and Affective Neuroscience, 9: 12531260.Google Scholar
Cowie, D., Makin, T. R., & Bremner, A. J. (2013). Children’s responses to the rubber-hand illusion reveal dissociable pathways in body representation. Psychological Science, 24: 762769.Google Scholar
Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3: 655666.Google Scholar
Craig, A. D. (2003). Interoception: the sense of the physiological condition of the body. Current Opinion in Neurobiology, 13: 500505.Google Scholar
Craig, A. D. (2015). How Do You Feel? An Interoceptive Moment with Your Neurobiological Self. Princeton University Press.Google Scholar
Critchley, H. D. & Harrison, N. A. (2013). Visceral influences on brain and behavior. Neuron, 77: 624638.Google Scholar
Critchley, H. D., Lewis, P. A., Orth, M., Josephs, O., Deichmann, R., Trimble, M. R., … & Dolan, R. J. (2007). Vagus nerve stimulation for treatment-resistant depression: behavioral and neural effects on encoding negative material. Psychosomatic Medicine, 69: 1722.Google Scholar
Critchley, H. D., Mathias, C. T., & Dolan, R. J. (2001). Neuroanatomical basis for first- and second-order representations of bodily states. Nature Neuroscience, 4: 207212.Google Scholar
Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7: 189195.Google Scholar
Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 351: 14131420.Google Scholar
Damasio, A. R. (1999). The Feeling of What Happens: Body and Emotion in the Making of Consciousness. New York: Harcourt Brace.Google Scholar
Damasio, A. R. (2010). Self Comes to Mind: Constructing the Conscious Brain. London: Vintage Books.Google Scholar
Damasio, A. R., Tranel, D., & Damasio, H. C. (1991). Somatic markers and the guidance of behavior: theory and preliminary testing. In Levin, H. S., Eisenberg, H. M., & Benton, A. L. (eds.), Frontal Lobe Function and Dysfunction (pp. 217229). Oxford University Press.Google Scholar
Daubenmier, J., Sze, J., Kerr, C. E., Kemeny, M. E., & Mehling, W. (2013). Follow your breath: respiratory interoceptive accuracy in experienced meditators. Psychophysiology, 50: 777789.Google Scholar
Dembovsky, K. & Seller, H. (eds.) (1995). Arterial Baroreceptor Reflexes. Frankfurt: Peter Lang.Google Scholar
Depascalis, V., Alberti, M. L., & Pandolfo, R. (1984). Anxiety, perception, and control of heart-rate. Perceptual and Motor Skills, 59: 203211.Google Scholar
Dienes, Z. & Berry, D. (1997). Implicit learning: below the subjective threshold. Psychonomic Bulletin & Review, 4: 323.Google Scholar
Dimberg, U., Thunberg, M., & Elmehed, K. (2000). Unconscious facial reactions to emotional facial expressions. Psychological Science, 11: 8689.Google Scholar
Dunn, B. D., Dalgleish, T., Ogilvie, A. D., & Lawrence, A. D. (2007). Heartbeat perception in depression. Behaviour Research and Therapy, 45: 19211930.Google Scholar
Dunn, B. D., Evans, D., Makarova, D., White, J., & Clark, L. (2012). Gut feelings and the reaction to perceived inequity: the interplay between bodily responses, regulation, and perception shapes the rejection of unfair offers on the ultimatum game. Cognitive, Affective, & Behavioral Neuroscience, 12: 419429.Google Scholar
Dunn, B. D., Galton, H. C., Morgan, R., Evans, D., Oliver, C., Meyer, M., … & Dalgleish, T. (2010a). Listening to your heart: how interoception shapes emotion experience and intuitive decision making. Psychological Science, 21: 18351844.Google Scholar
Dunn, B. D., Stefanovitch, I., Evans, D., Oliver, C., Hawkins, A., & Dalgleish, T. (2010b). Can you feel the beat? Interoceptive awareness is an interactive function of anxiety- and depression-specific symptom dimensions. Behaviour Research and Therapy, 48: 11331138.Google Scholar
Eccles, J. A., Garfinkel, S. N., Harrison, N. A., Ward, J., Taylor, R. E., Bewley, A. P., & Critchley, H. D. (2015). Sensations of skin infestation linked to abnormal frontolimbic brain reactivity and differences in self-representation. Neuropsychologia, 77: 9096.Google Scholar
Ehlers, A. & Breuer, P. (1992). Increased cardiac awareness in panic disorder. Journal of Abnormal Psychology, 101: 371382.Google Scholar
Ehlers, A., Margraf, J., Roth, W. T., Taylor, C. B., & Birbaumer, N. (1988). Anxiety induced by false heart rate feedback in patients with panic disorder. Behaviour Research and Therapy, 26: 111.Google Scholar
Eickhoff, S. B., Lotze, M., Wietek, B., Amunts, K., Enck, P., & Zilles, K. (2006). Segregation of visceral and somatosensory afferents: an fMRI and cytoarchitectonic mapping study. NeuroImage, 31: 10041014.Google Scholar
Elam, M., Svensson, T. H., & Thoren, P. (1985). Differentiated cardiovascular afferent regulation of locus coeruleus neurons and sympathetic-nerves. Brain Research, 358: 7784.Google Scholar
Elam, M., Yao, T., Svensson, T. H., & Thoren, P. (1984). Regulation of locus coeruleus neurons and splanchnic, sympathetic-nerves by cardiovascular afferents. Brain Research, 290: 281287.Google Scholar
Fairclough, S. H. & Goodwin, L. (2007). The effect of psychological stress and relaxation on interoceptive accuracy: implications for symptom perception. Journal of Psychosomatic Research, 62: 289295.Google Scholar
Farb, N., Daubenmier, J., Price, C. J., Gard, T., Kerr, C., Dunn, B. D., … & Mehling, W. E. (2015). Interoception, contemplative practice, and health. Frontiers in Psychology, 6: 763.Google Scholar
Fassino, S., Piero, A., Gramaglia, C., & Abbate-Daga, G. (2004). Clinical, psychopathological and personality correlates of interoceptive awareness in anorexia nervosa, bulimia nervosa and obesity. Psychopathology, 37: 168174.Google Scholar
Fukushima, H., Terasawa, Y., & Umeda, S. (2011). Association between interoception and empathy: evidence from heartbeat-evoked brain potential. International Journal of Psychophysiology, 79: 259265.Google Scholar
Furman, D. J., Waugh, C. E., Bhattacharjee, K., Thompson, R. J., & Gotlib, I. H. (2013). Interoceptive awareness, positive affect, and decision making in major depressive disorder. Journal of Affective Disorders, 151: 780785.Google Scholar
Fustos, J., Gramann, K., Herbert, B. M., & Pollatos, O. (2013). On the embodiment of emotion regulation: interoceptive awareness facilitates reappraisal. Social Cognitive and Affective Neuroscience, 8: 911917.Google Scholar
Ganos, C., Garrido, A., Navalpotro-Gomez, I., Ricciardi, L., Martino, D., Edwards, M. J., … & Bhatia, K. P. (2015). Premonitory urge to tic in Tourette’s is associated with interoceptive awareness. Movement Disorders, 30: 11981202.Google Scholar
Garfinkel, S. N., Barrett, A. B., Minati, L., Dolan, R. J., Seth, A. K., & Critchley, H. D. (2013). What the heart forgets: cardiac timing influences memory for words and is modulated by metacognition and interoceptive sensitivity. Psychophysiology, 50: 505512.Google Scholar
Garfinkel, S. N., Minati, L., Gray, M. A., Seth, A. K., Dolan, R. J., & Critchley, H. D. (2014). Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats. Journal of Neuroscience, 34: 65736582.Google Scholar
Garfinkel, S. N., Seth, A. K., Barrett, A. B., Suzuki, K., & Critchley, H. D. (2015). Knowing your own heart: distinguishing interoceptive accuracy from interoceptive awareness. Biological Psychology, 104: 6574.Google Scholar
Garfinkel, S. N., Tilly, C., O’Keeffe, S., Harrison, N. A., Seth, A. K., & Critchley, H. D. (2016a). Discrepancies between interoceptive dimensions in autism: implications for emotion and anxiety. Biological Psychology, 114: 117126.Google Scholar
Garfinkel, S. N., Zorab, E., Navaratnam, N., Engels, M., Mallorqui-Bague, N., Minati, L., … & Critchley, H. D. (2016b). Anger in brain and body: the neural and physiological perturbation of decision-making by emotion. Social Cognitive and Affective Neuroscience, 11: 150158.Google Scholar
Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biological Psychiatry, 63: 577586.Google Scholar
Gray, M. A., Beacher, F. D., Minati, L., Nagai, Y., Kemp, A. H., Harrison, N. A., & Critchley, H. D. (2012). Emotional appraisal is influenced by cardiac afferent information. Emotion, 12: 180191.Google Scholar
Gray, M. A., Taggart, P., Sutton, P. M., Groves, D., Holdright, D. R., Bradbury, D., … & Critchley, H. D. (2007). A cortical potential reflecting cardiac function. Proceedings of the National Academy of Sciences of the USA, 104: 68186823.Google Scholar
Gross, J. J. & John, O. P. (2003). Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85: 348362.Google Scholar
Grynberg, D. & Pollatos, O. (2015). Perceiving one’s body shapes empathy. Physiology & Behavior, 140: 5460.Google Scholar
Harrison, N. A., Gray, M. A., Gianaros, P. J., & Critchley, H. D. (2010). The embodiment of emotional feelings in the brain. Journal of Neuroscience, 30: 1287812884.Google Scholar
Harrison, N. A., Singer, T., Rotshtein, P., Dolan, R. J., & Critchley, H. D. (2006). Pupillary contagion: central mechanisms engaged in sadness processing. Social Cognitive and Affective Neuroscience, 1: 517.Google Scholar
Harshaw, C. (2015). Interoceptive dysfunction: toward an integrated framework for understanding somatic and affective disturbance in depression. Psychological Bulletin, 141: 311363.Google Scholar
Heaver, B. & Hutton, S. B. (2011). Keeping an eye on the truth? Pupil size changes associated with recognition memory. Memory, 19: 398405.Google Scholar
Herbert, B. M., Blechert, J., Hautzinger, M., Matthias, E., & Herbert, C. (2013). Intuitive eating is associated with interoceptive sensitivity: effects on body mass index. Appetite, 70: 2230.Google Scholar
Herbert, B. M., Muth, E. R., Pollatos, O., & Herbert, C. (2012). Interoception across modalities: on the relationship between cardiac awareness and the sensitivity for gastric functions. PLoS One, 7: e36646.Google Scholar
Herbert, B. M. & Pollatos, O. (2014). Attenuated interoceptive sensitivity in overweight and obese individuals. Eating Behaviors, 15: 445448.Google Scholar
Herrick, C. J. (1947). The proprioceptive nervous system. Journal of Nervous and Mental Disease, 106: 355358.Google Scholar
Hobday, D. I., Aziz, Q., Thacker, N., Hollander, I., Jackson, A., & Thompson, D. G. (2001). A study of the cortical processing of ano-rectal sensation using functional MRI. Brain, 124: 361368.Google Scholar
Hyett, M. P., Breakspear, M. J., Friston, K. J., Guo, C. C., & Parker, G. B. (2015). Disrupted effective connectivity of cortical systems supporting attention and interoception in melancholia. JAMA Psychiatry, 72: 350358.Google Scholar
Immanuel, S. A., Pamula, Y., Kohler, M., Martin, J., Kennedy, D., Nalivaiko, E., … & Baumert, M. (2014). Heartbeat evoked potentials during sleep and daytime behavior in children with sleep-disordered breathing. American Journal of Respiratory and Critical Care Medicine, 190: 11491157.Google Scholar
James, W. (1884). What is an Emotion? Mind, 9: 188205.Google Scholar
Jones, G. E., Leonberger, T. F., Rouse, C. H., Caldwell, J. A., & Jones, K. R. (1986). Preliminary data exploring the presence of an evoked-potential associated with cardiac visceral activity. Psychophysiology, 23: 445.Google Scholar
Katkin, E. S., Cestaro, V. L., & Weitkunat, R. (1991). Individual differences in cortical evoked potentials as a function of heartbeat detection ability. International Journal of Neuroscience, 61: 269276.Google Scholar
Katkin, E. S., Wiens, S., & Ohman, A. (2001). Nonconscious fear conditioning, visceral perception, and the development of gut feelings. Psychological Science, 12: 366370.Google Scholar
Khalsa, S. S., Rudrauf, D., Damasio, A. R., Davidson, R. J., Lutz, A., & Tranel, D. (2008). Interoceptive awareness in experienced meditators. Psychophysiology, 45: 671677.Google Scholar
Khalsa, S. S., Rudrauf, D., Feinstein, J. S., & Tranel, D. (2009). The pathways of interoceptive awareness. Nature Neuroscience, 12: 14941496.Google Scholar
Kirk, U., Downar, J., & Montague, P. R. (2011). Interoception drives increased rational decision-making in meditators playing the ultimatum game. Frontiers in Neuroscience, 5: 49.Google Scholar
Kleckner, I. R., Wormwood, J. B., Simmons, W. K., Barrett, L. F., & Quigley, K. S. (2015). Methodological recommendations for a heartbeat detection-based measure of interoceptive sensitivity. Psychophysiology, 52: 14321440.Google Scholar
Knapp, K., Ring, C., & Brener, J. (1997). Sensitivity to mechanical stimuli and the role of general sensory and perceptual processes in heartbeat detection. Psychophysiology, 34: 467473.Google Scholar
Knapp-Kline, K. & Kline, J. P. (2005). Heart rate, heart rate variability, and heartbeat detection with the method of constant stimuli: slow and steady wins the race. Biological Psychology, 69: 387396.Google Scholar
Knoll, J. F. & Hodapp, V. (1992). A comparison between 2 methods for assessing heartbeat perception. Psychophysiology, 29: 218222.Google Scholar
Koch, A. & Pollatos, O. (2014a). Cardiac sensitivity in children: sex differences and its relationship to parameters of emotional processing. Psychophysiology, 51: 932941.Google Scholar
Koch, A. & Pollatos, O. (2014b). Interoceptive sensitivty, body weight and eating behavior in children: a prospective study. Frontiers in Psychology, 5: 1003.Google Scholar
Kouakam, C., Lacroix, D., Klug, D., Baux, P., Marquie, C., & Kacet, S. (2002). Prevalence and prognostic significance of psychiatric disorders in patients evaluated for recurrent unexplained syncope. American Journal of Cardiology, 89: 530535.Google Scholar
Lane, R. D. (2008). Neural substrates of implicit and explicit emotional processes: a unifying framework for psychosomatic medicine. Psychosomatic Medicine, 70: 214231.Google Scholar
Lange, C. G. (ed.) (1885/1912). The Mechanisms of the Emotions. Boston, MA: Houghton Mifflin.Google Scholar
Lenggenhager, B., Azevedo, R. T., Mancini, A., & Aglioti, S. M. (2013). Listening to your heart and feeling yourself: effects of exposure to interoceptive signals during the ultimatum game. Experimental Brain Research, 230: 233241.Google Scholar
Leopold, C. & Schandry, R. (2001). The heartbeat-evoked brain potential in patients suffering from diabetic neuropathy and in healthy control persons. Clinical Neurophysiology, 112: 674682.Google Scholar
Liu, J., Wei, W., Kuang, H., Zhao, F., & Tsien, J. Z. (2013). Changes in heart rate variability are associated with expression of short-term and long-term contextual and cued fear memories. PLoS One, 8: e63590.Google Scholar
Marcel, A. J. (1983). Conscious and unconscious perception: experiments on visual masking and word recognition. Cognitive Psychology, 15: 197237.Google Scholar
Marron, K., Wharton, J., Sheppard, M. N., Fagan, D., Royston, D., Kuhn, D. M., … & Polak, J. M. (1995). Distribution, morphology, and neurochemistry of endocardial and epicardial nerve-terminal arborizations in the human heart. Circulation, 92: 23432351.Google Scholar
McFarland, R. A. (1975). Heart rate perception and heart rate control. Psychophysiology, 12(4): 402405.Google Scholar
Mehling, W. E., Gopisetty, V., Daubenmier, J., Price, C. J., Hecht, F. M., & Stewart, A. (2009). Body awareness: construct and self-report measures. PLoS One, 4: e5614.Google Scholar
Melloni, M., Sedeno, L., Couto, B., Reynoso, M., Gelormini, C., Favaloro, R., … & Ibanez, A. (2013). Preliminary evidence about the effects of meditation on interoceptive sensitivity and social cognition. Behavioral and Brain Functions, 9: 47.Google Scholar
Montoya, P., Schandry, R., & Muller, A. (1993). Heartbeat evoked-potentials (HEP) – topography and influence of cardiac awareness and focus of attention. Electroencephalography & Clinical Neurophysiology, 88: 163172.Google Scholar
Morris, A. L., Cleary, A. M., & Still, M. L. (2008). The role of autonomic arousal in feelings of familiarity. Consciousness and Cognition, 17: 13781385.Google Scholar
Murase, S., Inui, K., & Nosaka, S. (1994). Baroreceptor inhibition of the locus-coeruleus noradrenergic neurons. Neuroscience, 61: 635643.Google Scholar
Näring, G. W. B. & van der Staak, C. P. F. (1995). Perception of heart rate and blood pressure: the role of alexithymia and anxiety. Pychotherapy and Psychosomatics, 63: 193200.Google Scholar
Nicotra, A., Critchley, H. D., Mathias, C. J., & Dolan, R. J. (2006). Emotional and autonomic consequences of spinal cord injury explored using functional brain imaging. Brain, 129: 718728.Google Scholar
North, N. T. & O’Carroll, R. E. (2001). Decision making in patients with spinal cord damage: afferent feedback and the somatic marker hypothesis. Neuropsychologia, 39: 521524.Google Scholar
Okon-Singer, H., Mehnert, J., Hoyer, J., Hellrung, L., Schaare, H. L., Dukart, J., & Villringer, A. (2014). Neural control of vascular reactions: impact of emotion and attention. Journal of Neuroscience, 34: 42514259.Google Scholar
Park, H. D., Correia, S., Ducorps, A., & Tallon-Baudry, C. (2014). Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nature Neuroscience, 17: 612618.Google Scholar
Parkin, L., Morgan, R., Rosselli, A., Howard, M., Sheppard, A., Evans, D., … & Dunn, B. (2014). Exploring the relationship between mindfulness and cardiac perception. Mindfulness, 5(3), 298313.Google Scholar
Paulus, M. P. & Stein, M. B. (2006). An insular view of anxiety. Biological Psychiatry, 60: 383387.Google Scholar
Paulus, M. P. & Stein, M. B. (2010). Interoception in anxiety and depression. Brain Structure and Function, 214: 451463.Google Scholar
Pistoia, F., Carolei, A., Sacco, S., Conson, M., Pistarini, C., Cazzulani, B., … & Sarà, M. (2015). Contribution of interoceptive information to emotional processing: evidence from individuals with spinal cord injury. Journal of Neurotrauma, 32: 19811986.Google Scholar
Pollatos, O., Fustos, J., & Critchley, H. D. (2012). On the generalised embodiment of pain: how interoceptive sensitivity modulates cutaneous pain perception. Pain, 153: 16801686.Google Scholar
Pollatos, O., Gramann, K., & Schandry, R. (2007a). Neural systems connecting interoceptive awareness and feelings. Human Brain Mapping, 28: 918.Google Scholar
Pollatos, O., Herbert, B. M., Kaufmann, C., Auer, D. P., & Schandry, R. (2007b). Interoceptive awareness, anxiety and cardiovascular reactivity to isometric exercise. International Journal of Psychophysiology, 65: 167173.Google Scholar
Pollatos, O., Kirsch, W., & Schandry, R. (2005a). Brain structures involved in interoceptive awareness and cardioafferent signal processing: a dipole source localization study. Human Brain Mapping, 26: 5464.Google Scholar
Pollatos, O., Kirsch, W., & Schandry, R. (2005b). On the relationship between interoceptive awareness, emotional experience, and brain processes. Cognitive Brain Research, 25: 948962.Google Scholar
Pollatos, O. & Schandry, R. (2004). Accuracy of heartbeat perception is reflected in the amplitude of the heartbeat-evoked brain potential. Psychophysiology, 41: 476482.Google Scholar
Pollatos, O. & Schandry, S. (2008). Emotional processing and emotional memory are modulated by interoceptive awareness. Cognition & Emotion, 22: 272287.Google Scholar
Pollatos, O., Schandry, R., Auer, D. P., & Kaufmann, C. (2007c). Brain structures mediating cardiovascular arousal and interoceptive awareness. Brain Research, 1141: 178187.Google Scholar
Pollatos, O., Traut-Mattausch, E., & Schandry, R. (2009). Differential effects of anxiety and depression on interoceptive accuracy. Depression and Anxiety, 26: 167173.Google Scholar
Pollatos, O., Traut-Mattausch, E., Schroeder, H., & Schandry, R. (2007). Interoceptive awareness mediates the relationship between anxiety and the intensity of unpleasant feelings. Journal of Anxiety Disorders, 21: 931943.Google Scholar
Porges, S. (1993). Body Perception Questionnaire. Laboratory of Development Assessment, University of Maryland.Google Scholar
Ring, C. & Brener, J. (1992). The temporal locations of heartbeat sensations. Psychophysiology, 29: 535545.Google Scholar
Ring, C., Brener, J., Knapp, K., & Mailloux, J. (2015). Effects of heartbeat feedback on beliefs about heart rate and heartbeat counting: a cautionary tale about interoceptive awareness. Biological Psychology, 104: 193198.Google Scholar
Schachter, S. & Singer, J. E. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69: 379399.Google Scholar
Schandry, R. (1981). Heart beat perception and emotional experience. Psychophysiology, 18: 483488.Google Scholar
Schandry, R., Bestler, M., & Montoya, P. (1993). On the relation between cardiodynamics and heartbeat perception. Psychophysiology, 30: 467474.Google Scholar
Schneider, T. R., Lyons, J. B., & Williams, M. (2005). Emotional intelligence and autonomic self-perception: emotional abilities are related to visceral acuity. Personality and Individual Differences, 39: 853861.Google Scholar
Schonfeld, P., Ackermann, K., & Schwabe, L. (2014). Remembering under stress: different roles of autonomic arousal and glucocorticoids in memory retrieval. Psychoneuroendocrinology, 39: 249256.Google Scholar
Schulz, A., de Sá, D. S. F., Dierolf, A. M., Lutz, A., van Dyck, Z., Vogele, C., & Schächinger, H. (2015). Short-term food deprivation increases amplitudes of heartbeat-evoked potentials. Psychophysiology, 52: 695703.Google Scholar
Schulz, A., Lass-Hennemann, J., Sutterlin, S., Schächinger, H., & Vogele, C. (2013a). Cold pressor stress induces opposite effects on cardioceptive accuracy dependent on assessment paradigm. Biological Psychology, 93: 167174.Google Scholar
Schulz, A., Strelzyk, F., de Sá, D. S. F., Naumann, E., Vogele, C., & Schächinger, H. (2013b). Cortisol rapidly affects amplitudes of heartbeat-evoked brain potentials: implications for the contribution of stress to an altered perception of physical sensations.Psychoneuroendocrinology, 38: 26862693.Google Scholar
Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Sciences, 17: 565573.Google Scholar
Seth, A. K., Suzuki, K., & Critchley, H. D. (2011). An interoceptive predictive coding model of conscious presence. Frontiers in Psychology, 2: 395.Google Scholar
Shao, S. Y., Shen, K. Q., Wilder-Smith, E. P. V., & Li, X. P. (2011). Effect of pain perception on the heartbeat evoked potential. Clinical Neurophysiology, 122: 18381845.Google Scholar
Sherrington, C. S. (1948). The Integrative Action of the Nervous System. Cambridge University Press.Google Scholar
Singer, T. & Lamm, C. (2009). The social neuroscience of empathy. Year in Cognitive Neuroscience 2009, 1156: 8196.Google Scholar
Snodgrass, J. G. & Corwin, J. (1988). Pragmatics of measuring recognition memory: applications to dementia and amnesia. Journal of Experimental Psychology. General, 117: 3450.Google Scholar
Sokol-Hessner, P., Hartley, C. A., Hamilton, J. R., & Phelps, E. A. (2015). Interoceptive ability predicts aversion to losses. Cognition & Emotion, 29: 695701.Google Scholar
Stephan, E., Pardo, J. V., Faris, P. L., Hartman, B. K., Kim, S. W., Ivanov, E. H., … & Goodale, R. L. (2003). Functional neuroimaging of gastric distention. Journal of Gastrointestinal Surgery, 7: 740749.Google Scholar
Suzuki, K., Garfinkel, S. N., Critchley, H. D., & Seth, A. K. (2013). Multisensory integration across exteroceptive and interoceptive domains modulates self-experience in the rubber-hand illusion. Neuropsychologia, 51: 29092917.Google Scholar
Tajadura-Jimenez, A., Longo, M. R., Coleman, R., & Tsakiris, M. (2012). The person in the mirror: using the enfacement illusion to investigate the experiential structure of self-identification. Consciousness and Cognition, 21: 17251738.Google Scholar
Terasawa, Y., Moriguchi, Y., Tochizawa, S., & Umeda, S. (2014). Interoceptive sensitivity predicts sensitivity to the emotions of others. Cognition & Emotion, 28: 14351448.Google Scholar
Terasawa, Y., Shibata, M., Moriguchi, Y., & Umeda, S. (2013). Anterior insular cortex mediates bodily sensibility and social anxiety. Social Cognitive and Affective Neuroscience, 8: 259266.Google Scholar
Tinaz, S., Malone, P., Hallett, M., & Horovitz, S. G. (2015). Role of the right dorsal anterior insula in the urge to tic in Tourette syndrome. Movement Disorders, 30: 11901197.Google Scholar
Tsakiris, M., Tajadura-Jimenez, A., & Costantini, M. (2011). Just a heartbeat away from one’s body: interoceptive sensitivity predicts malleability of body representations. Proceedings of the Royal Society B: Biological Sciences, 278: 24702476.Google Scholar
Umeda, S., Harrison, N. A., Gray, M. A., Mathias, C. J., & Critchley, H. D. (2015). Structural brain abnormalities in postural tachycardia syndrome: a VBM-DARTEL study. Frontiers in Neuroscience, 9: 34.Google Scholar
Vaitl, D. (1996). Interoception. Biological Psychology, 42: 127.Google Scholar
van ’t Wout, M., Faught, S., & Menino, D. (2013). Does interoceptive awareness affect the ability to regulate unfair treatment by others? Frontiers in Psychology, 4.Google Scholar
Werner, N. S., Jung, K., Duschek, S., & Schandry, R. (2009). Enhanced cardiac perception is associated with benefits in decision-making. Psychophysiology, 46: 11231129.Google Scholar
Werner, N. S., Peres, I., Duschek, S., & Schandry, R. (2010). Implicit memory for emotional words is modulated by cardiac perception. Biological Psychology, 85: 370376.Google Scholar
Whitehead, W. E., Drescher, V. M., Heiman, P., & Blackwell, B. (1977). Relation of heart-rate control to heartbeat perception. Biofeedback and Self-Regulation, 2: 371392.Google Scholar
Wiebking, C., de Greck, M., Duncan, N. W., Tempelmann, C., Bajbouj, M., & Northoff, G. (2015). Interoception in insula subregions as a possible state marker for depression: an exploratory fMRI study investigating healthy, depressed and remitted participants. Frontiers in Behavioral Neuroscience, 9: 82.Google Scholar
Wiens, S., Mezzacappa, E. S., & Katkin, E. S. (2000). Heartbeat detection and the experience of emotions. Cognition and Emotion, 14: 417427.Google Scholar
Wiens, S. & Palmer, S. N. (2001). Quadratic trend analysis and heartbeat detection. Biological Psychology, 58: 159175.Google Scholar
Wildman, H. E. & Jones, G. E. (1982). Consistency of heartbeat discrimination scores on the Whitehead procedure in knowledge-of-results: trained and untrained subjects. Psychophysiology, 19: 592.Google Scholar
Wilkins, B. W., Hesse, C., Sviggum, H. P., Nicholson, W. T., Moyer, T. P., Joyner, M. J., & Eisenach, J. H. (2007). Alternative to ganglionic blockade with anticholinergic and alpha-2 receptor agents. Clinical Autonomic Research, 17: 7784.Google Scholar
Yates, A. J., Jones, K. E., Marie, G. V., & Hogben, J. H. (1985). Detection of the heartbeat and events in the cardiac cycle. Psychophysiology, 22: 561567.Google Scholar
Yuan, H., Yan, H. M., Xu, X. G., Han, F., & Yan, Q. (2007). Effect of heartbeat perception on heartbeat evoked potential waves. Neuroscience Bulletin, 23: 357362.Google Scholar

References

Adelman, S., Taylor, C. R., & Heglund, N. C. (1975). Sweating on paws and palms: what is its function? American Journal of Physiology, 229: 14001402.Google Scholar
Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R.J. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 213: 220222.Google Scholar
Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 28: R1R39.Google Scholar
Allen, J. J., Chambers, A. S., & Towers, D. N. (2007). The many metrics of cardiac chronotropy: a pragmatic primer and a brief comparison of metrics. Biological Psychology, 74: 243262.Google Scholar
Amodio, D. M., Harmon-Jones, E., & Devine, P. G. (2003). Individual differences in the activation and control of affective race bias as assessed by startle eyeblink response and self-report. Journal of Personality and Social Psychology, 84: 738753.Google Scholar
Andersson, K.-E. & Wagner, G. (1995). Physiology of penile erection. Physiological Reviews, 75: 191236.Google Scholar
Angyal, A. (1941). Disgust and related aversions. Journal of Abnormal and Social Psychology, 36: 393412.Google Scholar
Arnold, M. B. (1960). Emotion and Personality. New York: Columbia University Press.Google Scholar
Averill, J. R. (1969). Autonomic response patterns during sadness and mirth. Psychophysiology, 5: 399414.Google Scholar
Ax, A. F. (1953). The physiological differentiation between fear and anger in humans. Psychosomatic Medicine, 15: 433442.Google Scholar
Bain, A. R., Deren, T. M., & Jay, O. (2011). Describing individual variation in local sweating during exercise in a temperate environment. European Journal of Applied Physiology, 111: 15991607.Google Scholar
Baldaro, B., Battacchi, M. W., Codispoti, M., Tuozzi, G., Trombini, G., Bolazni, R., & Palomba, D. (1996). Modifications of electrogastrographic activity during the viewing of brief film sequences. Perceptual and Motor Skills, 82: 12431250.Google Scholar
Barrett, L. F. (2006). Are emotions natural kinds? Perspectives on Psychological Science, 1: 2858.Google Scholar
Barrett, L. F. (2009). The future of psychology: connecting mind to brain. Perspectives on Psychological Science, 4: 326339.Google Scholar
Barrett, L. F. & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16: 419429.Google Scholar
Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91: 276292.Google Scholar
Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275: 12931294.Google Scholar
Benedek, M. & Kaernbach, C. (2011). Physiological correlates and emotional specificity of human piloerection. Biological Psychology, 86: 320329.Google Scholar
Benedek, M., Wilfling, B., Lukas-Wolfbauer, R., Katzur, B. H., & Kaernbach, C. (2010). Objective and continuous measurement of piloerection. Psychophysiology, 47: 989993.Google Scholar
Bergdahl, M. & Bergdahl, J. (2000). Low unstimulated salivary flow and subjective oral dryness: association with medication, anxiety, depression, and stress. Journal of Dental Research, 79: 16521658.Google Scholar
Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., Stone, P. H., & van Der Molen, M. W. (1997). Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology, 34: 623648.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993a). Cardiac psychophysiology and autonomic space in humans: empirical perspectives and conceptual implications. Psychological Bulletin, 114: 296322.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993b). Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology, 30: 183196.Google Scholar
Berntson, G. G., Norman, G. J., Bechara, A., Bruss, J., Tranel, D., & Cacioppo, J. T. (2011). The insula and evaluative processes. Psychological Science, 22: 8086.Google Scholar
Bindra, D. (1972). Weeping: a problem of many facets. Bulletin of the British Psychological Society, 25: 281284.Google Scholar
Blascovich, J., Mendes, W. B., Hunter, S. B., Lickel, B., & Kowai-Bell, N. (2001). Perceiver threat in social interactions with stigmatized others. Journal of Personality and Social Psychology, 80: 253267.Google Scholar
Blascovich, J., Mendes, W. B., Hunter, S. B., & Salomon, K. (1999). Social facilitation as challenge and threatJournal of Personality and Social Psychology, 77: 6877.Google Scholar
Blascovich, J. & Tomaka, J. (1996). The biopsychosocial model of arousal regulation. In Zanna, M. (ed.), Advances in Experimental Social Psychology, vol. 28 (pp. 151). New York: Academic Press.Google Scholar
Blumenthal, T. D., Cuthbert, B. N., Filion, D. L., Hackley, S., Lipp, O. V., & van Boxtel, A. (2005). Committee report. Guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42: 115.Google Scholar
Bosch, N. M., Riese, H., Reijneveld, S. A., Bakker, M. P., Verhulst, F. C., Ormel, J., & Oldehinkel, A. J. (2012). Timing matters: long term effects of adversities from prenatal period up to adolescence on adolescents’ cortisol stress response. The TRAILS study. Psychoneuroendocrinology, 37: 14391447.Google Scholar
Boucher, J. D. & Ekman, P. (1975). Facial areas and emotional information. Journal of Communication, 25: 2129.Google Scholar
Boucsein, W., Fowles, D., Grimnes, S., Ben-Shakhar, G., Roth, W., Dawson, M., & Filion, D. (2012). Society for Psychophysiological Research Ad Hoc Committee on Electrodermal Measures: publication recommendations for electrodermal measurements. Psychophysiology, 49: 10171034.Google Scholar
Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and motivation: defensive and appetitive reactions in picture processing. Emotion, 1: 276298.Google Scholar
Bradley, M. M. & Lang, P. J. (2000). Affective reactions to acoustic stimuli. Psychophysiology, 37: 204215.Google Scholar
Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45: 602607.Google Scholar
Brenner, S. L., Beauchaine, T. P., & Sylvers, P. D. (2005). A comparison of psychophysiological and self-report measures of BAS and BIS activation. Psychophysiology, 42: 108115.Google Scholar
Brown, C. C. (1970). The parotid puzzle: a review of the literature on human salivation and its applications to psychophysiology. Psychophysiology, 7: 6685.Google Scholar
Butler, E. A., Wilhelm, F. H., & Gross, J. J. (2006). Respiratory sinus arrhythmia, emotion, and emotion regulation during social interaction. Psychophysiology, 43: 612622.Google Scholar
Cacioppo, J. T., Berntson, G. G., Larsen, J. T., Poehlmann, K. M., & Ito, T. A. (2000). The Psychophysiology of Emotion. New York: Guilford Press.Google Scholar
Cacioppo, J. T. & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45: 1628.Google Scholar
Campos, J. J., Mumme, D. L., Kermoian, R., & Campos, R. G. (1994). A functionalist perspective on the nature of emotion. Monographs of the Society for Research in Child Development, 59: 284303.Google Scholar
Cannon, W. B. (1932). The Wisdom of the Body. New York: W. W. Norton.Google Scholar
Carver, C. S. & Harmon-Jones, E. (2009). Anger is an approach-related affect: evidence and implications. Psychological Bulletin, 135: 183204.Google Scholar
Castelfranchi, C. & Poggi, I. (1990). Blushing as a discourse: was Darwin wrong? In Crozier, W. R. (ed.), Shyness and Embarrassment: Perspectives from Social Psychology (pp. 230251). Cambridge University Press.Google Scholar
Chauhan, B., Mathias, C. J., & Critchley, H. D. (2008). Autonomic contributions to empathy: evidence from patients with primary autonomic failure. Autonomic Neuroscience, 140: 96100.Google Scholar
Coan, J. A. & Allen, J. J. B. (eds.) (2007). Handbook of Emotion Elicitation and Assessment. Oxford University Press.Google Scholar
Coan, J. A. & Gottman, J. M. (2007). The specific affect coding system (SPAFF). In Coan, J. A. & Allen, J. J. B. (eds.), Handbook of Emotion Elicitation and Assessment (pp. 267285). Oxford University Press.Google Scholar
Cohn, J. F. & De la Torre, F. (2015). Automated face analysis for affective computing. In Calvo, R. A., D’Mello, S. K., Gratch, J., & Kappas, A. (eds.), The Oxford Handbook of Affective Computing (pp. 131150). Oxford University Press.Google Scholar
Couto, B., Salles, A., Sedeño, L., Peradejordi, M., Barttfeld, P., Canales-Johnson, A., … & Ibanez, A. (2013). The man who feels two hearts: the different pathways of interoception. Social Cognitive and Affective Neuroscience, 9: 12531260.Google Scholar
Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3: 655666.Google Scholar
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10: 5970.Google Scholar
Craig, W. (1918). Appetites and aversions as constituents of instincts. Biological Bulletin, 34: 91107.Google Scholar
D’Andrade, R. & Egan, M. (1974). The colors of emotion. American Ethnologist, 1: 4963.Google Scholar
Dan-Glauser, E. S. & Gross, J. J. (2013). Emotion regulation and emotion coherence: evidence for strategy-specific effects. Emotion, 13: 832842.Google Scholar
Darwin, C. (1936). The Origin of Species by Means of Natural Selection: Or the Preservation of Favored Races in the Struggle for Life and The Descent of Man and Selection in Relation to Sex. New York: Modern Library.Google Scholar
Davidson, R. J. & Irwin, W. (1999). The functional neuroanatomy of emotion and affective style. Trends in Cognitive Sciences, 3: 1121.Google Scholar
Delp, M. J. & Sackeim, H. A. (1987). Effects of mood on lacrimal flow: sex differences and asymmetry. Psychophysiology, 24: 550556.Google Scholar
Diamond, L. M., Hicks, A. M., & Otter-Henderson, K. D. (2011). Individual differences in vagal regulation moderate associations between daily affect and daily couple interactions. Personality and Social Psychology Bulletin, 37: 731744.Google Scholar
Dimberg, U. (1982). Facial reactions to facial expressions. Psychophysiology, 19: 643647.Google Scholar
Drummond, P. D. & Lance, J. W. (1987). Facial flushing and sweating mediated by the sympathetic nervous system. Brain, 110: 793803.Google Scholar
Duchowski, A. (2007). Eye Tracking Methodology: Theory and Practice: London: Springer Verlag.Google Scholar
Eckart, J. A., Sturm, V. E., Miller, B. L., & Levenson, R. W. (2012). Diminished disgust reactivity in behavioral variant frontotemporal dementia. Neuropsychologia, 50: 786790.Google Scholar
Edelmann, R. J. (1987). The Psychology of Embarrassment. Oxford: John Wiley.Google Scholar
Eisenberg, N., Fabes, R. A., Murphy, B., Maszk, P., Smith, M., & Karbon, M. (1995). The role of emotionality and regulation in children’s social functioning: a longitudinal study. Child Development, 66: 13601384.Google Scholar
Eisenberg, N., Schaller, M., Fabes, R. A., Bustamante, D., Mathy, R. M., Shell, R., & Rhodes, K. (1988). Differentiation of personal distress and sympathy in children and adults. Developmental Psychology, 24: 766775.Google Scholar
Ekman, P. (1984). Expression and the nature of emotion. In Scherer, K. R. & Ekman, P. (eds.), Approaches to Emotion (pp. 319343). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Ekman, P. (1993). Facial expression and emotion. American Psychologist, 48: 384392.Google Scholar
Ekman, P. (1994). Strong evidence for universals in facial expressions: a reply to Russell’s mistaken critique. Psychological Bulletin, 115: 268287.Google Scholar
Ekman, P. & Friesen, W. V. (1978). Facial Action Coding System. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Ekman, P., Friesen, W. V., & Ellsworth, P. (1972a). Emotion in the Human Face. New York: Pergamon Press.Google Scholar
Ekman, P., Friesen, W. V., & Ellsworth, P. (1972b). What are the similarities and differences in facial behavior across cultures? In Ekman, P., Friesen, W. V., & Ellsworth, P. (eds.), Emotion in the Human Face (pp. 128146). New York: Pergamon Press.Google Scholar
Ekman, P., Levenson, R. W., & Friesen, W. V. (1983). Autonomic nervous system activity distinguishes among emotions. Science, 221: 12081210.Google Scholar
Ekman, P., Sorenson, E. R., & Friesen, W. V. (1969). Pan cultural elements in facial displays of emotion. Science, 164: 8688.Google Scholar
Elliot, A. J. & Covington, M. V. (2001). Approach and avoidance motivationEducational Psychology Review, 13: 7392.Google Scholar
Eppinger, H. & Hess, L. (1915). VAGOTONIA: a clinical study. Journal of Nervous and Mental Disease, 42: 112119.Google Scholar
Ernst, J., Northoff, G., Böker, H., Seifritz, E., & Grimm, S. (2013). Interoceptive awareness enhances neural activity during empathy. Human Brain Mapping, 34: 16151624.Google Scholar
Fowles, D. C., Christie, M. J., Edelberg, R., Grings, W. W., Lykken, D. T., & Venables, P. H. (1981). Committee report. Publication recommendations for electrodermal measurements. Psychophysiology, 18: 232239.Google Scholar
Fredrickson, B. L. (2000). Cultivating positive emotions to optimize health and well-being. Prevention & Treatment, 3: article 0001a.Google Scholar
Fredrickson, B. L. & Levenson, R. W. (1998). Positive emotions speed recovery from the cardiovascular sequelae of negative emotions. Cognition & Emotion, 12: 191220.Google Scholar
Freund, K. (1991). Reflections on the development of the phallometric method of assessing erotic preferences. Annals of Sex Research, 4: 221228.Google Scholar
Freund, K., Sedlacek, F., & Knob, K. (1965). A simple transducer for mechanical plethysmography of the male genital. Journal of the Experimental Analysis of Behavior, 8: 169170.Google Scholar
Friedman, H. L., Brown, N. J. L., Tugade, M. M., Shiota, M. N., & Kirby, L. D. (2014). The State of Contemporary Positive Emotions Research. Washington, DC: American Psychological Association.Google Scholar
Friesen, W. V. (1972). Cultural differences in facial expressions in a social situation: an experimental test of the concept of display rules. Dissertation, University of California, San Francisco.Google Scholar
Fukushima, H., Terasawa, Y., & Umeda, S. (2011). Association between interoception and empathy: evidence from heartbeat-evoked brain potential. International Journal of Psychophysiology, 79: 259265.Google Scholar
Gendron, M., Roberson, D., van der Vyver, J. M., & Barrett, L.F. (2014). Perceptions of emotion from facial expressions are not culturally universal: evidence from a remote culture. Emotion, 14: 251262.Google Scholar
Gomez, P. & Danuser, B. (2004). Affective and physiological responses to environmental noises and music. International Journal of Psychophysiology, 53: 91103.Google Scholar
Gross, J. J. (1998). Antecedent- and response-focused emotion regulation: divergent consequences for experience, expression, and physiology. Journal of Personality and Social Psychology, 74: 224237.Google Scholar
Gross, J. J., Fredrickson, B. L., & Levenson, R. W. (1994). The psychophysiology of crying. Psychophysiology, 31: 460468.Google Scholar
Gross, J. J. & Levenson, R. W. (1993). Emotional suppression: physiology, self-report, and expressive behavior. Journal of Personality and Social Psychology, 64: 970986.Google Scholar
Gross, J.J., & Levenson, R. W. (1995). Emotion elicitation using films. Cognition & Emotion, 9: 87108.Google Scholar
Grossman, P., Karemaker, J., & Wieling, W. (1991). Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: the need for respiratory control. Psychophysiology, 28: 201216.Google Scholar
Gruber, J., Johnson, S. L., Oveis, C., & Keltner, D. (2008). Risk for mania and positive emotional responding: too much of a good thing? Emotion, 8: 2333.Google Scholar
Harrison, N. A., Gray, M. A., Gianaros, P. J., & Critchley, H. D. (2010). The embodiment of emotional feelings in the brain. Journal of Neuroscience, 30: 1287812884.Google Scholar
Harrison, N. A., Singer, T., Rotshtein, P., Dolan, R. J., & Critchley, H. D. (2006). Pupillary contagion: central mechanisms engaged in sadness processing. Social Cognitive and Affective Neuroscience, 1: 517.Google Scholar
Harrison, N. A., Wilson, C. E., & Critchley, H. D. (2007). Processing of observed pupil size modulates perception of sadness and predicts empathy. Emotion, 7: 724729.Google Scholar
Haug, T. T., Svebak, S., Hausken, T., Wilhelmsen, I., Berstad, A., & Ursin, H. (1994). Low vagal activity as mediating mechanism for the relationship between personality factors and gastric symptoms in functional dyspepsia. Psychosomatic Medicine, 56: 181186.Google Scholar
Herbert, B. M., Muth, E. R., Pollatos, O., & Herbert, C. (2012). Interoception across modalities: on the relationship between cardiac awareness and the sensitivity for gastric functions. PLoS One, 7: e36646.Google Scholar
Herlihy, B. (2013). The Human Body in Health and Illness. St. Louis, MO: Elsevier.Google Scholar
Herrald, M. M. & Tomaka, J. (2002). Patterns of emotion-specific appraisal, coping, and cardiovascular reactivity during an ongoing emotional episode. Journal of Personality and Social Psychology, 83: 434450.Google Scholar
Hess, E. H. & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143: 11901192.Google Scholar
Hopp, H., Shallcross, A. J., Ford, B. Q., Troy, A. S., Wilhelm, F. H., & Mauss, I. B. (2013). High cardiac vagal control protects against future depressive symptoms under conditions of high social support. Biological Psychology, 93: 143149.Google Scholar
Houle, M. S. & Billman, G. E. (1999). Low-frequency component of the heart rate variability spectrum: a poor marker of sympathetic activity. American Journal of Physiology, 276: H215H223.Google Scholar
Izard, C. E. (1971). The Face of Emotion. New York: Appleton-Century-Crofts.Google Scholar
James, W. (1884). What is an emotion? Mind, 9: 188205.Google Scholar
Jennings, J. R., Berg, W. K., Hutcheson, J. S., Obrist, P., Porges, S., & Turpin, G. (1981). Committee report. Publication guidelines for heart rate studies in man. Psychophysiology, 18: 226231.Google Scholar
Johnson, K. J., Waugh, C. E., & Fredrickson, B. L. (2010). Smile to see the forest: facially expressed positive emotions broaden cognition. Cognition & Emotion, 24: 299321.Google Scholar
Juslin, P. N. & Laukka, P. (2004). Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening. Journal of New Music Research, 33: 217238.Google Scholar
Kahneman, D. & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154: 15831585.Google Scholar
Katkin, E. S. (1985). Blood, sweat, and tears: individual differences in autonomic self-perception. Psychophysiology, 22: 125137.Google Scholar
Keltner, D. & Anderson, C. (2000). Saving face for Darwin: the functions and uses of embarrassment. Current Directions in Psychological Science, 9: 187192.Google Scholar
Keltner, D. & Buswell, B. N. (1997). Embarrassment: its distinct form and appeasement functions. Psychological Bulletin, 122: 250270.Google Scholar
Keltner, D. & Haidt, J. (2003). Approaching awe, a moral, spiritual, and aesthetic emotion. Cognition & Emotion, 17: 297314.Google Scholar
Keltner, D. & Kring, A. M. (1998). Emotion, social function, and psychopathology. Review of General Psychology, 2: 320342.Google Scholar
Khalfa, S., Roy, M., Rainville, P., Dalla Bella, S., & Peretz, I. (2008). Role of tempo entrainment in psychophysiological differentiation of happy and sad music? International Journal of Psychophysiology, 68: 1726.Google Scholar
Khalsa, S., Rudrauf, D., Sandesara, C., Olshansky, B., & Tranel, D. (2009). Bolus isoproterenol infusions provide a reliable method for assessing interoceptive awareness. International Journal of Psychophysiology, 72: 3445.Google Scholar
Klorman, R., Weissberg, R. P., & Wiesenfeld, A. R. (1977). Individual differences in fear and autonomic reactions to affective stimulation. Psychophysiology, 14: 4551.Google Scholar
Kogan, A., Oveis, C., Carr, E. W., Gruber, J., Mauss, I. B., Shallcross, A., … & Cheng, C. (2014). Vagal activity is quadratically related to prosocial traits, prosocial emotions, and observer perceptions of prosociality. Journal of Personality and Social Psychology, 107: 10511063.Google Scholar
Kok, B. E. & Fredrickson, B. L. (2010). Upward spirals of the heart: autonomic flexibility, as indexed by vagal tone, reciprocally and prospectively predicts positive emotions and social connectedness. Biological Psychology, 85: 432436.Google Scholar
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: a review. Biological Psychology, 84: 394421.Google Scholar
Kreibig, S. D., Schaefer, G., & Brosch, T. (2010). Psychophysiological response patterning in emotion: implications for affective computing. In Scherer, K. R., Baenziger, T., & Roesch, E. (eds.), Blueprint for Affective Computing: A Sourcebook (pp. 105130). Oxford University Press.Google Scholar
Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2007). Cardiovascular, electrodermal, and respiratory response patterns to fear- and sadness-inducing films. Psychophysiology, 44: 787806.Google Scholar
Kring, A. M. & Gordon, A. H. (1998). Sex differences in emotion: expression, experience, and physiology. Journal of Personality and Social Psychology, 74: 686703.Google Scholar
Kring, A. M. & Sloan, D. M. (2007). The Facial Expression Coding System (FACES): development, validation, and utility. Psychological Assessment, 19: 210224.Google Scholar
Krumhansl, C. L. (1997). An exploratory study of musical emotions and psychophysiology. Canadian Journal of Experimental Psychology, 51: 336352.Google Scholar
Krzywicki, A. T., Berntson, G. G., & O’Kane, B. L. (2014). A non-contact technique for measuring eccrine sweat gland activity using passive thermal imaging. International Journal of Psychophysiology, 94: 2534.Google Scholar
Kuban, M., Barbaree, H. E., & Blanchard, R. (1999). A comparison of volume and circumference phallometry: response magnitude and method agreement. Archives of Sexual Behavior, 28: 345359.Google Scholar
Kunzmann, U. & Grühn, D. (2005). Age differences in emotional reactivity: the sample case of sadness. Psychology and Aging, 20: 4759.Google Scholar
Kunzmann, U., Kupperbusch, C. S., & Levenson, R. W. (2005). Behavioral inhibition and amplification during emotional arousal: a comparison of two age groups. Psychology and Aging, 20: 144158.Google Scholar
Laan, A. J., Van Assen, M. A., & Vingerhoets, A. J. (2012). Individual differences in adult crying: the role of attachment styles. Social Behavior and Personality, 40: 453471.Google Scholar
Lakoff, G. & Kövecses, Z. (1987). The cognitive model of anger inherent in American English. In Holland, D. & Quinn, N. (eds.), Cultural Models in Language & Thought (pp. 195221). Cambridge University Press.Google Scholar
Landis, C. (1930). Psychology and the psychogalvanic reflex. Psychological Review, 37: 381398.Google Scholar
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1990). Emotion, attention, and the startle reflex. Psychological Review, 97: 377395.Google Scholar
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1999). International Affective Picture System (IAPS): Technical Manual and Affective Ratings. Gainesville, FL: Center for Research in Psychophysiology, University of Florida.Google Scholar
Lang, P. J., Greenwald, M. K., & Bradley, M. M. (1988). The International Affective Picture System (IAPS) Standardization Procedure and Initial Group Results for Affective Judgments. Gainesville, FL: Center for the Study of Emotion and Attention, University of Florida.Google Scholar
Lang, P. J., Greenwald, M. K., Bradley, M. M., & Hamm, A. O. (1993). Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology, 30: 261273.Google Scholar
Lazarus, R. S., Kanner, A. D., & Folkman, S. (1980). Emotions: a cognitive-phenomenological analysis. In Plutchik, R. & Kellerman, H. (eds.), Theories of Emotion (pp. 189217). New York: Academic Press.Google Scholar
Lazarus, R. S., Opton, E., Tomita, M., & Kodama, M. (1966). A cross-cultural study of stress-reaction patterns in Japan. Journal of Personality and Social Psychology, 4: 622633.Google Scholar
Leary, M. R., Britt, T. W., Cutlip, W. D., & Templeton, J. L. (1992). Social blushing. Psychological Bulletin, 112: 446460.Google Scholar
Levenson, R. W. (1983). Personality research and psychophysiology: general considerations. Journal of Research in Personality, 17: 121.Google Scholar
Levenson, R. W. (1988). Emotion and the autonomic nervous system: a prospectus for research on autonomic specificity. In Wanger, H. L. (ed.), Social Psychophysiology and Emotion: Theory and Clinical Applications (pp. 1742). Oxford: John Wiley.Google Scholar
Levenson, R. W. (1992). Autonomic nervous system differences among emotions. Psychological Science, 3: 2327.Google Scholar
Levenson, R. W. (1994). Human emotion: a functional view. In Ekman, P. & Davidson, R. J. (eds.), The Nature of Emotion: Fundamental Questions (pp. 123126). Oxford University Press.Google Scholar
Levenson, R. W. (1999). The intrapersonal functions of emotion. Cognition & Emotion, 13: 481504.Google Scholar
Levenson, R. W. (2003). Blood, sweat, and fears: the autonomic architecture of emotion. Annals of the New York Academy of Sciences, 1000: 348366.Google Scholar
Levenson, R. W. (2014). The autonomic nervous system and emotion. Emotion Review, 6: 100112.Google Scholar
Levenson, R. W., Ekman, P., & Friesen, W. V. (1990). Voluntary facial action generates emotion-specific autonomic nervous system activity. Psychophysiology, 27: 363384.Google Scholar
Levenson, R. W. & Ruef, A. M. (1992). Empathy: a physiological substrate. Journal of Personality and Social Psychology, 63: 234246.Google Scholar
Levenson, R. W., Soto, J., & Pole, N. (2007). Emotion, biology, and culture. In Kitayama, S. & Cohen, D. (eds.), Handbook of Cultural Psychology (pp. 780796). New York: Guilford Press.Google Scholar
Libby, W. L., Lacey, B. C., & Lacey, J. I. (1973). Pupillary and cardiac activity during visual attention. Psychophysiology, 10: 270294.Google Scholar
Lozano, D. L., Norman, G., Knox, D., Wood, B. L., Miller, B. D., Emery, C. F., & Berntson, G. G. (2007). Where to B in dZ/dt. Psychophysiology, 44: 113119.Google Scholar
Machado-Moreira, C. A. & Taylor, N. A. (2012). Psychological sweating from glabrous and nonglabrous skin surfaces under thermoneutral conditions. Psychophysiology, 49: 369374.Google Scholar
Mandler, G., Mandler, J. M., & Uviller, E. T. (1958). Autonomic feedback: the perception of autonomic activity. Journal of Abnormal and Social Psychology, 56: 367373.Google Scholar
Maruskin, L. A., Thrash, T. M., & Elliot, A. J. (2012). The chills as a psychological construct: content universe, factor structure, affective composition, elicitors, trait antecedents, and consequences. Journal of Personality and Social Psychology, 103: 135157.Google Scholar
Masters, W. H. (1959). The sexual response cycle of the human female: vaginal lubrication. Annals of the New York Academy of Sciences, 83: 301317.Google Scholar
Matsumoto, D. & Willingham, B. (2006). The thrill of victory and the agony of defeat: spontaneous expressions of medal winners of the 2004 Athens Olympic Games. Journal of Personality and Social Psychology, 91: 568581.Google Scholar
Mauss, I. B., Cook, C. L., & Gross, J. J. (2007). Automatic emotion regulation during anger provocation. Journal of Experimental Social Psychology, 43: 698711.Google Scholar
Mauss, I. B., Levenson, R. W., McCarter, L., Wilhelm, F. H., & Gross, J. J. (2005). The tie that binds? Coherence among emotion experience, behavior, and physiology. Emotion, 5: 175190.Google Scholar
Mauss, I. B. & Robinson, M. D. (2009). Measures of emotion: a review. Cognition & Emotion, 23: 209237.Google Scholar
McCaul, K. D., Holmes, D. S., & Solomon, S. (1982). Voluntary expressive changes and emotion. Journal of Personality and Social Psychology, 42: 145152.Google Scholar
McCorry, L. K. (2007). Physiology of the autonomic nervous system. American Journal of Pharmaceutical Education, 71: 111.Google Scholar
Meissner, K., Muth, E. R., & Herbert, B. M. (2011). Bradygastric activity of the stomach predicts disgust sensitivity and perceived disgust intensity. Biological Psychology, 86: 916.Google Scholar
Mendes, W. B., Major, B., McCoy, S., & Blascovich, J. (2008). How attributional ambiguity shapes physiological and emotional responses to social rejection and acceptance. Journal of Personality and Social Psychology, 94: 278291.Google Scholar
Mesquita, B., Barrett, L. F., & Smith, E. R. (2010). The context principle. In Mesquita, B., Barrett, L. F., & Smith, E. R. (eds.), The Mind in Context (pp. 124). New York: Guilford Press.Google Scholar
Miceli, M. & Castelfranchi, C. (2003). Crying: discussing its basic reasons and uses. New Ideas in Psychology, 21: 247273.Google Scholar
Morris, N. B., Cramer, M. N., Hodder, S. G., Havenith, G., & Jay, O. (2013). A comparison between the technical absorbent and ventilated capsule methods for measuring local sweat rate. Journal of Applied Physiology, 114: 816823.Google Scholar
Muhtadie, L., Koslov, K., Akinola, M., & Mendes, W. B. (2014). Vagal flexibility: a physiological predictor of social sensitivity. Journal of Personality and Social Psychology, 109: 106120.Google Scholar
Navazesh, M. & Christensen, C. (1982). A comparison of whole mouth resting and stimulated salivary measurement procedures. Journal of Dental Research, 61: 11581162.Google Scholar
Navazesh, M. & Kumar, S. (2008). Measuring salivary flow: challenges and opportunities. Journal of the American Dental Association, 139: 35S40S.Google Scholar
Newlin, D. B. & Levenson, R. W. (1979). Pre-ejection period: measuring beta-adrenergic influences upon the heart. Psychophysiology, 16: 546553.Google Scholar
Obrist, P. A., Webb, R. A., Sutterer, J. R., & Howard, J. L. (1970). The cardiac-somatic relationship: some reformulations. Psychophysiology, 6: 569587.Google Scholar
Osgood, C. E. (1964). Sematic differential technique in the comparative study of cultures. American Anthropologist, 66: 171200.Google Scholar
Osgood, C. E. G., Suci, G. J., & Tannenbaum, P. H. (1957). The Measurement of Meaning. Urbana: University of Illinois Press.Google Scholar
Oveis, C., Cohen, A. B., Gruber, J., Shiota, M. N., Haidt, J., & Keltner, D. (2009). Resting respiratory sinus arrhythmia is associated with tonic positive emotionality. Emotion, 9: 265270.Google Scholar
Palomba, D., Angrilli, A., & Mini, A. (1997). Visual evoked potentials, heart rate responses and memory to emotional pictorial stimuli. International Journal of Psychophysiology, 27: 5567.Google Scholar
Panksepp, J. (1995). The emotional sources of “chills” induced by music. Music Perception, 13: 171207.Google Scholar
Panksepp, J. (1998). Affective Neuroscience: The Foundations of Human and Animal Emotions. Oxford University Press.Google Scholar
Panksepp, J. (2000). Emotions as natural kinds within the mammalian brain. In Lewis, M. & Haviland-Jones, J. M. (eds.), Handbook of Emotions (pp. 137156). New York: Guilford Press.Google Scholar
Partala, T., Jokiniemi, M., & Surakka, V. (2000). Pupillary responses to emotionally provocative stimuli. In Proceedings of the 2000 Symposium on Eye Tracking Research & Applications (pp. 123129). New York: ACM.Google Scholar
Pauls, C. A. & Stemmler, G. (2003). Repressive and defensive coping during fear and anger. Emotion, 3: 284302.Google Scholar
Pennebaker, J. W. (1982). The Psychology of Physical Symptoms. New York: Springer-Verlag.Google Scholar
Platt, J. R. (1964). Strong inference. Science, 146: 347353.Google Scholar
Porges, S. W. (2001). The polyvagal theory: phylogenetic substrates of a social nervous system. International Journal of Psychophysiology, 42: 123146.Google Scholar
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74: 116143.Google Scholar
Preston, S. D. & De Waal, F. B. M. (2002). Empathy: its ultimate and proximate bases. Behavioral and Brain Sciences, 25: 172.Google Scholar
Prkachin, K. M., Mills, D. E., Zwaal, C., & Husted, J. (2001). Comparison of hemodynamic responses to social and nonsocial stress: evaluation of an anger interview. Psychophysiology, 38: 879885.Google Scholar
Proctor, G. B. & Carpenter, G. H. (2007). Regulation of salivary gland function by autonomic nerves. Autonomic Neuroscience, 133: 318.Google Scholar
Quigley, K. S. (2004). Parasympathetic nervous system. In Craighead, W. E. & Nemeroff, C. B. (eds.), Concise Corsini Encyclopedia of Psychology and Behavioral Science, 3rd edn. New York: John Wiley.Google Scholar
Reyes del Paso, G. A., Langewitz, W., Mulder, L. J., Roon, A., & Duschek, S. (2013). The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology, 50: 477487.Google Scholar
Rohleder, N., Wolf, J. M., Maldonado, E. F., & Kirschbaum, C. (2006). The psychosocial stress-induced increase in salivary alpha-amylase is independent of saliva flow rate. Psychophysiology, 43: 645652.Google Scholar
Rohrmann, S. & Hopp, H. (2008). Cardiovascular indicators of disgust. International Journal of Psychophysiology, 68: 201208.Google Scholar
Roseman, I. J., Wiest, C., & Swartz, T. S. (1994). Phenomenology, behaviors, and goals differentiate discrete emotions. Journal of Personality and Social Psychology, 67: 206221.Google Scholar
Rottenberg, J., Wilhelm, F. H., Gross, J. J., & Gotlib, I. H. (2002). Respiratory sinus arrhythmia as a predictor of outcome in major depressive disorder. Journal of Affective Disorders, 71: 265272.Google Scholar
Rozin, P. & Fallon, A. E. (1987). A perspective on disgust. Psychological Review, 94: 2341.Google Scholar
Ruef, A. M. & Levenson, R. W. (2007). Continuous measurement of emotion: the affect rating dial. In Coan, J. A. & Allen, J. J. B. (eds.), Handbook of Emotion Elicitation and Assessment (pp. 286297). Oxford University Press.Google Scholar
Russell, J. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39: 11611178.Google Scholar
Russell, J. A. (1994). Is there universal recognition of emotion from facial expressions? A review of the cross-cultural studies. Psychology Bulletin, 115: 102141.Google Scholar
Russell, J. A. & Barrett, L. F. (1999). Core affect, prototypical emotional episodes, and other things called emotion: dissecting the elephant. Journal of Personality and Social Psychology, 76: 805819.Google Scholar
Salonia, A., Giraldi, A., Chivers, M. L., Georgiadis, J. R., Levin, R., Maravilla, K. R., & McCarthy, M. M. (2010). Physiology of women’s sexual function: basic knowledge and new findings. Journal of Sexual Medicine, 7: 26372660.Google Scholar
Sarnik, S., Hofirek, I., & Sochor, O. (2007). Laser doppler fluxmetry. Biomedical Papers, 151: 143146.Google Scholar
Sauter, D. A., Eisner, F., Ekman, P., & Scott, S. K. (2010). Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proceedings of the National Academy of Sciences of the USA, 107: 24082412.Google Scholar
Schachter, S. & Singer, J. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69: 379399.Google Scholar
Schandry, R. (1981). Heart beat perception and emotional experience. Psychophysiology, 18: 483488.Google Scholar
Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44: 695729.Google Scholar
Scherer, K. R., Banse, R., Wallbott, H. G., & Goldbeck, T. (1991). Vocal cues in emotion encoding and decoding. Motivation & Emotion, 15: 123148.Google Scholar
Scherer, K. R. & Wallbott, H. G. (1994). Evidence for universality and cultural variation of differential emotion response patterning. Journal of Personality and Social Psychology, 66: 310328.Google Scholar
Schnall, S., Haidt, J., Clore, G. L., & Jordan, A. H. (2008). Disgust as embodied moral judgment. Personality and Social Psychology Bulletin, 34: 10961109.Google Scholar
Schneider, T. R., Lyons, J. B., & Williams, M. (2005). Emotional intelligence and autonomic self-perception: emotional abilities are related to visceral acuity. Personality and Individual Differences, 39: 853861.Google Scholar
Schwartz, G. E., Weinberger, D. A., & Singer, J.A. (1981). Cardiovascular differentiation of happiness, sadness, anger, and fear following imagery and exercise. Psychosomatic Medicine, 43: 343364.Google Scholar
Seider, B. H., Shiota, M. N., Whalen, P., & Levenson, R. W. (2011). Greater sadness reactivity in late life. Social Cognitive and Affective Neuroscience, 6: 186194.Google Scholar
Shearn, D., Bergman, E., Hill, K., Abel, A., & Hinds, L. (1990). Facial coloration and temperature responses in blushing. Psychophysiology, 27: 687693.Google Scholar
Shenhav, A. & Mendes, W. B. (2014). Aiming for the stomach and hitting the heart: dissociable triggers and sources for disgust reactions. Emotion, 14: 301310.Google Scholar
Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & van Doornen, L. J. (1990). Methodological guidelines for impedance cardiography. Psychophysiology, 27: 123.Google Scholar
Shiota, M. N., Neufeld, S. L., Danvers, A. F., Osborne, E. A., Sng, O., & Yee, C. I. (2014). Positive emotion differentiation: a functional approach. Social and Personality Psychology Compass, 8: 104117.Google Scholar
Shiota, M. N., Neufeld, S. L., Yeung, W. H., Moser, S. E., & Perea, E. F. (2011). Feeling good: autonomic nervous system responding in five positive emotions. Emotion, 11: 13681378.Google Scholar
Simmons, W. K., Avery, J. A., Barcalow, J. C., Bodurka, J., Drevets, W. C., & Bellgowan, P. (2013). Keeping the body in mind: insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Human Brain Mapping, 34: 29442958.Google Scholar
Sinha, R., Lovallo, W. R., & Parsons, O. A. (1992). Cardiovascular differentiation of emotions. Psychosomatic Medicine, 54: 422435.Google Scholar
Sintchak, G. & Geer, J. H. (1975). A vaginal plethysmograph system. Psychophysiology, 12: 113115.Google Scholar
Smith, A., Cadoret, G., & St-Amour, D. (1997). Scopolamine increases prehensile force during object manipulation by reducing palmar sweating and decreasing skin friction. Experimental Brain Research, 114: 578583.Google Scholar
Soto, J. A., Levenson, R. W., & Ebling, R. (2005). Cultures of moderation and expression: emotional experience, behavior, and physiology in Chinese Americans and Mexican Americans. Emotion, 5: 154165.Google Scholar
Soto, J. A., Roberts, N. A., Pole, N., Levenson, R. W., Burleson, M. H., King, A. R., & Breland-Noble, A. (2012). Elevated baseline anxiety among African Americans in laboratory research settings. Journal of Psychophysiology, 26: 105115.Google Scholar
Soussignan, R. (2002). Duchenne smile, emotional experience, and autonomic reactivity: a test of the facial feedback hypothesis. Emotion, 2: 5274.Google Scholar
Stellar, J. E., Cohen, A., Oveis, C., & Keltner, D. (2015). Affective and physiological responses to the suffering of others: compassion and vagal activity. Journal of Personality and Social Psychology, 108: 572585.Google Scholar
Stemmler, G. (1989). The autonomic differentiation of emotions revisited: convergent and discriminant validation. Psychophysiology, 26: 617632.Google Scholar
Stemmler, G., Heldmann, M., Pauls, C. A., & Scherer, T. (2001). Constraints for emotion specificity in fear and anger: the context counts. Psychophysiology, 38: 275291.Google Scholar
Stern, R. M., Koch, K. L., Stewart, W. R., & Vasey, M. W. (1987). Electrogastrography: current issues in validation and methodology. Psychophysiology, 24: 5564.Google Scholar
Sternbach, R. A. (1962). Assessing differential autonomic patterns in emotions. Journal of Psychosomatic Research, 6: 8791.Google Scholar
Sze, J. A., Gyurak, A., Yuan, J. W., & Levenson, R. W. (2010). Coherence between emotional experience and physiology: does body awareness training have an impact? Emotion, 10: 803814.Google Scholar
Tomaka, J., Blascovich, J., Kelsey, R. M., & Leitten, C. L. (1993). Subjective, physiological, and behavioral effects of threat and challenge appraisal. Journal of Personality and Social Psychology, 65: 248260.Google Scholar
Tomkins, S. S. (1962). Affect, Imagery, Consciousness, vol. 1: The Positive Affects. New York: Springer.Google Scholar
Tomkins, S. S. (1984). Affect theory. In Scherer, T. & Ekman, P. (eds.), Approaches to Emotion (pp. 353395). Cambridge University Press.Google Scholar
Tooby, J. & Cosmides, L. (1990). The past explains the present: emotional adaptations and the structure of ancestral environmentsEthology and Sociobiology, 11: 375424.Google Scholar
Tracy, J. L. & Matsumoto, D. (2008). The spontaneous expression of pride and shame: evidence for biologically innate nonverbal displays. Proceedings of the National Academy of Sciences of the USA, 105: 1165511660.Google Scholar
Tsai, J. L., Chentsova-Dutton, Y., Freire-Bebeau, L., & Przymus, D. E. (2002). Emotional expression and physiology in European Americans and Hmong Americans. Emotion, 2: 380397.Google Scholar
Tugade, M. M. & Fredrickson, B. L. (2004). Resilient individuals use positive emotions to bounce back from negative emotional experiences. Journal of Personality and Social Psychology, 86: 320333.Google Scholar
Vianna, E. P., Weinstock, J., Elliott, D., Summers, R., & Tranel, D. (2006). Increased feelings with increased body signals. Social Cognitive and Affective Neuroscience, 1: 3748.Google Scholar
Vingerhoets, A. J., Cornelius, R. R., Van Heck, G. L., & Becht, M. C. (2000). Adult crying: a model and review of the literature. Review of General Psychology, 4: 354377.Google Scholar
Vrana, S. R. & Rollock, D. (2002). The role of ethnicity, gender, emotional content, and contextual differences in physiological, expressive, and self-reported emotional responses to imagery. Cognition & Emotion, 16: 165192.Google Scholar
Vrana, S. R., Spence, E. L., & Lang, P. J. (1988). The startle probe response: a new measure of emotion? Journal of Abnormal Psychology, 97: 487491.Google Scholar
Walker, M.P., &Harvey, A.G. (2010). Obligate symbiosis: Sleep and affect. Sleep medicine reviews, 14: 215217.Google Scholar
Werner, G. G., Ford, B. Q., Mauss, I. B., Schabus, M., Blechert, J., & Wilhelm, F. H. (2015). High cardiac vagal control is related to better subjective and objective sleep quality. Biological Psychology, 106: 7985.Google Scholar
Wiens, S., Mezzacappa, E. S., & Katkin, E. S. (2000). Heartbeat detection and the experience of emotions. Cognition & Emotion, 14: 417427.Google Scholar
Winton, W. M., Putnam, L. E., & Krauss, R. M. (1984). Facial and autonomic manifestations of the dimensional structure of emotion. Journal of Experimental Social Psychology, 20: 195216.Google Scholar
Yin, J. & Chen, J. D. (2013). Electrogastrography: methodology, validation and applications. Journal of Neurogastroenterology and Motility, 19: 517.Google Scholar
Yuan, J. W., McCarthy, M., Holley, S. R., & Levenson, R. W. (2010). Physiological down-regulation and positive emotion in marital interaction. Emotion, 10: 467474.Google Scholar
Zaki, J., Davis, J. I., & Ochsner, K. N. (2012). Overlapping activity in anterior insula during interoception and emotional experience. NeuroImage, 62: 493499.Google Scholar

References

Agnati, L. F., Bjelke, B., & Fuxe, K. (1992). Volume transmission in the brain. American Scientist, 80: 362373.Google Scholar
al’Absi, M., Bongard, S., Buchanan, T., Pincomb, G. A., Licinio, J., & Lovallo, W. R. (1997). Cardiovascular and neuroendocrine adjustment to public speaking and mental arithmetic stressors. Psychophysiology, 34: 266275.Google Scholar
al’Absi, M., Hugdahl, K., & Lovallo, W. R. (2002). Adrenocortical stress responses and altered working memory performance. Psychophysiology, 39: 9599.Google Scholar
al’Absi, M., Lovallo, W. R., McKey, B. S., & Pincomb, G. A. (1994). Borderline hypertensives produce exaggerated adrenocortical responses to mental stress. Psychosomatic Medicine, 56: 245250.Google Scholar
Amaral, D. G. (2002). The primate amygdala and the neurobiology of social behavior: implications for understanding social anxiety. Biological Psychiatry, 51: 1117.Google Scholar
Amaral, D. G., Price, J. L., Pitkanen, A., & Carmichael, S. T. (1992). Anatomical organization of the primate amygdaloid complex. In Aggleton, J. P. (ed.), The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (pp. 166). New York: Wiley-Liss.Google Scholar
Atsak, P., Hauer, D., Campolongo, P., Schelling, G., Fornari, R. V., & Roozendaal, B. (2015). Endocannabinoid signaling within the basolateral amygdala integrates multiple stress hormone effects on memory consolidation. Neuropsychopharmacology, 40: 14851494.Google Scholar
Averill, J. R. (1973). Personal control over aversive stimuli and its relation to stress. Psychological Bulletin, 80: 286303.Google Scholar
Banks, W. A. (2012). Brain meets body: the blood–brain barrier as an endocrine interface. Endocrinology, 153: 41114119.Google Scholar
Barsegyan, A., Mackenzie, S. M., Kurose, B. D., McGaugh, J. L., & Roozendaal, B. (2010). Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism. Proceedings of the National Academy of Sciences of the USA, 107: 1665516660.Google Scholar
Basu, A., Levendosky, A. A., & Lonstein, J. S. (2013). Trauma sequelae and cortisol levels in women exposed to intimate partner violence. Psychodynamic Psychiatry, 41: 247275.Google Scholar
Bauer, C. R., Lambert, B. L., Bann, C. M., Lester, B. M., Shankaran, S., Bada, H. S., … & Higgins, R. D. (2011). Long-term impact of maternal substance use during pregnancy and extrauterine environmental adversity: stress hormone levels of preadolescent children. Pediatric Research, 70: 213219.Google Scholar
Bauer, M. E. (2008). Chronic stress and immunosenescence: a review. Neuroimmunomodulation, 15: 241250.Google Scholar
Baumgartner, A. M., Jones, P. F., Baumgartner, W. A., & Black, C. T. (1979). Radioimmunoassay of hair for determining opiate-abuse histories. Journal of Nuclear Medicine, 20: 748752.Google Scholar
Baumler, D., Kliegel, M., Kirschbaum, C., Miller, R., Alexander, N., & Stalder, T. (2014a). Effect of a naturalistic prospective memory-related task on the cortisol awakening response in young children. Biological Psychology, 103: 2426.Google Scholar
Baumler, D., Voigt, B., Miller, R., Stalder, T., Kirschbaum, C., & Kliegel, M. (2014b). The relation of the cortisol awakening response and prospective memory functioning in young children. Biological Psychology, 99: 4146.Google Scholar
Bernard, C. (1865/1927). An Introduction to the Study of Experimental Medicine, trans. Greene, H. C.. London: Macmillan.Google Scholar
Bernardy, N. C., King, A. C., Parsons, O. A., & Lovallo, W. R. (1996). Altered cortisol response in sober alcoholics: an examination of contributing factors. Alcohol, 13: 493498.Google Scholar
Berridge, C. W. & Dunn, A. J. (1989). Restraint-stress-induced changes in exploratory behavior appear to be mediated by norepinephrine-stimulated release of CRF. Journal of Neuroscience, 9: 35133521.Google Scholar
Bevalot, F., Gaillard, Y., Lhermitte, M. A., & Pepin, G. (2000). Analysis of corticosteroids in hair by liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 740: 227236.Google Scholar
Blombery, P. A. & Heinzow, B. G. (1983). Cardiac and pulmonary norepinephrine release and removal in the dog. Circulation Research, 53: 688694.Google Scholar
Bodnar, R. J. (2014). Endogenous opiates and behavior: 2013. Peptides, 62: 67136.Google Scholar
Bosch, J. A., de Geus, E. J., Veerman, E. C., Hoogstraten, J., & Nieuw Amerongen, A. V. (2003). Innate secretory immunity in response to laboratory stressors that evoke distinct patterns of cardiac autonomic activity. Psychosomatic Medicine, 65: 245258.Google Scholar
Bosch, J. A., Veerman, E. C., de Geus, E. J., & Proctor, G. B. (2011). Alpha-amylase as a reliable and convenient measure of sympathetic activity: don’t start salivating just yet! Psychoneuroendocrinology, 36: 449453.Google Scholar
Boyson, C. O., Holly, E. N., Shimamoto, A., Albrechet-Souza, L., Weiner, L. A., DeBold, J. F., & Miczek, K. A. (2014). Social stress and CRF-dopamine interactions in the VTA: role in long-term escalation of cocaine self-administration. Journal of Neuroscience, 34: 66596667.Google Scholar
Brady, J. V., Porter, R. W., Conrad, D. G., & Mason, J. W. (1958). Avoidance behavior and the development of gastroduodenal ulcers. Journal of the Experimental Analysis of Behavior, 1: 6972.Google Scholar
Brantley, P. J., Dietz, L. S., McKnight, G. T., Jones, G. N., & Tulley, R. (1988). Convergence between the Daily Stress Inventory and endocrine measures of stress. Journal of Consulting and Clinical Psychology, 56: 549551.Google Scholar
Bremner, J. D. (2005). Effects of traumatic stress on brain structure and function: relevance to early responses to trauma. Journal of Trauma & Dissociation, 6: 5168.Google Scholar
Bremner, J. D., Randall, P., Scott, T. M., Bronen, R. A., Seibyl, J. P., Southwick, S. M., … & Innis, R. B. (1995). MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. American Journal of Psychiatry, 152: 973981.Google Scholar
Bremner, J. D., Vythilingam, M., Anderson, G., Vermetten, E., McGlashan, T., Heninger, G., … & Charney, D. S. (2003). Assessment of the hypothalamic–pituitary–adrenal axis over a 24-hour diurnal period and in response to neuroendocrine challenges in women with and without childhood sexual abuse and posttraumatic stress disorder. Biological Psychiatry, 54: 710718.Google Scholar
Brown, M. R., Fisher, L. A., Spiess, J., Rivier, C., Rivier, J., & Vale, W. (1982). Corticotropin-releasing factor: actions on the sympathetic nervous system and metabolism. Endocrinology, 111: 928931.Google Scholar
Bublitz, M. H. & Stroud, L. R. (2013). Maternal history of child abuse moderates the association between daily stress and diurnal cortisol in pregnancy: a pilot study. Stress, 16: 706710.Google Scholar
Buchanan, T. W., al’Absi, M., & Lovallo, W. R. (1999). Cortisol fluctuates with increases and decreases in negative affect. Psychoneuroendocrinology, 24: 227241.Google Scholar
Buchanan, T. W., Brechtel, A., Sollers, J. J., & Lovallo, W. R. (2001). Exogenous cortisol exerts effects on the startle reflex independent of emotional modulation. Pharmacology, Biochemistry and Behavior, 68: 203210.Google Scholar
Buchanan, T. W., Kern, S., Allen, J. S., Tranel, D., & Kirschbaum, C. (2004). Circadian regulation of cortisol after hippocampal damage in humans. Biological Psychiatry, 56: 651656.Google Scholar
Buchanan, T. W. & Lovallo, W. R. (2001). Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology, 26: 307317.Google Scholar
Buchanan, T. W., Tranel, D., & Kirschbaum, C. (2009). Hippocampal damage abolishes the cortisol response to psychosocial stress in humans. Hormones and Behavior, 56: 4450.Google Scholar
Buijs, R. M., van Eden, C. G., Goncharuk, V. D., & Kalsbeek, A. (2003). The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. Journal of Endocrinology, 177: 1726.Google Scholar
Busch, L., Sterin-Borda, L., & Borda, E. (2006). An overview of autonomic regulation of parotid gland activity: influence of orchiectomy. Cells, Tissues, Organs, 182: 117128.Google Scholar
Cacioppo, J. T., Malarkey, W. B., Kiecolt-Glaser, J. K., Uchino, B. N., Sgoutas-Emch, S. A., Sheridan, J. F., … & Glaser, R. (1995). Heterogeneity in neuroendocrine and immune responses to brief psychological stressors as a function of autonomic cardiac activation. Psychosomatic Medicine, 57: 154164.Google Scholar
Cake, M. H. & Litwack, G. (1975). The glucocorticoid receptor. In Litwack, G. (ed.), Biochemical Actions of Hormones, vol. 3 (pp. 317390). New York: Elsevier.Google Scholar
Cannon, W. B. (1929). Bodily Changes in Pain, Hunger, Fear, and Rage, 2nd edn. New York: Appleton.Google Scholar
Cannon, W. B. (1935). Stresses and strains of homeostasis (Mary Scott Newbold Lecture). American Journal of Medical Sciences, 189: 114.Google Scholar
Carpenter, L. L., Carvalho, J. P., Tyrka, A. R., Wier, L. M., Mello, A. F., Mello, M. F., … & Price, L. H. (2007). Decreased adrenocorticotropic hormone and cortisol responses to stress in healthy adults reporting significant childhood maltreatment. Biological Psychiatry, 62: 10801087.Google Scholar
Carpenter, L. L., Shattuck, T. T., Tyrka, A. R., Geracioti, T. D., & Price, L. H. (2011). Effect of childhood physical abuse on cortisol stress response. Psychopharmacology, 214: 367375.Google Scholar
Carroll, D., Lovallo, W. R., & Phillips, A. C. (2009). Are large physiological reactions to acute psychological stress always bad for health? Social and Personality Psychology Compass, 3: 725743.Google Scholar
Carroll, D., Phillips, A. C., & Lovallo, W. R. (2011). The behavioral and health correlates of blunted physiological reactions to acute psychological stress: revising the reactivity hypothesis. In Wright, R. & Gendolla, G. H. E. (eds.), How Motivation Affects Cardiovascular Response (pp. 223241). Washington, DC: American Psychological Association.Google Scholar
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., … & Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297: 851854.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., … & Poulton, R. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301: 386389.Google Scholar
Charvat, J., Dell, P., & Folkow, B. (1964). Mental factors and cardiovascular diseases. Cardiologia, 44: 124141.Google Scholar
Chatterton, R. T. Jr., Vogelsong, K. M., Lu, Y. C., Ellman, A. B., & Hudgens, G. A. (1996). Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clinical Physiology, 16: 433448.Google Scholar
Chida, Y. & Steptoe, A. (2009). Cortisol awakening response and psychosocial factors: a systematic review and meta-analysis. Biological Psychology, 80: 265278.Google Scholar
Cirimele, V., Tracqui, A., Kintz, P., & Ludes, B. (1999). First identification of prednisone in human hair by liquid chromatography-ionspray mass spectrometry. Journal of Analytical Toxicology, 23: 225226.Google Scholar
Cone, E. J. (1996). Mechanisms of drug incorporation into hair. Therapeutic Drug Monitoring, 18: 438443.Google Scholar
Czeisler, C. A. & Klerman, E. B. (1999). Circadian and sleep-dependent regulation of hormone release in humans. Recent Progress in Hormone Research, 54: 97130; discussion 130–132.Google Scholar
Dale, H. H. (1909). The action of extracts of the pituitary body. Biochemical Journal, 4: 427447.Google Scholar
Davenport, M. D., Tiefenbacher, S., Lutz, C. K., Novak, M. A., & Meyer, J. S. (2006). Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. General and Comparative Endocrinology, 147: 255261.Google Scholar
Davies, A. O. & Lefkowitz, R. J. (1984). Regulation of beta-adrenergic receptors by steroid hormones. Annual Review of Physiology, 46: 119130.Google Scholar
Davis, M. (2000). The role of the amygdala in conditioned and unconditioned fear and anxiety. In Aggleton, J. P. (ed.), The Amygdala: A Functional Analysis (pp. 213287). Oxford University Press.Google Scholar
de Kloet, E. R., Joels, M., & Holsboer, F. (2005a). Stress and the brain: from adaptation to disease. Nature Reviews Neuroscience, 6: 463475.Google Scholar
de Kloet, E. R., Sibug, R. M., Helmerhorst, F. M., & Schmidt, M. V. (2005b). Stress, genes and the mechanism of programming the brain for later life. Neuroscience & Biobehavioral Reviews, 29: 271281.Google Scholar
de Leon, M. J., McRae, T., Tsai, J. R., George, A. E., Marcus, D. L., Freedman, M., … & McEwen, B. (1988). Abnormal cortisol response in Alzheimer’s disease linked to hippocampal atrophy. Lancet, 2: 391392.Google Scholar
de Quervain, D. J. & McGaugh, J. L. (2014). Stress and the regulation of memory: from basic mechanisms to clinical implications. Neurobiology of Learning and Memory, Special Issue, 112: 1.Google Scholar
De Souza, E. B., Insel, T. R., Perrin, M. H., Rivier, J., Vale, W. W., & Kuhar, M. J. (1985). Corticotropin-releasing factor receptors are widely distributed within the rat central nervous system: an autoradiographic study. Journal of Neuroscience, 5: 31893203.Google Scholar
Dettenborn, L., Rosenloecher, F., & Kirschbaum, C. (2007). No effects of repeated forced wakings during three consecutive nights on morning cortisol awakening responses (CAR): a preliminary study. Psychoneuroendocrinology, 32: 915921.Google Scholar
Dettenborn, L., Tietze, A., Bruckner, F., & Kirschbaum, C. (2010). Higher cortisol content in hair among long-term unemployed individuals compared to controls. Psychoneuroendocrinology, 35: 14041409.Google Scholar
Dettenborn, L., Tietze, A., Kirschbaum, C., & Stalder, T. (2012). The assessment of cortisol in human hair: associations with sociodemographic variables and potential confounders. Stress, 15: 578588.Google Scholar
Dickerson, S. S. & Kemeny, M. E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130: 355391.Google Scholar
Duan, H., Yuan, Y., Zhang, L., Qin, S., Zhang, K., Buchanan, T. W., & Wu, J. (2013). Chronic stress exposure decreases the cortisol awakening response in healthy young men. Stress, 16: 630637.Google Scholar
Ducat, E., Ray, B., Bart, G., Umemura, Y., Varon, J., Ho, A., & Kreek, M. J. (2013). Mu-opioid receptor A118G polymorphism in healthy volunteers affects hypothalamic–pituitary–adrenal axis adrenocorticotropic hormone stress response to metyrapone. Addiction Biology, 18: 325331.Google Scholar
Ehlert, U. (2013). Enduring psychobiological effects of childhood adversity. Psychoneuroendocrinology, 38: 18501857.Google Scholar
Ellertsen, B., Johnsen, T. B., & Ursin, H. (1977). Relationship between the hormonal responses to activation and coping. In Ursin, H., Baade, E., & Levine, S. (eds.), Psychobiology of Stress: A Study of Coping Men (pp. 243248). New York: Academic Press.Google Scholar
Ennis, M. & Aston-Jones, G. (1988). Activation of locus coeruleus from nucleus paragigantocellularis: a new excitatory amino acid pathway in brain. Journal of Neuroscience, 8: 36443657.Google Scholar
Enoch, M. A., Steer, C. D., Newman, T. K., Gibson, N., & Goldman, D. (2010). Early life stress, MAOA, and gene–environment interactions predict behavioral disinhibition in children. Genes, Brain, and Behavior, 9: 6574.Google Scholar
Epel, E. S., McEwen, B., Seeman, T., Matthews, K., Castellazzo, G., Brownell, K. D., … & Ickovics, J. R. (2000). Stress and body shape: stress-induced cortisol secretion is consistently greater among women with central fat. Psychosomatic Medicine, 62: 623632.Google Scholar
Errico, A. L., Parsons, O. A., King, A. C., & Lovallo, W. R. (1993). Attenuated cortisol response to biobehavioral stressors in sober alcoholics. Journal of Studies on Alcohol, 54: 393398.Google Scholar
Esler, M., Hasking, G. J., Willett, I. R., Leonard, P. W., & Jennings, G. L. (1985). Noradrenaline release and sympathetic nervous system activity. Journal of Hypertension, 3: 117129.Google Scholar
Esler, M., Jennings, G., Korner, P., Willett, I., Dudley, F., Hasking, G., … & Lambert, G. (1988). Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension, 11: 320.Google Scholar
Esler, M., Jennings, G., Leonard, P., Sacharias, N., Burke, F., Johns, J., & Blombery, P. (1984). Contribution of individual organs to total noradrenaline release in humans. Acta Physiologica Scandinavica. Supplementum, 527: 1116.Google Scholar
Evans, P. D., Fredhoi, C., Loveday, C., Hucklebridge, F., Aitchison, E., Forte, D., & Clow, A. (2011). The diurnal cortisol cycle and cognitive performance in the healthy old. International Journal of Psychophysiology, 79: 371377.Google Scholar
Everson, S. A., Kaplan, G. A., Goldberg, D. E., & Salonen, J. T. (1996). Anticipatory blood pressure response to exercise predicts future high blood pressure in middle-aged men. Hypertension, 27: 10591064.Google Scholar
Faix, J. D. (2013). Principles and pitfalls of free hormone measurements. Best Practice & Research: Clinical Endocrinology & Metabolism, 27: 631645.Google Scholar
Fastenrath, M., Coynel, D., Spalek, K., Milnik, A., Gschwind, L., Roozendaal, B., … & de Quervain, D. J. (2014). Dynamic modulation of amygdala–hippocampal connectivity by emotional arousal. Journal of Neuroscience, 34: 1393513947.Google Scholar
Fauss, D., Motter, R., Dofiles, L., Rodrigues, M. A., You, M., Diep, L., … & Bergeron, M. (2013). Development of an enzyme-linked immunosorbent assay (ELISA) to measure the level of tyrosine hydroxylase protein in brain tissue from Parkinson’s disease models. Journal of Neuroscience Methods, 215: 245257.Google Scholar
Federenko, I., Wust, S., Hellhammer, D. H., Dechoux, R., Kumsta, R., & Kirschbaum, C. (2004). Free cortisol awakening responses are influenced by awakening time. Psychoneuroendocrinology, 29: 174184.Google Scholar
Folkman, S. (1984). Personal control and stress and coping processes: a theoretical analysis. Journal of Personality and Social Psychology, 46: 839852.Google Scholar
Francis, K. T. (1979). Psychologic correlates of serum indicators of stress in man: a longitudinal study. Psychosomatic Medicine, 41: 617628.Google Scholar
Francis, S. J., Walker, R. F., Riad-Fahmy, D., Hughes, D., Murphy, J. F., & Gray, O. P. (1987). Assessment of adrenocortical activity in term newborn infants using salivary cortisol determinations. Journal of Pediatrics, 111: 129133.Google Scholar
Frankenhaeuser, M. & Rissler, A. (1970). Effects of punishment on catecholamine release and efficiency of performance. Psychopharmacologia, 17: 378390.Google Scholar
Frankenhaeuser, M., von Wright, M. R., Collins, A., von Wright, J., Sedvall, G., & Swahn, C. G. (1978). Sex differences in psychoneuroendocrine reactions to examination stress. Psychosomatic Medicine, 40: 334343.Google Scholar
Fries, E., Dettenborn, L., & Kirschbaum, C. (2009). The cortisol awakening response (CAR): facts and future directions. International Journal of Psychophysiology, 72: 6773.Google Scholar
Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view on hypocortisolism. Psychoneuroendocrinology, 30: 10101016.Google Scholar
Fryer, S. M., Dickson, T., Hillier, S., Stoner, L., Scarrott, C., & Draper, N. (2014). A comparison of capillary, venous, and salivary cortisol sampling after intense exercise. International Journal of Sports Physiology and Performance, 9: 973977.Google Scholar
Gianaros, P. J., Horenstein, J. A., Cohen, S., Matthews, K. A., Brown, S. M., Flory, J. D., … & Hariri, A. R. (2007). Perigenual anterior cingulate morphology covaries with perceived social standing. Social Cognitive and Affective Neuroscience, 2: 161173.Google Scholar
Gianaros, P. J. & Manuck, S. B. (2010). Neurobiological pathways linking socioeconomic position and health. Psychosomatic Medicine, 72: 450461.Google Scholar
Goldstein, D. S., Dionne, R., Sweet, J., Gracely, R., Brewer, H. B. Jr., Gregg, R., & Keiser, H. R. (1982). Circulatory, plasma catecholamine, cortisol, lipid, and psychological responses to a real-life stress (third molar extractions): effects of diazepam sedation and of inclusion of epinephrine with the local anesthetic. Psychosomatic Medicine, 44: 259272.Google Scholar
Gonzalez, A., Jenkins, J. M., Steiner, M., & Fleming, A. S. (2009). The relation between early life adversity, cortisol awakening response and diurnal salivary cortisol levels in postpartum women. Psychoneuroendocrinology, 34: 7686.Google Scholar
Gonzalez-Cabrera, J., Fernandez-Prada, M., Iribar-Ibabe, C., & Peinado, J. M. (2014). Acute and chronic stress increase salivary cortisol: a study in the real-life setting of a national examination undertaken by medical graduates. Stress, 17: 149156.Google Scholar
Gow, R., Thomson, S., Rieder, M., Van Uum, S., & Koren, G. (2010). An assessment of cortisol analysis in hair and its clinical applications. Forensic Science International, 196: 3237.Google Scholar
Grimm, S., Pestke, K., Feeser, M., Aust, S., Weigand, A., Wang, J., … & Bajbouj, M. (2014). Early life stress modulates oxytocin effects on limbic system during acute psychosocial stress. Social Cognitive and Affective Neuroscience, 9: 18281835.Google Scholar
Groeneweg, F. L., Karst, H., de Kloet, E. R., & Joels, M. (2012). Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Molecular and Cellular Endocrinology, 350: 299309.Google Scholar
Guilleman, R., Vargo, T., Rossier, J., Minick, S., Ling, N., Rivier, C., … & Bloom, F. (1977). Beta-endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science, 197: 13671369.Google Scholar
Halgren, E. (1992). Emotional neurophysiology of the amygdala within the context of human cognition. In Aggleton, J. P. (ed.), The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (pp. 191228). New York: Wiley-Liss.Google Scholar
Hansen, A. M., Hogh, A., Persson, R., Karlson, B., Garde, A. H., & Orbaek, P. (2006). Bullying at work, health outcomes, and physiological stress response. Journal of Psychosomatic Research, 60: 6372.Google Scholar
Hanson, J. L., Nacewicz, B. M., Sutterer, M. J., Cayo, A. A., Schaefer, S. M., Rudolph, K. D., … & Davidson, R. J. (2015). Behavioral problems after early life stress: contributions of the hippocampus and amygdala. Biological Psychiatry, 77: 314323.Google Scholar
Harris, B., Cook, N. J., Walker, R. F., Read, G. F., & Riad-Fahmy, D. (1989). Salivary steroids and psychometric parameters in male marathon runners. British Journal of Sports Medicine, 23: 8993.Google Scholar
Harris, B., Read, G. F., Walker, R. F., & Riad-Fahmy, D. (1988). Salivary cortisol and adrenal function. Biological Psychiatry, 24: 954956.Google Scholar
Harris, B., Watkins, S., Cook, N., Walker, R. F., Read, G. F., & Riad-Fahmy, D. (1990). Comparisons of plasma and salivary cortisol determinations for the diagnostic efficacy of the dexamethasone suppression test. Biological Psychiatry, 27: 897904.Google Scholar
Henckens, M. J., Pu, Z., Hermans, E. J., van Wingen, G. A., Joels, M., & Fernandez, G. (2012). Dynamically changing effects of corticosteroids on human hippocampal and prefrontal processing. Human Brain Mapping, 33: 28852897.Google Scholar
Henckens, M. J., van Wingen, G. A., Joels, M., & Fernandez, G. (2010). Time-dependent effects of corticosteroids on human amygdala processing. Journal of Neuroscience, 30: 1272512732.Google Scholar
Henry, M., Thomas, K. G., & Ross, I. L. (2014). Episodic memory impairment in Addison’s disease: results from a telephonic cognitive assessment. Metabolic Brain Disease, 29: 421430.Google Scholar
Herbert, J. (2013). Cortisol and depression: three questions for psychiatry. Psychological Medicine, 43: 449469.Google Scholar
Hermans, E. J., Battaglia, F. P., Atsak, P., de Voogd, L. D., Fernandez, G., & Roozendaal, B. (2014). How the amygdala affects emotional memory by altering brain network properties. Neurobiology of Learning and Memory, 112: 216.Google Scholar
Herrera, A. Y. & Mather, M. (2015). Actions and interactions of estradiol and glucocorticoids in cognition and the brain: implications for aging women. Neuroscience & Biobehavioral Reviews, 55: 3652.Google Scholar
Het, S., Rohleder, N., Schoofs, D., Kirschbaum, C., & Wolf, O. T. (2009). Neuroendocrine and psychometric evaluation of a placebo version of the “Trier Social Stress Test.” Psychoneuroendocrinology, 34: 10751086.Google Scholar
Hilton, S. M. (1982). The defence-arousal system and its relevance for circulatory and respiratory control. Journal of Experimental Biology, 100: 159174.Google Scholar
Hines, E. A. Jr. (1937). Reaction of the blood pressure of 400 school children to a standard stimulus. Journal of the American Medical Association, 108: 12491250.Google Scholar
Hobbs, S. (1982). Central command during exercise: parallel activation of the cardiovascular and motor systems by descending command signals. In Smith, O. A., Galosy, R. A., & Weiss, S. M. (eds.), Circulation, Neurobiology and Behavior (pp. 217231). New York: Elsevier.Google Scholar
Hoyle, C. H. V. (1992). Transmission: purines. In Burnstock, G. & Hoyle, C. H. V. (eds.), Autonomic Neuroeffector Mechanisms (pp. 367408). Reading: Harwood Academic Publishers.Google Scholar
Hunter, A. L., Minnis, H., & Wilson, P. (2011). Altered stress responses in children exposed to early adversity: a systematic review of salivary cortisol studies. Stress, 14: 614626.Google Scholar
Insel, T. R. (1992). Oxytocin: a neuropeptide for affiliation – evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology, 17: 335.Google Scholar
Inslicht, S. S., Marmar, C. R., Neylan, T. C., Metzler, T. J., Hart, S. L., Otte, C., … & Baum, A. (2006). Increased cortisol in women with intimate partner violence-related posttraumatic stress disorder. Annals of the New York Academy of Sciences, 1071: 428429.Google Scholar
Introini-Collison, I. B. & McGaugh, J. L. (1986). Epinephrine modulates long-term retention of an aversively motivated discrimination. Behavioral and Neural Biology, 45: 358365.Google Scholar
Irwin, M., Hauger, R. L., Brown, M., & Britton, K. T. (1988). CRF activates autonomic nervous system and reduces natural killer cytotoxicity. American Journal of Physiology, 255: R744R747.Google Scholar
Jacobson, L. & Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic–pituitary–adrenocortical axis. Endocrine Reviews, 12: 118134.Google Scholar
Jensen, J. L., Brodin, P., Berg, T., & Aars, H. (1991). Parotid secretion of fluid, amylase and kallikrein during reflex stimulation under normal conditions and after acute administration of autonomic blocking agents in man. Acta Physiologica Scandinavica, 143: 321329.Google Scholar
Jessop, D. S., Dallman, M. F., Fleming, D., & Lightman, S. L. (2001). Resistance to glucocorticoid feedback in obesity. Journal of Clinical Endocrinology and Metabolism, 86: 41094114.Google Scholar
Joels, M. (2001). Corticosteroid actions in the hippocampus. Journal of Neuroendocrinology, 13: 657669.Google Scholar
Joels, M., Sarabdjitsingh, R. A., & Karst, H. (2012). Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacological Reviews, 64: 901938.Google Scholar
Johansson, G. & Frankenhaeuser, M. (1973). Temporal factors in sympatho-adrenomedullary activity following acute behavioral activation. Biological Psychology, 1: 6373.Google Scholar
Johansson, G. & Post, B. (1974). Catecholamine output of males and females over a one-year period. Acta Physiologica Scandinavica, 92: 557565.Google Scholar
Jurado, C., Kintz, P., Menendez, M., & Repetto, M. (1997). Influence of the cosmetic treatment of hair on drug testing. International Journal of Legal Medicine, 110: 159163.Google Scholar
Kalra, S., Einarson, A., Karaskov, T., Van Uum, S., & Koren, G. (2007). The relationship between stress and hair cortisol in healthy pregnant women. Clinical and Investigative Medicine, 30: E103E107.Google Scholar
Kaplan, J. R., Manuck, S. B., Clarkson, T. B., Lusso, F. M., Taub, D. M., & Miller, E. W. (1983). Social stress and atherosclerosis in normocholesterolemic monkeys. Science, 220: 733735.Google Scholar
Kennedy, B., Dillon, E., Mills, P. J., & Ziegler, M. G. (2001). Catecholamines in human saliva. Life Sciences, 69: 8799.Google Scholar
Kidd, T., Carvalho, L. A., & Steptoe, A. (2014). The relationship between cortisol responses to laboratory stress and cortisol profiles in daily life. Biological Psychology, 99: 3440.Google Scholar
Kim, H. K., Tiberio, S. S., Capaldi, D. M., Shortt, J. W., Squires, E. C., & Snodgrass, J. J. (2015). Intimate partner violence and diurnal cortisol patterns in couples. Psychoneuroendocrinology, 51: 3546.Google Scholar
Kintz, P., Cirimele, V., Jeanneau, T., & Ludes, B. (1999). Identification of testosterone and testosterone esters in human hair. Journal of Analytical Toxicology, 23: 352356.Google Scholar
Kirschbaum, C. & Hellhammer, D. H. (1989). Salivary cortisol in psychobiological research: an overview. Neuropsychobiology, 22: 150169.Google Scholar
Kirschbaum, C., Pirke, K. M., & Hellhammer, D. H. (1993). The “Trier Social Stress Test”: a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28: 7681.Google Scholar
Kirschbaum, C., Tietze, A., Skoluda, N., & Dettenborn, L. (2009). Hair as a retrospective calendar of cortisol production: increased cortisol incorporation into hair in the third trimester of pregnancy. Psychoneuroendocrinology, 34: 3237.Google Scholar
Kirschbaum, C., Wolf, O. T., May, M., Wippich, W., & Hellhammer, D. H. (1996). Stress- and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sciences, 58: 14751483.Google Scholar
Kirschbaum, C., Wust, S., & Hellhammer, D. (1992). Consistent sex differences in cortisol responses to psychological stress. Psychosomatic Medicine, 54: 648657.Google Scholar
Kivlighan, K. T., Granger, D. A., Schwartz, E. B., Nelson, V., Curran, M., & Shirtcliff, E. A. (2004). Quantifying blood leakage into the oral mucosa and its effects on the measurement of cortisol, dehydroepiandrosterone, and testosterone in saliva. Hormones and Behavior, 46: 3946.Google Scholar
Klein, L. C., Jamner, L. D., Alberts, J., Orenstein, M. D., Levine, L., & Leigh, H. (2000). Sex differences in salivary cortisol levels following naltrexone administration. Journal of Applied Biobehavioral Research, 5: 144153.Google Scholar
Kovacs, G. L., Szabo, G., Sarnyai, Z., & Telegdy, G. (1987). Neurohypophyseal hormones and behavior. Progress in Brain Research, 72: 109118.Google Scholar
Kudielka, B. M., Buske-Kirschbaum, A., Hellhammer, D. H., & Kirschbaum, C. (2004). HPA axis responses to laboratory psychosocial stress in healthy elderly adults, younger adults, and children: impact of age and gender. Psychoneuroendocrinology, 29: 8398.Google Scholar
Kudielka, B. M., Federenko, I. S., Hellhammer, D. H., & Wust, S. (2006). Morningness and eveningness: the free cortisol rise after awakening in “early birds” and “night owls.” Biological Psychology, 72: 141146.Google Scholar
Kudielka, B. M., Gierens, A., Hellhammer, D. H., Wust, S., & Schlotz, W. (2012). Salivary cortisol in ambulatory assessment: some dos, some don’ts, and some open questions. Psychosomatic Medicine, 74: 418431.Google Scholar
Kudielka, B. M., Hellhammer, D. H., & Wust, S. (2009). Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology, 34: 218.Google Scholar
Kudielka, B. M., Hellhammer, J., Hellhammer, D. H., Wolf, O. T., Pirke, K. M., Varadi, E., … & Kirschbaum, C. (1998). Sex differences in endocrine and psychological responses to psychosocial stress in healthy elderly subjects and the impact of a 2-week dehydroepiandrosterone treatment. Journal of Clinical Endocrinology and Metabolism, 83: 17561761.Google Scholar
Kumari, M., Badrick, E., Chandola, T., Adam, E. K., Stafford, M., Marmot, M. G., … & Kivimaki, M. (2009). Cortisol secretion and fatigue: associations in a community based cohort. Psychoneuroendocrinology, 34: 14761485.Google Scholar
Kumari, M., Shipley, M., Stafford, M., & Kivimaki, M. (2011). Association of diurnal patterns in salivary cortisol with all-cause and cardiovascular mortality: findings from the Whitehall II study. Journal of Clinical Endocrinology and Metabolism, 96: 14781485.Google Scholar
Kumsta, R., Entringer, S., Hellhammer, D. H., & Wust, S. (2007). Cortisol and ACTH responses to psychosocial stress are modulated by corticosteroid binding globulin levels. Psychoneuroendocrinology, 32: 11531157.Google Scholar
Kunz-Ebrecht, S. R., Kirschbaum, C., Marmot, M., & Steptoe, A. (2004). Differences in cortisol awakening response on work days and weekends in women and men from the Whitehall II cohort. Psychoneuroendocrinology, 29: 516528.Google Scholar
Kunz-Ebrecht, S. R., Mohamed-Ali, V., Feldman, P. J., Kirschbaum, C., & Steptoe, A. (2003). Cortisol responses to mild psychological stress are inversely associated with proinflammatory cytokines. Brain, Behavior, and Immunity, 17: 373383.Google Scholar
Laudenslager, M. L., Noonan, C., Jacobsen, C., Goldberg, J., Buchwald, D., Bremner, J. D., … & Manson, S. M. (2009). Salivary cortisol among American Indians with and without posttraumatic stress disorder (PTSD): gender and alcohol influences. Brain, Behavior, and Immunity, 23: 658662.Google Scholar
Lazarus, R. S., Baker, R. W., Broverman, D. M., & Mayer, J. (1957). Personality and psychological stress. Journal of Personality, 25: 559577.Google Scholar
Lazarus, R. S. & Folkman, S. (1984). Stress, Appraisal and Coping. New York: Springer.Google Scholar
Lemola, S., Perkinson-Gloor, N., Hagmann-von Arx, P., Brand, S., Holsboer-Trachsler, E., Grob, A., & Weber, P. (2015). Morning cortisol secretion in school-age children is related to the sleep pattern of the preceding night. Psychoneuroendocrinology, 52: 297301.Google Scholar
Leproult, R., Copinschi, G., Buxton, O., & Van Cauter, E. (1997). Sleep loss results in an elevation of cortisol levels the next evening. Sleep, 20: 865870.Google Scholar
Liang, K. C., Juler, R. G., & McGaugh, J. L. (1986). Modulating effects of posttraining epinephrine on memory: involvement of the amygdala noradrenergic system. Brain Research, 368: 125133.Google Scholar
Lovallo, W. R. (2011). Do low levels of stress reactivity signal poor states of health? Biological Psychology, 86: 121128.Google Scholar
Lovallo, W. R. (2013). Early life adversity reduces stress reactivity and enhances impulsive behavior: implications for health behaviors. International Journal of Psychophysiology, 90: 816.Google Scholar
Lovallo, W. R. (2016). Stress and Health: Biological and Psychological Interactions, 3rd edn. Los Angeles, CA: Sage.Google Scholar
Lovallo, W. R., Dickensheets, S. L., Myers, D. A., Thomas, T. L., & Nixon, S. J. (2000). Blunted stress cortisol response in abstinent alcoholic and polysubstance-abusing men. Alcoholism, Clinical and Experimental Research, 24: 651658.Google Scholar
Lovallo, W. R., Farag, N. H., Sorocco, K. H., Acheson, A., Cohoon, A. J., & Vincent, A. S. (2013). Early life adversity contributes to impaired cognition and impulsive behavior: studies from the Oklahoma Family Health Patterns Project. Alcoholism, Clinical and Experimental Research, 37: 616623.Google Scholar
Lovallo, W. R., Farag, N. H., Sorocco, K. H., Cohoon, A. J., & Vincent, A. S. (2012a). Lifetime adversity leads to blunted stress axis reactivity: studies from the Oklahoma Family Health Patterns Project. Biological Psychiatry, 71: 344349.Google Scholar
Lovallo, W. R., Farag, N. H., & Vincent, A. S. (2010a). Use of a resting control day in measuring the cortisol response to mental stress: diurnal patterns, time of day, and gender effects. Psychoneuroendocrinology, 35: 12531258.Google Scholar
Lovallo, W. R. & Gerin, W. (2003). Psychophysiological reactivity: mechanisms and pathways to cardiovascular disease. Psychosomatic Medicine, 65: 3645.Google Scholar
Lovallo, W. R., King, A. C., Farag, N. H., Sorocco, K. H., Cohoon, A. J., & Vincent, A. S. (2012b). Naltrexone effects on cortisol secretion in women and men in relation to a family history of alcoholism: studies from the Oklahoma Family Health Patterns Project. Psychoneuroendocrinology, 37: 19221928.Google Scholar
Lovallo, W. R., Pincomb, G. A., Brackett, D. J., & Wilson, M. F. (1990). Heart rate reactivity as a predictor of neuroendocrine responses to aversive and appetitive challenges. Psychosomatic Medicine, 52: 1726.Google Scholar
Lovallo, W. R., Robinson, J. L., Glahn, D. C., & Fox, P. T. (2010b). Acute effects of hydrocortisone on the human brain: an fMRI study. Psychoneuroendocrinology, 35: 1520.Google Scholar
Lovallo, W. R., Wilson, M. F., Pincomb, G. A., Edwards, G. L., Tompkins, P., & Brackett, D. J. (1985). Activation patterns to aversive stimulation in man: passive exposure versus effort to control. Psychophysiology, 22: 283291.Google Scholar
Lundberg, U. & Frankenhaeuser, M. (1980). Pituitary–adrenal and sympathetic–adrenal correlates of distress and effort. Journal of Psychosomatic Research, 24: 125130.Google Scholar
Lupien, S. J., de Leon, M., de Santi, S., Convit, A., Tarshish, C., Nair, N. P.,… & Meaney, M. J. (1998). Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neuroscience, 1(1), 6973.Google Scholar
Lupien, S. J., Lecours, A. R., Lussier, I., Schwartz, G., Nair, N. P., & Meaney, M. J. (1994). Basal cortisol levels and cognitive deficits in human aging. Journal of Neuroscience, 14: 28932903.Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10: 434445.Google Scholar
Malarkey, W. B., Pearl, D. K., Demers, L. M., Kiecolt-Glaser, J. K., & Glaser, R. (1995). Influence of academic stress and season on 24-hour mean concentrations of ACTH, cortisol, and beta-endorphin. Psychoneuroendocrinology, 20: 499508.Google Scholar
Mason, B. L., Pariante, C. M., Jamel, S., & Thomas, S. A. (2010). Central nervous system (CNS) delivery of glucocorticoids is fine-tuned by saturable transporters at the blood–CNS barriers and nonbarrier regions. Endocrinology, 151: 52945305.Google Scholar
Mason, J. W. (1968). Organization of psychoendocrine mechanisms. Psychosomatic Medicine, 30: 565808.Google Scholar
Mazzeo, R. S., Rajkumar, C., Jennings, G., & Esler, M. (1997). Norepinephrine spillover at rest and during submaximal exercise in young and old subjects. Journal of Applied Physiology, 82: 18691874.Google Scholar
McArdle, W. D., Foglia, G.F., & Patti, A. V. (1967). Telemetered cardiac response to selected running events. Journal of Applied Physiology, 23: 566570.Google Scholar
McCann, B. S., Carter, J., Vaughan, M., Raskind, M., Wilkinson, C. W., & Veith, R. C. (1993). Cardiovascular and neuroendocrine responses to extended laboratory challenge. Psychosomatic Medicine, 55: 497504.Google Scholar
McCubbin, J. A., Kaplan, J. R., Manuck, S. B., & Adams, M. R. (1993). Opioidergic inhibition of circulatory and endocrine stress responses in cynomolgus monkeys: a preliminary study. Psychosomatic Medicine, 55: 2328.Google Scholar
McEwen, B. S. (1997). Possible mechanisms for atrophy of the human hippocampus. Molecular Psychiatry, 2: 255262.Google Scholar
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: central role of the brain. Physiological Review, 87: 873904.Google Scholar
McEwen, B. S. (2015). Biomarkers for assessing population and individual health and disease related to stress and adaptation. Metabolism: Clinical and Experimental, 64: S2S10.Google Scholar
McEwen, B. S., Biron, C. A., Brunson, K. W., Bulloch, K., Chambers, W. H., Dhabhar, F. S., … & Weiss, J. M. (1997). The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Research Reviews, 23: 79133.Google Scholar
McEwen, B. S. & Sapolsky, R. M. (1995). Stress and cognitive function. Current Opinion in Neurobiology, 5: 205216.Google Scholar
McEwen, B. S., Weiss, J. M., & Schwartz, L. S. (1968). Selective retention of corticosterone by limbic structures in rat brain. Nature, 220: 911912.Google Scholar
McGaugh, J. L. (1983). Hormonal influences on memory. Annual Review of Psychology, 34: 297323.Google Scholar
McGaugh, J. L. & Roozendaal, B. (2002). Role of adrenal stress hormones in forming lasting memories in the brain. Current Opinion in Neurobiology, 12: 205210.Google Scholar
McIntyre, C. K. & Roozendaal, B. (2007). Adrenal stress hormones and enhanced memory for emotionally arousing experiences. In Bermudez-Rattoni, F. (ed.), Neural Plasticity and Memory: From Genes to Brain Imaging. Boca Raton, FL: CRC Press.Google Scholar
Mendelson, J. H., Mello, N. K., Cristofaro, P., Skupny, A., & Ellingboe, J. (1986). Use of naltrexone as a provocative test for hypothalamic-pituitary hormone function. Pharmacology, Biochemistry, and Behavior, 24: 309313.Google Scholar
Menkes, M. S., Matthews, K. A., Krantz, D. S., Lundberg, U., Mead, L. A., Qaqish, B., … & Pearson, T. A. (1989). Cardiovascular reactivity to the cold pressor test as a predictor of hypertension. Hypertension, 14: 524530.Google Scholar
Miller, G. E., Chen, E., Fok, A. K., Walker, H., Lim, A., Nicholls, E. F., … & Kobor, M. S. (2009). Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proceedings of the National Academy of Sciences of the USA, 106: 1471614721.Google Scholar
Miller, R. & Plessow, F. (2013). Transformation techniques for cross-sectional and longitudinal endocrine data: application to salivary cortisol concentrations. Psychoneuroendocrinology, 38: 941946.Google Scholar
Miller, R., Plessow, F., Rauh, M., Groschl, M., & Kirschbaum, C. (2013). Comparison of salivary cortisol as measured by different immunoassays and tandem mass spectrometry. Psychoneuroendocrinology, 38: 5057.Google Scholar
Moffitt, T. E., Caspi, A., & Rutter, M. (2006). Measured gene–environment interactions in psychopathology. Perspectives in Psychological Science, 1: 527.Google Scholar
Montag, C. & Reuter, M. (2014). Disentangling the molecular genetic basis of personality: from monoamines to neuropeptides. Neuroscience & Biobehavioral Reviews, 43: 228239.Google Scholar
Mulert, C., Menzinger, E., Leicht, G., Pogarell, O., & Hegerl, U. (2005). Evidence for a close relationship between conscious effort and anterior cingulate cortex activity. International Journal of Psychophysiology, 56: 6580.Google Scholar
Munck, A., Guyre, P. M., & Holbrook, N. J. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Reviews, 5: 2544.Google Scholar
Nater, U. M. & Rohleder, N. (2009). Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology, 34: 486496.Google Scholar
Netter, F. H. (1953). A Compilation of Paintings on the Normal and Pathologic Anatomy of the Nervous System, vol. 1. Summit, NJ: CIBA Pharmaceutical Company.Google Scholar
Nieuwenhuizen, A. G. & Rutters, F. (2008). The hypothalamic–pituitary–adrenal axis in the regulation of energy balance. Physiology & Behavior, 94: 169177.Google Scholar
Obradovic, J., Bush, N. R., Stamperdahl, J., Adler, N. E., & Boyce, W. T. (2010). Biological sensitivity to context: the interactive effects of stress reactivity and family adversity on socioemotional behavior and school readiness. Child Development, 81: 270289.Google Scholar
Pariante, C. M. & Miller, A. H. (2001). Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biological Psychiatry, 49: 391404.Google Scholar
Perogamvros, I., Aarons, L., Miller, A. G., Trainer, P. J., & Ray, D. W. (2011). Corticosteroid-binding globulin regulates cortisol pharmacokinetics. Clinical Endocrinology, 74: 3036.Google Scholar
Perogamvros, I., Ray, D. W., & Trainer, P. J. (2012). Regulation of cortisol bioavailability: effects on hormone measurement and action. Nature Reviews Endocrinology, 8: 717727.Google Scholar
Petrowski, K., Herold, U., Joraschky, P., Wittchen, H. U., & Kirschbaum, C. (2010). A striking pattern of cortisol non-responsiveness to psychosocial stress in patients with panic disorder with concurrent normal cortisol awakening responses. Psychoneuroendocrinology, 35: 414421.Google Scholar
Petrusz, P. & Merchenthaler, I. (1992). The corticotropin-releasing factor system. In Nemeroff, C. B. (ed.), Neuroendocrinology (pp. 129183). Boca Raton, FL: CRC Press.Google Scholar
Pfaff, D. W., Silva, M. T., & Weiss, J. M. (1971). Telemetered recording of hormone effects on hippocampal neurons. Science, 172: 394395.Google Scholar
Pincomb, G. A., Lovallo, W. R., Passey, R. B., Brackett, D. J., & Wilson, M. F. (1987). Caffeine enhances the physiological response to occupational stress in medical students. Health Psychology, 6: 101112.Google Scholar
Powell, L. H., Lovallo, W. R., Matthews, K. A., Meyer, P., Midgley, A. R., Baum, A., … & Ory, M. G. (2002). Physiologic markers of chronic stress in premenopausal, middle-aged women. Psychosomatic Medicine, 64: 502509.Google Scholar
Preston, S. D. (2013). The origins of altruism in offspring care. Psychological Bulletin, 139: 13051341.Google Scholar
Proctor, G. B. & Carpenter, G. H. (2007). Regulation of salivary gland function by autonomic nerves. Autonomic Neuroscience, 133: 318.Google Scholar
Proulx, L., Giguere, V., Lefevre, G., & Labrie, F. (1984). Interactions between catecholamines, CRF and vasopressin in the control of ACTH secretion in the rat. In Usdin, E., Kvetnansky, R., & Axelrod, J. (eds.), Stress: The Role of Catecholamines and Other Neurotransmitters, vol. 1 (pp. 211214). New York: Gordon & Breach.Google Scholar
Pruessner, J. C., Wolf, O. T., Hellhammer, D. H., Buske-Kirschbaum, A., von Auer, K., Jobst, S., … & Kirschbaum, C. (1997). Free cortisol levels after awakening: a reliable biological marker for the assessment of adrenocortical activity. Life Sciences, 61: 25392549.Google Scholar
Ranjit, N., Young, E. A., & Kaplan, G. A. (2005). Material hardship alters the diurnal rhythm of salivary cortisol. International Journal of Epidemiology, 34: 11381143.Google Scholar
Read, G. F. & Riad-Fahmy, D. (1992). Direct assays for adrenal steroids in neonates. Annals of Clinical Biochemistry, 29: 117118.Google Scholar
Reul, J. M. & de Kloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology, 117: 25052511.Google Scholar
Reul, J. M. & de Kloet, E. R. (1986). Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. Journal of Steroid Biochemistry, 24: 269272.Google Scholar
Reyes, B. A., Bangasser, D. A., Valentino, R. J., & Van Bockstaele, E. J. (2014). Using high resolution imaging to determine trafficking of corticotropin-releasing factor receptors in noradrenergic neurons of the rat locus coeruleus. Life Sciences, 112: 29.Google Scholar
Riad-Fahmy, D., Read, G. F., & Walker, R. F. (1983). Salivary steroid assays for assessing variation in endocrine activity. Journal of Steroid Biochemistry, 19: 265272.Google Scholar
Riad-Fahmy, D., Read, G. F., Walker, R. F., & Griffiths, K. (1982). Steroids in saliva for assessing endocrine function. Endocrine Reviews, 3: 367395.Google Scholar
Richardson Morton, K. D., Van de Kar, L. D., Brownfield, M. S., Lorens, S. A., Napier, T. C., & Urban, J. H. (1990). Stress-induced renin and corticosterone secretion is mediated by catecholaminergic nerve terminals in the hypothalamic paraventricular nucleus. Neuroendocrinology, 51: 320327.Google Scholar
Rivier, C. & Vale, W. (1985). Effects of corticotropin-releasing factor, neurohypophyseal peptides, and catecholamines on pituitary function. Federation Proceedings, 44: 189195.Google Scholar
Roche, D. J., Childs, E., Epstein, A. M., & King, A. C. (2010). Acute HPA axis response to naltrexone differs in female vs. male smokers. Psychoneuroendocrinology, 35: 596606.Google Scholar
Roche, D. J. & King, A. C. (2015). Sex differences in acute hormonal and subjective response to naltrexone: the impact of menstrual cycle phase. Psychoneuroendocrinology, 52: 5971.Google Scholar
Roche, D. J., King, A. C., Cohoon, A. J., & Lovallo, W. R. (2013). Hormonal contraceptive use diminishes salivary cortisol response to psychosocial stress and naltrexone in healthy women. Pharmacology, Biochemistry and Behavior, 109: 8490.Google Scholar
Rohleder, N. & Nater, U. M. (2009). Determinants of salivary alpha-amylase in humans and methodological considerations. Psychoneuroendocrinology, 34: 469485.Google Scholar
Rolls, E. T. (2015). Limbic systems for emotion and for memory, but no single limbic system. Cortex, 62: 119157.Google Scholar
Russell, E., Kirschbaum, C., Laudenslager, M. L., Stalder, T., de Rijke, Y., van Rossum, E. F., … & Koren, G. (2015). Toward standardization of hair cortisol measurement: results of the first international interlaboratory round robin. Therapeutic Drug Monitoring, 37: 7175.Google Scholar
Saab, P. G., Matthews, K. A., Stoney, C. M., & McDonald, R. H. (1989). Premenopausal and postmenopausal women differ in their cardiovascular and neuroendocrine responses to behavioral stressors. Psychophysiology, 26: 270280.Google Scholar
Saitoh, M., Uzuka, M., & Sakamoto, M. (1967). Rate of hair growth. In Montagna, M. & Dobson, R. L. (eds.), Advances in Biology of Skin: Hair Growth, vol. 9 (pp. 183194). London: Pergamon Press.Google Scholar
Sanchez, M. M., Young, L. J., Plotsky, P. M., & Insel, T. R. (2000). Distribution of corticosteroid receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal formation. Journal of Neuroscience, 20: 46574668.Google Scholar
Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1985). Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. Journal of Neuroscience, 5: 12221227.Google Scholar
Sapolsky, R. M., Zola-Morgan, S., & Squire, L. R. (1991). Inhibition of glucocorticoid secretion by the hippocampal formation in the primate. Journal of Neuroscience, 11: 36953704.Google Scholar
Sausen, K. P., Lovallo, W. R., Pincomb, G. A., & Wilson, M. F. (1992). Cardiovascular responses to occupational stress in medical students: a paradigm for ambulatory monitoring studies. Health Psychology, 11: 5560.Google Scholar
Schelling, G., Roozendaal, B., Krauseneck, T., Schmoelz, M., de Quervain, D., & Briegel, J. (2006). Efficacy of hydrocortisone in preventing posttraumatic stress disorder following critical illness and major surgery. Annals of the New York Academy of Sciences, 1071: 4653.Google Scholar
Schultebraucks, K., Wingenfeld, K., Heimes, J., Quinkler, M., & Otte, C. (2015). Cognitive function in patients with primary adrenal insufficiency (Addison’s disease). Psychoneuroendocrinology, 55: 17.Google Scholar
Schwabe, L. & Wolf, O. T. (2013). Stress and multiple memory systems: from “thinking” to “doing.” Trends in Cognitive Sciences, 17: 6068.Google Scholar
Seligman, M. E. P., Maier, S., & Solomon, R. L. (1971). Unpredictable and uncontrollable aversive events. In Brush, F. R. (ed.), Aversive Conditioning and Learning (pp. 347400). New York: Academic Press.Google Scholar
Seltzer, L. J., Ziegler, T., Connolly, M. J., Prososki, A. R., & Pollak, S. D. (2014). Stress-induced elevation of oxytocin in maltreated children: evolution, neurodevelopment, and social behavior. Child Development, 85: 501512.Google Scholar
Selye, H. (1936). Thymus and adrenals in the response of the organism to injuries and intoxications. British Journal of Experimental Pathology, 17: 234248.Google Scholar
Sgoutas-Emch, S. A., Cacioppo, J. T., Uchino, B. N., Malarkey, W., Pearl, D., Kiecolt–Glaser, J. K., & Glaser, R. (1994). The effects of an acute psychological stressor on cardiovascular, endocrine, and cellular immune responses: a prospective study of individuals high and low in heart rate reactivity. Psychophysiology, 31: 264271.Google Scholar
Shepard, J. D., Barron, K. W., & Myers, D. A. (2000). Corticosterone delivery to the amygdala increases corticotropin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior. Brain Research, 861: 288295.Google Scholar
Shepard, J. D., Barron, K. W., & Myers, D. A. (2003). Stereotaxic localization of corticosterone to the amygdala enhances hypothalamo–pituitary–adrenal responses to behavioral stress. Brain Research, 963: 203213.Google Scholar
Sheridan, M. A., Sarsour, K., Jutte, D., D’Esposito, M., & Boyce, W. T. (2012). The impact of social disparity on prefrontal function in childhood. PLoS One, 7: e35744.Google Scholar
Sherman, J. E. & Kalin, N. H. (1988). ICV-CRH alters stress-induced freezing behavior without affecting pain sensitivity. Pharmacology, Biochemistry and Behavior, 30: 801807.Google Scholar
Shirtcliff, E. A., Granger, D. A., Schwartz, E., & Curran, M. J. (2001). Use of salivary biomarkers in biobehavioral research: cotton-based sample collection methods can interfere with salivary immunoassay results. Psychoneuroendocrinology, 26: 165173.Google Scholar
Sinha, R., Lovallo, W. R., & Parsons, O. A. (1992). Cardiovascular differentiation of emotions. Psychosomatic Medicine, 54: 422435.Google Scholar
Sjogren, E., Leanderson, P., & Kristenson, M. (2006). Diurnal saliva cortisol levels and relations to psychosocial factors in a population sample of middle-aged Swedish men and women. International Journal of Behavioral Medicine, 13: 193200.Google Scholar
Sjors, A., Ljung, T., & Jonsdottir, I. H. (2014). Diurnal salivary cortisol in relation to perceived stress at home and at work in healthy men and women. Biological Psychology, 99: 193197.Google Scholar
Smith, A. S. & Wang, Z. (2014). Hypothalamic oxytocin mediates social buffering of the stress response. Biological Psychiatry, 76: 281288.Google Scholar
Smith, E. E., Guyton, A. C., Manning, R. D., & White, R. J. (1976). Integrated mechanisms of cardiovascular response and control during exercise in the normal human. Progress in Cardiovascular Disease, 28: 421443.Google Scholar
Smith, O. A., DeVito, J. L., & Astley, C. A. (1982). Cardiovascular control centers in the brain: one more look. In Smith, O. A., Galosy, R. A., & Weiss, S. M. (eds.), Circulation, Neurobiology and Behavior (pp. 233246). New York: Elsevier.Google Scholar
Smyth, J., Ockenfels, M. C., Porter, L., Kirschbaum, C., Hellhammer, D. H., & Stone, A. A. (1998). Stressors and mood measured on a momentary basis are associated with salivary cortisol secretion. Psychoneuroendocrinology, 23: 353370.Google Scholar
Snyder, S. H. (1977). Opiate receptors in the brain. New England Journal of Medicine, 296: 266271.Google Scholar
Sorocco, K. H., Carnes, N. C., Cohoon, A. J., Vincent, A. S., & Lovallo, W. R. (2015). Risk factors for alcoholism in the Oklahoma Family Health Patterns project: impact of early life adversity and family history on affect regulation and personality. Drug and Alcohol Dependence, 150: 3845.Google Scholar
Sorocco, K. H., Lovallo, W. R., Vincent, A. S., & Collins, F. L. (2006). Blunted hypothalamic–pituitary–adrenocortical axis responsivity to stress in persons with a family history of alcoholism. International Journal of Psychophysiology, 59: 210217.Google Scholar
Stalder, T., Steudte, S., Miller, R., Skoluda, N., Dettenborn, L., & Kirschbaum, C. (2012). Intraindividual stability of hair cortisol concentrations. Psychoneuroendocrinology, 37: 602610.Google Scholar
Starkman, M. N., Gebarski, S. S., Berent, S., & Schteingart, D. E. (1992). Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biological Psychiatry, 32: 756765.Google Scholar
Starkman, M. N., Giordani, B., Gebarski, S. S., & Schteingart, D. E. (2003). Improvement in learning associated with increase in hippocampal formation volume. Biological Psychiatry, 53: 233238.Google Scholar
Starkman, M. N., Schteingart, D. E., & Schork, M. A. (1981). Depressed mood and other psychiatric manifestations of Cushing’s syndrome: relationship to hormone levels. Psychosomatic Medicine, 43: 318.Google Scholar
Starr-Phillips, E. J. & Beery, A. K. (2014). Natural variation in maternal care shapes adult social behavior in rats. Developmental Psychobiology, 56: 10171026.Google Scholar
Staufenbiel, S. M., Penninx, B. W., Spijker, A. T., Elzinga, B. M., & van Rossum, E. F. (2013). Hair cortisol, stress exposure, and mental health in humans: a systematic review. Psychoneuroendocrinology, 38: 12201235.Google Scholar
Stawski, R. S., Cichy, K. E., Piazza, J. R., & Almeida, D. M. (2013). Associations among daily stressors and salivary cortisol: findings from the National Study of Daily Experiences. Psychoneuroendocrinology, 38: 26542665.Google Scholar
Steinheuser, V., Ackermann, K., Schonfeld, P., & Schwabe, L. (2014). Stress and the city: impact of urban upbringing on the (re)activity of the hypothalamus–pituitary–adrenal axis. Psychosomatic Medicine, 76: 678685.Google Scholar
Steptoe, A. (1987). The assessment of sympathetic nervous function in human stress research. Journal of Psychosomatic Research, 31: 141152.Google Scholar
Steptoe, A., Kunz-Ebrecht, S. R., Brydon, L., & Wardle, J. (2004). Central adiposity and cortisol responses to waking in middle-aged men and women. International Journal of Obesity and Related Metabolic Disorders, 28: 11681173.Google Scholar
Suarez-Hitz, K. A., Otto, B., Bidlingmaier, M., Schwizer, W., Fried, M., & Ehlert, U. (2012). Altered psychobiological responsiveness in women with irritable bowel syndrome. Psychosomatic Medicine, 74: 221231.Google Scholar
Sung, B. H., Lovallo, W. R., Pincomb, G. A., & Wilson, M. F. (1990). Effects of caffeine on blood pressure response during exercise in normotensive healthy young men. American Journal of Cardiology, 65: 909913.Google Scholar
Swanson, L. W. & Petrovich, G. D. (1998). What is the amygdala?Trends in Neurosciences, 21: 323331.Google Scholar
Swanson, L. W., Sawchenko, P. E., Rivier, J., & Vale, W. W. (1983). Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology, 36: 165186.Google Scholar
Szabo, B., Hedler, L., Schurr, C., & Starke, K. (1988). ACTH increases noradrenaline release in the rabbit heart. Naunyn-Schmiedebergs Archives of Pharmacology, 338: 368372.Google Scholar
Takahashi, L. K., Kalin, N. H., Vanden Burgt, J. A., & Sherman, J. E. (1989). Corticotropin-releasing factor modulates defensive-withdrawal and exploratory behavior in rats. Behavioral Neuroscience, 103: 648654.Google Scholar
Tops, M., Koole, S. L., IJzerman, H., & Buisman-Pijlman, F. T. (2014). Why social attachment and oxytocin protect against addiction and stress: insights from the dynamics between ventral and dorsal corticostriatal systems. Pharmacology, Biochemistry and Behavior, 119: 3948.Google Scholar
Trainer, P. J., McHardy, K. C., Harvey, R. D., & Reid, I. W. (1993). Urinary free cortisol in the assessment of hydrocortisone replacement therapy. Hormone and Metabolic Research, 25: 117120.Google Scholar
Treiber, F. A., Kamarck, T., Schneiderman, N., Sheffield, D., Kapuku, G., & Taylor, T. (2003). Cardiovascular reactivity and development of preclinical and clinical disease states. Psychosomatic Medicine, 65: 4662.Google Scholar
Turner, B. B. & Weaver, D. A. (1985). Sexual dimorphism of glucocorticoid binding in rat brain. Brain Research, 343: 1623.Google Scholar
Uvnas-Moberg, K., Handlin, L., & Petersson, M. (2014). Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation. Frontiers in Psychology, 5: 1529.Google Scholar
Vale, W., Spiess, J., Rivier, C., & Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 213: 13941397.Google Scholar
Valentino, R. J., Foote, S. L., & Aston-Jones, G. (1983). Corticotropin-releasing factor activates noradrenergic neurons of the locus coeruleus. Brain Research, 270: 363367.Google Scholar
Van Bockstaele, E. J. & Valentino, R. J. (2013). Neuropeptide regulation of the locus coeruleus and opiate-induced plasticity of stress responses. Advances in Pharmacology, 68: 405420.Google Scholar
Van Cauter, E., Shapiro, E. T., Tillil, H., & Polonsky, K. S. (1992). Circadian modulation of glucose and insulin responses to meals: relationship to cortisol rhythm. American Journal of Physiology, 262: E467E475.Google Scholar
van Stegeren, A. H., Roozendaal, B., Kindt, M., Wolf, O. T., & Joels, M. (2010). Interacting noradrenergic and corticosteroid systems shift human brain activation patterns during encoding. Neurobiology of Learning and Memory, 93: 5665.Google Scholar
Voellmin, A., Winzeler, K., Hug, E., Wilhelm, F. H., Schaefer, V., Gaab, J., … & Bader, K. (2015). Blunted endocrine and cardiovascular reactivity in young healthy women reporting a history of childhood adversity. Psychoneuroendocrinology, 51: 5867.Google Scholar
von Polier, G. G., Herpertz-Dahlmann, B., Konrad, K., Wiesler, K., Rieke, J., Heinzel-Gutenbrunner, M., … & Vloet, T. D. (2013). Reduced cortisol in boys with early-onset conduct disorder and callous-unemotional traits. BioMed Research International, 2013: 349530.Google Scholar
Vranjkovic, O., Gasser, P. J., Gerndt, C. H., Baker, D. A., & Mantsch, J. R. (2014). Stress-induced cocaine seeking requires a beta-2 adrenergic receptor-regulated pathway from the ventral bed nucleus of the stria terminalis that regulates CRF actions in the ventral tegmental area. Journal of Neuroscience, 34: 1250412514.Google Scholar
Walker, R. F., Robinson, J. A., Roberts, S., Ford, P. D., & Riad-Fahmy, D. (1990). Experience with the Sarstedt Salivette in salivary steroid determinations. Annals of Clinical Biochemistry, 27: 503505.Google Scholar
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology, 54: 10631070.Google Scholar
Weaver, I. C., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., … & Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7: 847854.Google Scholar
Weckesser, L. J., Plessow, F., Pilhatsch, M., Muehlhan, M., Kirschbaum, C., & Miller, R. (2014). Do venepuncture procedures induce cortisol responses? A review, study, and synthesis for stress research. Psychoneuroendocrinology, 46: 8899.Google Scholar
Weller, J. A., Buchanan, T. W., Shackleford, C., Morganstern, A., Hartman, J. J., Yuska, J., & Denburg, N. L. (2014). Diurnal cortisol rhythm is associated with increased risky decision-making in older adults. Psychology and Aging, 29: 271283.Google Scholar
Wetherell, M. A., Lovell, B., & Smith, M. A. (2015). The effects of an anticipated challenge on diurnal cortisol secretion. Stress, 18: 4248.Google Scholar
Wiegratz, I., Kutschera, E., Lee, J. H., Moore, C., Mellinger, U., Winkler, U. H., & Kuhl, H. (2003). Effect of four different oral contraceptives on various sex hormones and serum-binding globulins. Contraception, 67: 2532.Google Scholar
Wiemers, U. S., Schoofs, D., & Wolf, O. T. (2013). A friendly version of the trier social stress test does not activate the HPA axis in healthy men and women. Stress, 16: 254260.Google Scholar
Williams, R. B. Jr., Lane, J. D., Kuhn, C. M., Melosh, W., White, A. D., & Schanberg, S. M. (1982). Type A behavior and elevated physiological and neuroendocrine responses to cognitive tasks. Science, 218: 483485.Google Scholar
Wolf, O. T. (2009). Stress and memory in humans: twelve years of progress? Brain Research, 1293: 142154.Google Scholar
Wolf, O. T., Fujiwara, E., Luwinski, G., Kirschbaum, C., & Markowitsch, H. J. (2005). No morning cortisol response in patients with severe global amnesia. Psychoneuroendocrinology, 30: 101105.Google Scholar
Wolfram, M., Bellingrath, S., Feuerhahn, N., & Kudielka, B. M. (2013). Cortisol responses to naturalistic and laboratory stress in student teachers: comparison with a non-stress control day. Stress and Health, 29: 143149.Google Scholar
Wosu, A. C., Gelaye, B., Valdimarsdottir, U., Kirschbaum, C., Stalder, T., Shields, A. E., & Williams, M. A. (2015). Hair cortisol in relation to sociodemographic and lifestyle characteristics in a multiethnic US sample. Annals of Epidemiology, 25: 9095.Google Scholar
Wosu, A. C., Valdimarsdottir, U., Shields, A. E., Williams, D. R., & Williams, M. A. (2013). Correlates of cortisol in human hair: implications for epidemiologic studies on health effects of chronic stress. Annals of Epidemiology, 23: 797811.Google Scholar
Wust, S., Wolf, J., Hellhammer, D. H., Federenko, I., Schommer, N., & Kirschbaum, C. (2000). The cortisol awakening response: normal values and confounds. Noise and Health, 2: 7988.Google Scholar
Yehuda, R., Flory, J. D., Pratchett, L. C., Buxbaum, J., Ising, M., & Holsboer, F. (2010). Putative biological mechanisms for the association between early life adversity and the subsequent development of PTSD. Psychopharmacology, 212: 405417.Google Scholar
Zalachoras, I., Houtman, R., Atucha, E., Devos, R., Tijssen, A. M., Hu, P., … & Meijer, O. C. (2013). Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator. Proceedings of the National Academy of Sciences of the USA, 110: 79107915.Google Scholar
Ziegler, M. G. (1989). Catecholamine measurement in behavioral research. In Schneiderman, N., Weiss, S. M., & Kaufmann, P. G. (eds.), Handbook of Research Methods in Cardiovascular Behavioral Medicine (pp. 167183). New York: Plenum Press.Google Scholar
Ziegler, M. G., Aung, M., & Kennedy, B. (1997). Sources of human urinary epinephrine. Kidney International, 51: 324327.Google Scholar
Zoladz, P. R. & Diamond, D. M. (2013). Current status on behavioral and biological markers of PTSD: a search for clarity in a conflicting literature. Neuroscience & Biobehavioral Reviews, 37: 860895.Google Scholar
Zorrilla, E. P., Logrip, M. L., & Koob, G. F. (2014). Corticotropin releasing factor: a key role in the neurobiology of addiction. Frontiers in Neuroendocrinology, 35: 234244.Google Scholar

References

Akselrod, S., Gordon., D., Ubel, F. A., Shannon, D. C., Barger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 213: 220222.Google Scholar
Allen, J. J. B., Chambers, A. S., & Towers, D. N. (2007). The many metrics of cardiac chronotropy: A pragmatic primer and a brief comparison of metrics. Biological Psychology, 74: 243262.Google Scholar
American Heart Association (2015). Understand your risk for congenital heart defects (March 15). Retrieved July 31, 2015 from www.heart.org.Google Scholar
Anokhin, A. P., Heath, A. C., & Myers, E. (2006). Genetic and environmental influences on frontal EEG asymmetry: a twin study. Biological Psychology, 71: 289295.Google Scholar
Bach, D. R. & Friston, K. J. (2012). Model-based analysis of skin conductance responses: towards causal models in psychophysiology. Psychophysiology, 50: 1522.Google Scholar
Baker, E., Baibazarova, E., Ktistaki, G., Shelton, K. H., & van Goozen, S. H. M. (2012). Development of fear and guilt in young children: stability over time and relations with psychopathology. Development and Psychopathology, 24: 833845.Google Scholar
Bal, E. (2011). Emotion recognition and social behaviors in children with attention-deficit/hyperactivity disorder. Doctoral dissertation, University of Illinois at Chicago.Google Scholar
Bar-Haim, Y., Marshall, P. J., & Fox, N. A. (2000). Developmental changes in heart period and high-frequency heart period variability from 4 months to 4 years of age. Developmental Psychobiology, 37: 4456.Google Scholar
Bathelt, J., O’Reilly, H., Clayden, J. D., Cross, J. H., & de Haan, M. (2013). Functional brain network organisation of children between 2 and 5 years derived from reconstructed activity of cortical sources of high-density EEG recordings. NeuroImage, 82: 595604.Google Scholar
Bazhenova, O. V., Stroganova, T. A., Doussard-Roosevelt, J. A., Posikera, I. A., & Porges, S. W. (2007). Physiological responses of 5-month-old infants to smiling and blank faces. International Journal of Psychophysiology, 63: 6476.Google Scholar
Beauchaine, T. (2001). Vagal tone, development, and Gray’s motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13: 183214.Google Scholar
Beauchaine, T. P. (2015a). Future directions in emotion dysregulation and youth psychopathology. Journal of Clinical Child and Adolescent Psychology, 44: 875896.Google Scholar
Beauchaine, T. P. (2015b). Respiratory sinus arrhythmia: a transdiagnostic biomarker of emotion dysregulation and psychopathology. Current Opinion in Psychology, 3: 4347.Google Scholar
Beauchaine, T. P. & Gatzke-Kopp, L. M. (2012). Instantiating the multiple levels of analysis perspective in a program of study on externalizing behavior. Development and Psychopathology, 24: 10031018.Google Scholar
Beauchaine, T. P., Gatzke-Kopp, L., & Mead, H. K. (2007). Polyvagal theory and developmental psychopathology: emotion dysregulation and conduct problems from preschool to adolescence. Biological Psychology, 74: 174184.Google Scholar
Beauchaine, T. P., Gatzke-Kopp, L. M., Neuhaus, E., Chipman, J., Reid, M. J., & Webster-Stratton, C. (2013a). Sympathetic- and parasympathetic-linked cardiac function and prediction of externalizing behavior, emotion regulation, and prosocial behavior among preschoolers treated for ADHD. Journal of Consulting and Clinical Psychology, 81: 481493.Google Scholar
Beauchaine, T. P., Hong, J., & Marsh, P. (2008a). Sex differences in autonomic correlates of conduct problems and aggression. Journal of the American Academy of Child and Adolescent Psychiatry, 47: 788796.Google Scholar
Beauchaine, T. P., Klein, D. N., Erickson, N. L., & Norris, A. L. (2013b). Developmental psychopathology and the Diagnostic and Statistical Manual of Mental Disorders. In Beauchaine, T. P. & Hinshaw, S. P. (eds.), Child and Adolescent Psychopathology, 2nd edn. (pp. 29110). Hoboken, NJ: John Wiley.Google Scholar
Beauchaine, T. P. & Marsh, P. (2006). Taxometric methods: enhancing early detection and prevention of psychopathology by identifying latent vulnerability traits. In Cicchetti, D. & Cohen, D. (eds.), Developmental Psychopathology, 2nd edn. (pp. 931967). Hoboken, NJ: John Wiley.Google Scholar
Beauchaine, T. P. & McNulty, T. (2013). Comorbidities and continuities as ontogenic processes: toward a developmental spectrum model of externalizing psychopathology. Development and Psychopathology, 25: 15051528.Google Scholar
Beauchaine, T. P., Neuhaus, E., Brenner, S. L., & Gatzke-Kopp, L. (2008b). Ten good reasons to consider biological processes in prevention and intervention research. Development and Psychopathology, 20: 745774.Google Scholar
Beauchaine, T. P., & Thayer, J. F. (2015). Heart rate variability as a transdiagnostic biomarker of psychopathology. International Journal of Psychophysiology, 98: 338350.Google Scholar
Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., … & Van der Molen, M. W. (1997). Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology, 34: 623648.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinsism: the modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98: 459487.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993). Cardiac psychophysiology and autonomic space in humans: emprical perspectives and conceptual implications. Psychological Bulletin, 114: 296322.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1995). The metrics of cardiac chronotropism: biometric perspectives. Psychophysiology, 32: 162171.Google Scholar
Berntson, G. G., Cacioppo, J. T., Quigley, K. S., & Fabro, V. T. (1994). Autonomic space and psychophysiological response. Psychophysiology, 31: 4461.Google Scholar
Blandon, A. Y., Calkins, S. D., Keane, S. P., & O’Brien, M. (2008). Individual differences in trajectories of emotion regulation processes: the effects of maternal depressive symptoms on children’s physiological regulation. Developmental Psychology, 44: 11101123.Google Scholar
Brenner, S. L. & Beauchaine, T. P. (2011). Cardiac pre-ejection period reactivity and psychiatric comorbidity prospectively predict substance use initiation among middle-schoolers: a pilot study. Psychophysiology, 48: 15871595.Google Scholar
Brenner, S. L., Beauchaine, T. P., & Sylvers, P. D. (2005). A comparison of psychophysiological and self-report measures of BAS and BIS activation. Psychophysiology, 42: 108115.Google Scholar
Burnette, C. P., Henderson, H. A., Inge, A. P., Zahka, N. E., Schwartz, C. B., & Mundy, P. C. (2011). Anterior EEG asymmetry and the modifier model of autism. Journal of Autism and Developmental Disorders, 41: 11131124.Google Scholar
Burt, K. B. & Obradović, J. (2013). The construct of psychophysiological reactivity: statistical and psychometric issues. Developmental Review, 33: 2957.Google Scholar
Byrne, E. A., Fleg, J. L., Vaitkevicius, P. V., Wright, J., & Porges, S. W. (1996). Role of aerobic capacity and body mass index in the age-associated decline in heart rate variability. Journal of Applied Physiology, 81: 743750.Google Scholar
Chambers, A. S. & Allen, J. J. B. (2007). Cardiac vagal control, emotion, psychopathology, and health. Biological Psychology, 74: 113115.Google Scholar
Chen, E., Matthews, K. A., Salomon, K., & Ewart, C. K. (2002). Cardiovascular reactivity during social and nonsocial stressors: do children’s personal goals and expressive skills matter? Health Psychology, 21: 1624.Google Scholar
Cho, Y. H., Craig, M. E., Srinivasan, S., Benitez-Aguirre, P., Mitchell, P., Jopling, T., & Donaghue, K. C. (2014). Heart rate variability in pubertal girls with type 1 diabetes: its relationship with glycaemic control, insulin resistance and hyperandrogenism. Clinical Endocrinology, 80: 818824.Google Scholar
Cicchetti, D. (2006). Development and psychopathology. In Cicchetti, D. & Cohen, D. J. (eds.), Developmental Psychopathology, vol. 1: Theory and Method (pp. 123). Hoboken, NJ: John Wiley.Google Scholar
Cicchetti, D. & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8: 597666.Google Scholar
Clarke, A. R., Barry, R. J., Irving, A. M., McCarthy, R., & Selikowitz, M. (2011). Children with attention-deficit/hyperactivity disorder and autistic features: EEG evidence for comorbid disorders. Psychiatry Research, 185: 225231.Google Scholar
Critchley, H. D., Rotshtein, P., Nagai, Y., O’Doherty, J., Mathias, C. J., & Dolan, R. J. (2005). Activity in the human brain predicting differential heart rate responses to emotional facial expressions. NeuroImage, 24: 751762.Google Scholar
Crowell, S., Beauchaine, T. P., Gatzke-Kopp, L., Sylvers, P., Mead, H., & Chipman-Chacon, J. (2006). Autonomic correlates of attention-deficit/hyperactivity disorder and oppositional defiant disorder in preschool children. Journal of Abnormal Psychology, 115: 174178.Google Scholar
Csibra, G., Kushnerenko, E., & Grossmann, T. (2008). Electrophysiological methods in studying infant cognitive development. In Nelson, C. A. & Luciana, M. (eds.), Handbook of Developmental Cognitive Neuroscience, 2nd edn. (pp. 247262). Cambridge, MA: MIT Press.Google Scholar
da Silva, C. C., Pereira, L. M., Cardoso, J. R., Moore, J. P., & Nakamura, F. Y. (2014). The effect of physical training on heart rate variability in healthy children: a systematic review with meta-analysis. Pediatric Exercise Science, 26: 147158.Google Scholar
Davidson, R. J. (1984). Hemispheric asymmetry and emotion. In Scherer, K. R. & Ekman, P. (eds.), Approaches to Emotion (pp. 3958). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Davidson, R. J. (1998). Anterior electrophysiological asymmetries, emotion, and depression: conceptual and methodological conundrums. Psychophysiology, 35: 607614.Google Scholar
Dawson, G., Klinger, L. G., Panagiotides, H., Hill, D., & Spieker, S. (1992). Frontal lobe activity and affective behavior of infants of mothers with depressive symptoms. Child Development, 63: 725737.Google Scholar
Dawson, G., Klinger, L. G., Panagiotides, H., Lewy, A., & Castelloe, P. (1995). Subgroups of autistic children based on social behavior display distinct patterns of brain activity. Journal of Abnormal Child Psychology, 23: 569583.Google Scholar
Dawson, G., Webb, S. J., Carver, L., Panagiotides, H., & McPartland, J. (2004). Young children with autism show atypical brain responses to fearful versus neutral facial expressions of emotion. Developmental Science, 7: 340359.Google Scholar
de Haan, M., Johnson, M. H., & Halit, H. (2003). Development of face-sensitive event-related potentials during infancy: a review. International Journal of Psychophysiology, 51: 4558.Google Scholar
Diamond, L. M., Fagundes, C. P., & Butterworth, M. R. (2012). Attachment style, vagal tone, and empathy during mother–adolescent interactions. Journal of Research on Adolescence, 22: 165184.Google Scholar
Diamond, L. M., Hicks, A. M., & Otter-Henderson, K. D. (2011). Individual differences in vagal regulation moderate associations between daily affect and daily couple interactions. Personality and Social Psychology Bulletin, 37: 731744.Google Scholar
Dierckx, B., Tulen, J. H. M., Tharner, A., Jaddoe, V. W., Hofman, A., Verhulst, F. C., & Tiemeier, H. (2011). Low autonomic arousal as vulnerability to externalising behaviour in infants with hostile mothers. Psychiatry Research, 185: 171175.Google Scholar
Donovan, W. L. & Leavitt, L. A. (1985). Physiologic assessment of mother–infant attachment. Journal of the American Academy of Child Psychiatry, 24: 6570.Google Scholar
Eckberg, D. L. (1997). Sympathovagal balance: a critical appraisal. Circulation, 96: 32243232.Google Scholar
Eisenberg, N., Fabes, R. A., Murphy, B., Maszk, P., Smith, M., & Karbon, M. (2008). The role of emotionality and regulation in children’s social functioning: a longitudinal study. Child Development, 66: 13601384.Google Scholar
El-Sheikh, M. (2005). Does poor vagal tone exacerbate child maladjustment in the context of parental problem drinking? A longitudinal examination. Journal of Abnormal Psychology, 114: 735741.Google Scholar
El-Sheikh, M., Harger, J., & Whitson, S. M. (2001). Exposure to interparental conflict and children’s adjustment and physical health: the moderating role of vagal tone. Child Development, 72: 16171636.Google Scholar
Emde, R. N., Campos, J., Reich, J., & Gaensbauer, T. J. (1978). Infant smiling at five and nine months: analysis of heart rate and movement. Infant Behavior and Development, 1: 2635.Google Scholar
Fairchild, K. D., Sinkin, R. A., Davalian, F., Blackman, A. E., Swanson, J. R., Matsumoto, J. A., … & Blackman, J. A. (2014). Abnormal heart rate characteristics are associated with abnormal neuroimaging and outcomes in extremely low birth weight infants. Journal of Perinatology, 34: 375379.Google Scholar
Farrington, D. P. (1997). The relationship between low resting heart rate and violence. In Raine, A., Brennan, P., Farrington, D., & Mednick, S. A. (eds.), Biosocial Bases of Violence (pp. 89105). New York: Springer.Google Scholar
Feldman, R. (2009). The development of regulatory functions from birth to 5 years: insights from premature infants. Child Development, 80: 544561.Google Scholar
Field, T., Diego, M. A., Dieter, J., Hernandez-Reif, M., Schanberg, S., Kuhn, C., … & Bendell, D. (2001). Depressed withdrawn and intrusive mothers’ effects on their fetuses and neonates. Infant Behavior and Development, 24: 2739.Google Scholar
Fleming, S., Thompson, M., Stevens, R., Heneghan, C., Plüddemann, A., Maconochie, I., … & Mant, D. (2011). Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet, 377: 10111018.Google Scholar
Fox, N. A. & Bell, M. A. (1990). Electrophysiological indices of frontal lobe development: relations to cognitive and affective behavior in human infants over the first year of life. Annals of the New York Academy of Sciences, 608: 677698; discussion 698–704.Google Scholar
Fox, N. A., Rubin, K. H., Calkins, S. D., Marshall, T. R., Coplan, R. J., Porges, S. W., … & Stewart, S. (1995). Frontal activation asymmetry and social competence at four years of age. Child Development, 66: 17701784.Google Scholar
Fung, A., Manlhiot, C., Naik, S., Rosenberg, H., Smythe, J., Lougheed, J., … & Mital, S. (2013). Impact of prenatal risk factors on congenital heart disease in the current era. Journal of the American Heart Association, 2: e000064.Google Scholar
Gander, M. & Buchheim, A. (2015). Attachment classification, psychophysiology and frontal EEG asymmetry across the lifespan: a review. Frontiers in Human Neuroscience, 9: 79.Google Scholar
Gavin, W. J. & Davies, P. L. (2008). Obtaining reliable psychophysiological data with child participants: methodological considerations. In Schmidt, L. A. & Segalowitz, S. J. (eds.), Developmental Psychophysiology: Theory, Systems, and Methods (pp. 424448). Cambridge University Press.Google Scholar
Geier, C. & Luna, B. (2009). The maturation of incentive processing and cognitive control. Pharmacology, Biochemistry and Behavior, 93: 212221.Google Scholar
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … & Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the USA, 101: 81748179.Google Scholar
Grossman, P. (1992). Respiratory and cardiac rhythms as windows to central and autonomic biobehavioral regulation: selection of window frames, keeping the panes clean, and viewing the neural topography. Biological Psychology, 34: 131161.Google Scholar
Grossman, P., Van Beek, J., & Wientjes, C. (1990). A comparison of three quantification methods for estimation of respiratory sinus arrhythmia. Psychophysiology, 27: 702714.Google Scholar
Halit, H., De Haan, M., & Johnson, M. H. (2003). Cortical specialization for face processing: face-sensitive event-related potential components in 3- and 12-month-old infants. NeuroImage, 19: 11801193.Google Scholar
Hämäläinen, M. S. & Ilmoniemi, R. J. (1994). Interpreting magnetic fields of the brain: minimum norm estimates. Medical & Biological Engineering & Computing, 32: 3542.Google Scholar
Hane, A. A., Fox, N. A., Henderson, H. A., & Marshall, P. J. (2008). Behavioral reactivity and approach–withdrawal bias in infancy. Developmental Psychology, 44: 14911496.Google Scholar
Harrison, T. M. & Ferree, A. (2014). Maternal–infant interaction and autonomic function in healthy infants and infants with transposition of the great arteries. Research in Nursing & Health, 37: 490503.Google Scholar
Hastings, P. D., Nuselovici, J. N., Utendale, W. T., Coutya, J., McShane, K. E., & Sullivan, C. (2008). Applying the polyvagal theory to children’s emotion regulation: social context, socialization, and adjustment. Biological Psychology, 79: 229306.Google Scholar
Hayano, J., Sakakibara, Y., Yamada, A., Yamada, M., Mukai, S., Fujinami, T., … & Takata, K. (1991). Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. American Journal of Cardiology, 67: 199204.Google Scholar
He, B., Wang, Y., & Wu, D. (1999). Estimating cortical potentials from scalp EEGs in a realistically shaped inhomogeneous head model by means of the boundary element method. IEEE Transactions on Bio-Medical Engineering, 46: 12641268.Google Scholar
Hoehl, S. & Striano, T. (2010). The development of emotional face and eye gaze processing. Developmental Science, 13: 813825.Google Scholar
Huffman, L. C., Bryan, Y. E., del Carmen, R., Pedersen, F. A., Doussard-Roosevelt, J. A., & Porges, S. W. (1998). Infant temperament and cardiac vagal tone: assessments at twelve weeks of age. Child Development, 69: 624635.Google Scholar
Insel, T. R., Cuthbert, B. N., Garvey, M. A., Heinssen, R. K., Pine, D. S., Quinn, K. J., … & Wang, P. S. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167: 748751.Google Scholar
Johnson, M. H., Grossmann, T., & Kadosh, K. C. (2009). Mapping functional brain development: building a social brain through interactive specialization. Developmental Psychology, 45: 151159.Google Scholar
Kagan, J. (1997). Temperament and the reactions to unfamiliarity. Child Development, 68: 139143.Google Scholar
Kagan, J., Reznick, J. S., & Snidman, N. (1987). The physiology and psychology of behavioral inhibition in children. Child Development, 58: 14591473.Google Scholar
Kaplan, L. A., Evans, L., & Monk, C. (2008). Effects of mothers’ prenatal psychiatric status and postnatal caregiving on infant biobehavioral regulation: can prenatal programming be modified? Early Human Development, 84: 249256.Google Scholar
Katz, L. F. & Gottman, J. M. (1995). Vagal tone protects children from marital conflict. Development and Psychopathology, 7: 8392.Google Scholar
Kay, S. M. & Marple, S. L. (1981). Spectral analysis: a modern perspective. Proceedings of the Institute of Electrical and Electronics Engineers, 69: 13801419.Google Scholar
Kelsey, R. M., Soderlund, K., & Arthur, C. M. (2004). Cardiovascular reactivity and adaptation to recurrent psychological stress: replication and extension. Psychophysiology, 41: 924934.Google Scholar
Lane, S. T., Franklin, J. C., & Curran, P. J. (2013). Clarifying the nature of startle habituation using latent curve modeling. International Journal of Psychophysiology, 88: 5563.Google Scholar
Lepage, J. F. & Théoret, H. (2006). EEG evidence for the presence of an action observation–execution matching system in children. European Journal of Neuroscience, 23: 25052510.Google Scholar
Leppänen, J., Peltola, M. J., Mäntymaa, M., Koivuluoma, M., Salminen, A., & Puura, K. (2010). Cardiac and behavioral evidence for emotional influences on attention in 7-month-old infants. International Journal of Behavioral Development, 34: 547553.Google Scholar
Liew, J., Eisenberg, N., Spinrad, T. L., Eggum, N. D., Haugen, R. G., Kupfer, A., … & Baham, M. E. (2011). Physiological regulation and fearfulness as predictors of young children’s empathy-related reactions. Social Development, 20: 111134.Google Scholar
Marsh, P., Beauchaine, T. P., & Williams, B. (2008). Dissociation of sad facial expressions and autonomic nervous system responding in boys with disruptive behavior disorders. Psychophysiology, 45: 100110.Google Scholar
Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113: 11991208.Google Scholar
Massin, M. & Von Bernuth, G. (1997). Normal ranges of heart rate variability during infancy and childhood. Pediatric Cardiology, 18: 297302.Google Scholar
Matthews, K. A., Salomon, K., Kenyon, K., & Allen, M. T. (2002). Stability of children’s and adolescents’ hemodynamic responses to psychological challenge: a three-year longitudinal study of a multiethnic cohort of boys and girls. Psychophysiology, 39: 826834.Google Scholar
Mattson, W. I., Ekas, N. V., Lambert, B., Tronick, E., Lester, B. M., & Messinger, D. S. (2013). Emotional expression and heart rate in high-risk infants during the face-to-face/still-face. Infant Behavior and Development, 36: 776785.Google Scholar
McEvoy, K., Hasenstab, K., Senturk, D., Sanders, A., & Jeste, S. S. (2015). Physiologic artifacts in resting state oscillations in young children: methodological considerations for noisy data. Brain Imaging and Behavior, 9: 104114.Google Scholar
McManis, M. H., Kagan, J., Snidman, N. C., & Woodward, S. A. (2002). EEG asymmetry, power, and temperament in children. Developmental Psychobiology, 41: 169177.Google Scholar
Nunez, P. L., Silberstein, R. B., Shi, Z., Carpenter, M. R., Srinivasan, R., Tucker, D. M., … & Wijesinghe, R. S. (1999). EEG coherency II: experimental comparisons of multiple measures. Clinical Neurophysiology, 110: 469486.Google Scholar
Nunez, P. L. & Srinivasan, R. (2006). Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press.Google Scholar
Nunez, P. L., Srinivasan, R., Westdorp, A. F., Wijesinghe, R. S., Tucker, D. M., Silberstein, R. B., & Cadusch, P. J. (1997). EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalography & Clinical Neurophysiology, 103: 499515.Google Scholar
Nyström, P., Ljunghammar, T., Rosander, K., & von Hofsten, C. (2011). Using mu rhythm desynchronization to measure mirror neuron activity in infants. Developmental Science, 14: 327335.Google Scholar
Obrist, P. A. (1981). Cardiovascular Psychophysiology. New York: Plenum Press.Google Scholar
Orekhova, E. V., Stroganova, T. A., Posikera, I. N., & Elam, M. (2006). EEG theta rhythm in infants and preschool children. Clinical Neurophysiology, 117: 10471062.Google Scholar
Pang, K. C. & Beauchaine, T. P. (2013). Longitudinal patterns of autonomic nervous system responding to emotion evocation among children with conduct problems and/or depression. Developmental Psychobiology, 55: 698706.Google Scholar
Patriquin, M. A., Lorenzi, J., Scarpa, A., & Bell, M. A. (2014). Developmental trajectories of respiratory sinus arrhythmia: associations with social responsiveness. Developmental Psychobiology, 56: 317326.Google Scholar
Patriquin, M. A., Scarpa, A., Friedman, B. H., & Porges, S. W. (2013). Respiratory sinus arrhythmia: a marker for positive social functioning and receptive language skills in children with autism spectrum disorders. Developmental Psychobiology, 55: 101112.Google Scholar
Peltola, M. J., Leppänen, J. M., & Hietanen, J. K. (2011). Enhanced cardiac and attentional responding to fearful faces in 7-month-old infants. Psychophysiology, 48: 12911298.Google Scholar
Pfurtscheller, G. & Da Silva, F. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110: 18421857.Google Scholar
Ponton, C. W., Eggermont, J. J., Kwong, B., & Don, M. (2000). Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clinical Neurophysiology, 111: 220236.Google Scholar
Porges, S. W. (1995). Orienting in a defensive world: mammalian modifications of our evolutionary heritage – a polyvagal perspective. Psychophysiology, 32: 301318.Google Scholar
Porges, S. W. (2003). The polyvagal theory: Phylogenetic contributions to social behavior. Physiology and Behavior, 79: 503513.Google Scholar
Preskorn, S. H. & Baker, B. (2002). The overlap of DSM-IV syndromes: potential implications for the practice of polypsychopharmacology, psychiatric drug development, and the human genome project. Journal of Psychiatric Practice, 8: 170177.Google Scholar
Quigley, K. S. & Stifter, C. A. (2006). A comparative validation of sympathetic reactivity in children and adults. Psychophysiology, 43: 357365.Google Scholar
Raine, A., Venables, P. H., & Mednick, S. A. (1997). Low resting heart rate at age 3 years predisposes to aggression at age 11 years: evidence from the Mauritius Child Health Project. Journal of the American Academy of Child & Adolescent Psychiatry, 36: 14571464.Google Scholar
Raudenbush, S. W. & Bryk, A. S. (2002). Hierarchical Linear Models, 2nd edn. Thousand Oaks, CA: Sage.Google Scholar
Reyes del Paso, G. A., Langewitz, W., Mulder, L. J. M., van Roon, A., & Duschek, S. (2013). The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology, 50: 477487.Google Scholar
Reynolds, G. & Richards, J. E. (2007). Developmental psychophysiological perspective. In Schmidt, L. A. & Segalowitz, S. J. (eds.), Developmental Psychophysiology: Theory, Systems, and Methods (pp. 173212). Cambridge University Press.Google Scholar
Ritz, T. (2009). Studying noninvasive indices of vagal control: the need for respiratory control and the problem of target specificity. Biological Psychology, 80: 158168.Google Scholar
Rutter, M. & Sroufe, L. A. (2000). Developmental psychopathology: concepts and challenges. Development and Psychopathology, 12: 265296.Google Scholar
Sanislow, C. A., Pine, D. S., Quinn, K. J., Kozak, M. J., Garvey, M. A., Heinssen, R. K., … & Cuthbert, B. N. (2010). Developing constructs for psychopathology research: research domain criteria. Journal of Abnormal Psychology, 119: 631639.Google Scholar
Schächinger, H., Weinbacher, M., Kiss, A., Ritz, R., & Langewitz, W. (2001). Cardiovascular indices of peripheral and central sympathetic activation. Psychosomatic Medicine, 63: 788796.Google Scholar
Schmidt, L. A., Fox, N. A., Schulkin, J., & Gold, P. W. (1999). Behavioral and psychophysiological correlates of self-presentation in temperamentally shy children. Developmental Psychobiology, 35: 119135.Google Scholar
Schuetze, P. & Eiden, R. D. (2007). The association between prenatal exposure to cigarettes and infant and maternal negative affect. Infant Behavior and Development, 30: 387398.Google Scholar
Sechrest, L. (1984). Reliability and validity. In Bellack, A. S. and Hersen, M. (eds.), Research Methods in Clinical Psychology (pp. 2454). New York: Pergamon Press.Google Scholar
Shahrestani, S., Stewart, E. M., Quintana, D. S., Hickie, I. B., & Guastella, A. J. (2015). Heart rate variability during adolescent and adult social interactions: a meta-analysis. Biological Psychology, 105: 4350.Google Scholar
Shannon, K. E., Beauchaine, T. P., Brenner, S. L., Neuhaus, E., & Gatzke-Kopp, L. (2007). Familial and temperamental predictors of resilience in children at risk for conduct disorder and depression. Development and Psychopathology, 19: 701727.Google Scholar
Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & van Doornen, L. J. P. (1990). Methodological guidelines for impedance cardiography. Psychophysiology, 27: 123.Google Scholar
Silvetti, M. S., Drago, F., & Ragonese, P. (2001). Heart rate variability in healthy children and adolescents is partially related to age and gender. International Journal of Cardiology, 81: 169174.Google Scholar
Somsen, R. J., van ’t Klooster, B. J., Van der Molen, M. W., van Leeuwen, H. M., & Licht, R. (1997). Growth spurts in brain maturation during middle childhood as indexed by EEG power spectra. Biological Psychology, 44: 187209.Google Scholar
Southgate, V., Johnson, M. H., El Karoui, I., & Csibra, G. (2010). Motor system activation reveals infants’ on-line prediction of others’ goals. Psychological Science, 1: 355359Google Scholar
Sroufe, L. A. (1997). Psychopathology as an outcome of development. Development and Psychopathology, 9: 251268.Google Scholar
Sroufe, L. A. & Waters, E. (1977). Attachment as an organizational construct. Child Development, 48: 11841199.Google Scholar
Stifter, C. A., Dollar, J. M., & Cipriano, E. A. (2011). Temperament and emotion regulation: the role of autonomic nervous system reactivity. Developmental Psychobiology, 53: 266279.Google Scholar
Stroganova, T. A. & Orekhova, E. V. (2007). EEG and infant states. In de Haan, M. (ed.), Infant EEG and Event-Related Potentials (pp. 251287). New York: Psychology Press.Google Scholar
Stroganova, T. A., Orekhova, E. V., & Posikera, I. N. (1998). The theta rhythm of the infant EEG and the development of the mechanisms of voluntary control of attention in the 2nd half of the first year of life. [In Russian.] Zhurnal Vyssheĭ Nervnoĭ Deiatelnosti Imeni I P Pavlova, 48: 945964.Google Scholar
Stroganova, T. A. & Posikera, I. N. (1993). Functional organisation of behavioural states in wakefulness during infancy (EEG study). In Adrianov, O. S. (ed.), Brain and Behaviour in Infancy (pp. 78166). Moscow: IPRAN Press.Google Scholar
Suess, P. A., Porges, S. W., & Plude, D. J. (1994). Cardiac vagal tone and sustained attention in school-age children. Psychophysiology, 31: 1722.Google Scholar
Sutton, S. K., Burnette, C. P., Mundy, P. C., Meyer, J., Vaughan, A., Sanders, C., & Yale, M. (2005). Resting cortical brain activity and social behavior in higher functioning children with autism. Journal of Child Psychology and Psychiatry, 46: 211222.Google Scholar
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation, 93: 10431065.Google Scholar
Taylor, M. J., Batty, M., & Itier, R. J. (2004). The faces of development: a review of early face processing over childhood. Journal of Cognitive Neuroscience, 16: 14261442.Google Scholar
Thatcher, R. W., North, D. M., & Biver, C. J. (2008). Development of cortical connections as measured by EEG coherence and phase delays. Human Brain Mapping, 29: 14001415.Google Scholar
Thayer, J. F., Hansen, A. L., & Johnsen, B. H. (2010). Non-invasive assessment of autonomic influences on the heart using impedance cardiography and heart rate variability. In Steptoe, A. (ed.), Handbook of Behavioral Medicine: Methods and Applications (pp. 723740). New York: Springer.Google Scholar
Theall-Honey, L. A. & Schmidt, L. A. (2006). Do temperamentally shy children process emotion differently than non-shy children? Behavioral, psychophysiological, and gender differences in reticent preschoolers. Developmental Psychobiology, 48: 187196.Google Scholar
Tierney, A. L., Gabard-Durnam, L., Vogel-Farley, V., Tager-Flusberg, H., & Nelson, C. A. (2012). Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder. PLoS One, 7: e39127.Google Scholar
Uchino, B. N., Uno, D., Holt-Lunstad, J., & Flinders, J. B. (1999). Age-related differences in cardiovascular reactivity during acute psychological stress in men and women. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 54: 339346.Google Scholar
Uhlhaas, P. J., Roux, F., Rodriguez, E., Rotarska-Jagiela, A., & Singer, W. (2010). Neural synchrony and the development of cortical networks. Trends in Cognitive Sciences, 14: 7280.Google Scholar
Uhlhaas, P. J., Roux, F., Singer, W., Haenschel, C., Sireteanu, R., & Rodriguez, E. (2009). The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proceedings of the National Academy of Sciences of the USA, 106: 98669871.Google Scholar
Van Hecke, A. A. V., Lebow, J. J., Bal, E. E., Lamb, D. D., Harden, E. E., Kramer, A. A., … & Porges, S. W. (2009). Electroencephalogram and heart rate regulation to familiar and unfamiliar people in children with autism spectrum disorders. Child Development, 80: 11181133.Google Scholar
Vasey, M. W. & Thayer, J. F. (1987). The continuing problem of false positives in repeated measures ANOVA in psychophysiology: a multivariate solution. Psychophysiology, 24: 479486.Google Scholar
Vasilev, C. A., Crowell, S. E., Beauchaine, T. P., Mead, H. K., & Gatzke-Kopp, L. M. (2009). Correspondence between physiological and self-report measures of emotion dysregulation: a longitudinal investigation of youth with and without psychopathology. Journal of Child Psychology and Psychiatry, 50: 13571364.Google Scholar
Vuga, M., Fox, N. A., Cohn, J. F., George, C. J., Levenstein, R. M., & Kovacs, M. (2006). Long-term stability of frontal electroencephalographic asymmetry in adults with a history of depression and controls. International Journal of Psychophysiology, 59: 107115.Google Scholar
Vuga, M., Fox, N. A., Cohn, J. F., Kovacs, M., & George, C. J. (2008). Long-term stability of electroencephalographic asymmetry and power in 3- to 9-year-old children. International Journal of Psychophysiology, 67: 7077.Google Scholar
Webb, S. J., Jones, E. J., Merkle, K., Venema, K., Greenson, J., Murias, M., & Dawson, G. (2011). Developmental change in the ERP responses to familiar faces in toddlers with autism spectrum disorders versus typical development. Child Development, 82: 18681886.Google Scholar
Weiss, S. J. & Niemann, S. (2015). Effects of antenatal corticosteroids on cortisol and heart rate reactivity of preterm infants. Biological Research for Nursing, 17: 487494.Google Scholar
Wilks, D. C., Rank, M., Christle, J., Langhof, H., Siegrist, M., & Halle, M. (2014). An inpatient lifestyle-change programme improves heart rate recovery in overweight and obese children and adolescents (LOGIC Trial). European Journal of Preventive Cardiology, 21: 876883.Google Scholar
Zisner, A. R. & Beauchaine, T. P. (2016). Psychophysiological methods and developmental psychopathology. In Cicchetti, D. (ed.), Developmental Psychopathology: vol. 2: Developmental Neuroscience (pp. 832889), 3rd edn. Hoboken, NJ: John Wiley.Google Scholar

References

Abdel Rahman, R. & Summer, W. (2003). Does phonological encoding in speech production always follow the retrieval of semantic knowledge? Electrophysiological evidence for parallel processing. Cognitive Brain Research, 16: 372382.Google Scholar
Amsel, B. D. (2011). Tracking real-time neural activation of conceptual knowledge using single-trial event-related potentials. Neuropsychologia, 49: 970983.Google Scholar
Amsel, B. D., Urbach, T. P., & Kutas, M. (2013). Alive and grasping: stable and rapid semantic access to an object category but not object graspability. NeuroImage, 77: 113.Google Scholar
Amsel, B. D., Urbach, T. P., & Kutas, M. (2014). Empirically grounding grounded cognition: the case of color. NeuroImage, 99: 149157.Google Scholar
Astesano, C., Besson, M., & Alter, K. (2004). Brain potentials during semantic and prosodic processing in French. Cognitive Brain Research, 18: 172184.Google Scholar
Baddeley, A. (1992). Working memory. Science, 255: 556569.Google Scholar
Barber, H. & Kutas, M. (2007). Interplay between computational models and cognitive electrophysiology in visual word recognition. Brain Research Reviews, 53: 98123.Google Scholar
Barber, H. A., Otten, L. J., Kousta, S., & Vigliocco, G. (2013). Concreteness in word processing: ERP and behavioral effects in a lexical decision task. Brain and Language, 125: 4753.Google Scholar
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59: 617645.Google Scholar
Bartholow, B. D., Fabiani, M., Gratton, G., & Bettencourt, B. A. (2001). A psychophysiological examination of cognitive processing of and affective responses to social expectancy violations. Psychological Science, 12: 197204.Google Scholar
Bastuji, H., Perrin, F., & Garcia-Larrea, L. (2002). Semantic analysis of auditory input during sleep: studies with event related potentials. International Journal of Psychophysiology, 46: 243255.Google Scholar
Beeman, M. & Chiarello, C. (eds.) (1998). Right Hemisphere Language Comprehension: Perspectives from Cognitive Neuroscience. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Besson, M. & Macar, F. (1987). An event-related potential analysis of incongruity in music and other non-linguistic contexts. Psychophysiology, 24: 1425.Google Scholar
Boatman, D. (2004). Cortical bases of speech perception: evidence from functional lesion studies. Cognition, 92: 4765.Google Scholar
Brouwer, H., Fitz, H., & Hoeks, J. (2012). Getting real about semantic illusions: rethinking the functional role of the P600 in language comprehension. Brain Research, 1446: 127143.Google Scholar
Burkhardt, P. (2006). Inferential bridging relations reveal distinct neural mechanisms: evidence from event-related brain potentials. Brain and Language, 98: 159168.Google Scholar
Carreiras, M., Perea, M., Vergara, M., & Pollatsek, A. (2009). The time course of orthography and phonology: ERP correlates of masked priming effects in spanish. Psychophysiology, 46: 11131122.Google Scholar
Chan, A. M., Baker, J. M., Eskandar, E., Schomer, D., Ulbert, I., Marinkovic, K., … & Halgren, E. (2011). First-pass selectivity for semantic categories in human anteroventral temporal lobe. Journal of Neuroscience, 31: 1811918129.Google Scholar
Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.Google Scholar
Chomsky, N. (1980). Rules and representations. Behavioral and Brain Sciences, 3: 161.Google Scholar
Cohn, N., Paczynski, M., Jackendoff, R., Holcomb, P. J., & Kuperberg, G. R. (2012). (Pea)nuts and bolts of visual narrative: structure and meaning in sequential image comprehension. Cognitive Psychology, 65: 138.Google Scholar
Coulson, S. & Davenport, T. S. (2012). Cognitive neuroscience of creative language: the poetic and the prosaic. In Faust, M. (ed.), The Handbook of the Neuropsychology of Language (pp. 386405). Chichester: John Wiley.Google Scholar
Coulson, S., King, J. W., & Kutas, M. (1998a). Expect the unexpected: event-related brain response to morphosyntactic violations. Language and Cognitive Processes, 1: 2158.Google Scholar
Coulson, S., King, J. W., & Kutas, M. (1998b). ERPs and domain specificity: beating a straw horse. Language and Cognitive Processes, 13: 653672.Google Scholar
Cowan, N. (1998). What are the differences between long-term, short-term, and working memory? Progress in Brain Research, 169: 323338.Google Scholar
Dambacher, M., Dimigen, O., Braun, M., Wille, K., Jacobs, A. M., & Kliegl, R. (2012). Stimulus onset asynchrony and the timeline of word recognition: event-related potentials during sentence reading. Neuropsychologia, 50: 18521870.Google Scholar
Deacon, D. & Shelley-Tremblay, J. (2000). How automatically is meaning accessed: a review of the effects of attention on semantic processing, Frontiers in Bioscience, 5: E8294.Google Scholar
DeLong, K. A., Quante, L., & Kutas, M. (2014a). Predictability, plausibility, and two late ERP positivities during written sentence comprehension. Neuropsychologia, 61: 150162.Google Scholar
DeLong, K. A., Troyer, M., & Kutas, M. (2014b). Pre-processing in sentence comprehension: sensitivity to likely upcoming meaning and structure. Language and Linguistics Compass, 8: 631645.Google Scholar
Dikker, S. & Pylkkanen, L. (2011). Before the N400: effects of lexical-semantic violations in visual cortex. Brain and Language, 118: 2328.Google Scholar
Dominguez, A., de Vega, M., & Barber, H. (2004). Event-related brain potentials elicited by morphological, homographic, orthographic, and semantic priming. Journal of Cognitive Neuroscience, 16: 598608.Google Scholar
Dronkers, N. F., Wilkins, D. P., Van Valin, R. D. Jr., Redfern, B. B., & Jaeger, J. J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92: 145177.Google Scholar
Egidi, G. & Nussbaum, H. (2012). Emotional language processing: how mood affects integration processes during discourse comprehension. Brain and Language, 122: 199210.Google Scholar
Fedorenko, E. & Thompson-Schill, S. L. (2014). Reworking the language network, Trends in Cognitive Sciences, 18: 120126.Google Scholar
Filik, R. & Leuthold, H. (2008). Processing local semantic anomalies in fictional contexts: evidence from the N400. Psychophysiology, 45: 554558.Google Scholar
Fodor, J. A. (1983). Modularity of Mind: An Essay on Faculty Psychology. Cambridge, MA: MIT Press.Google Scholar
Frey, S., Campbell, J. S. W., Pike, G. B., & Petrides, M. (2008). Dissociating the human language pathways with high angular resolution diffusion fiber tract-ography. Journal of Neuroscience, 28: 1143511444.Google Scholar
Friederici, A. D. (2002). Towards a neural basis of auditory sensory processing. Trends in Cognitive Science, 6: 7884.Google Scholar
Friederici, A. D. (2009). Pathways to language: fiber tracts in the human brain. Trends in Cognitive Science, 13: 175181.Google Scholar
Grainger, J. & Holcomb, P. J. (2009). Watching the word go by: on the time course of component processes in visual word recognition. Language and Linguistics Compass, 3: 128156.Google Scholar
Grice, P. (1989) Studies in the Way of Words. Cambridge, MA: Harvard University Press.Google Scholar
Griffiths, J. D., Marslen-Wilson, W. D., Stamatakis, E. A., & Tyler, L. K. (2013). Functional organization of the neural language system: dorsal and ventral pathways are critical for syntax. Cerebral Cortex, 23: 139147.Google Scholar
Grossi, G., Savill, N., Thomas, E., & Thierry, G. (2012). Electrophysiological cross-language neighborhood density effects in late and early English–Welsh bilinguals. Frontiers in Psychology, 3: 408.Google Scholar
Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca’s region and beyond. Current Opinion in Neurobiology, 28: 136141.Google Scholar
Hagoort, P. & Levinson, S. C. (2014). Neuropragmatics. In Gazzaniga, M. S. & Mangun, G. R. (eds.), The Cognitive Neurosciences, 5th edn. (pp. 667674). Cambridge, MA: MIT Press.Google Scholar
Hauk, O., Coutout, C., Holden, A., & Chen, Y. (2012). The time-course of single-word reading: evidence from fast behavioral and brain responses. NeuroImage, 60: 14621477.Google Scholar
Hauk, O., Pulvermüller, F., Ford, M., Marslen-Wilson, W. D., & Davis, M. H. (2009). Can I have a quick word? Early electrophysiological manifestations of psycholinguistic processes revealed by event-related regression analysis of the EEG. Biological Psychology, 80: 6474.Google Scholar
Hickok, G. & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92: 6799.Google Scholar
Hickok, G. & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8: 393402.Google Scholar
Hoenig, K., Sim, E., Bochev, V., Herrnberger, B., & Kiefer, M. (2008). Conceptual flexibility in the human brain: dynamic recruitment of semantic maps from visual, motor, and motion-related areas. Journal of Cognitive Neuroscience, 20: 17991814.Google Scholar
Holcomb, P. J. & Grainger, J. (2009). ERP effects of short interval masked associative and repetition priming. Journal of Neurolinguistics, 22: 301312.Google Scholar
Holcomb, P. J., Kounios, J., Anderson, J. E., & West, C. (1999). Dual-coding, context-availability, and concreteness effects in sentence comprehension: an electrophysiological investigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25: 721742.Google Scholar
Holt, D., Lynne, S., & Kuperburg, G. (2008). Neurophysiological correlates of processing meaning in context. Journal of Cognitive Neuroscience, 21: 22452262.Google Scholar
Huang, H., Lee, C., & Federmeier, K. D. (2010). Imagine that! ERPs provide evidence for distinct hemispheric contributions to the processing of concrete and abstract concepts. NeuroImage, 49: 11161123.Google Scholar
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286: 25262528.Google Scholar
Indefrey, P. & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92: 101144.Google Scholar
Justus, T., Larsen, J., de Mornay Davies, P., & Swick, D. (2008). Interpreting dissociations between regular and irregular past-tense morphology: evidence from event-related potentials. Cognitive, Affective, & Behavioral Neuroscience, 8: 178194.Google Scholar
Kellenbach, M. L., Wijers, A. A., & Mulder, G. (2000). Visual semantic features are activated during the processing of concrete words: event-related potential evidence for perceptual semantic priming. Cognitive Brain Research, 10: 6775.Google Scholar
Kielar, A. & Joanisse, M. (2009). Graded effects of regularity in language revealed by N400 indices of morphological priming. Journal of Cognitive Neuroscience, 22: 12731398.Google Scholar
King, J. W. & Kutas, M. (1998). Neural plasticity in the dynamics of human visual word recognition. Neuroscience Letters, 244: 6164.Google Scholar
Kluender, R. & Kutas, M. (1993). Subjacency as a processing phenomenon. Language and Cognitive Processes, 8: 573633.Google Scholar
Kounios, J., Green, D. L., Payne, L., Fleck, J. I., Grondin, R., & McRae, K. (2009). Semantic richness and the activation of concepts in semantic memory: evidence from event-related potentials. Brain Research, 1282: 95102.Google Scholar
Kounios, J. & Holcomb, P. J. (1994). Concreteness effects in semantic processing: ERP evidence supporting dual-coding theory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20: 804823.Google Scholar
Krauss, G., Fisher, R., Plate, C., Hart, J., Uematsu, S., Gordon, B. & Lesser, R. (1996). Cognitive effects of resecting basal temporal language areas. Epilepsia, 37: 476483.Google Scholar
Krishnan, A., Xu, Y. S., Gandour, J., & Cariani, P. (2005). Encoding of pitch in the human brainstem is sensitive to language experience. Cognitive Brain Research, 25: 161168.Google Scholar
Kuperberg, G., Pacyznski, M, & Ditman, T. (2011). Establishing causal coherence across sentences: an ERP study. Journal of Cognitive Neuroscience, 23: 12301246.Google Scholar
Kutas, M. & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event related brain potential (ERP). Annual Review of Psychology, 62: 621647.Google Scholar
Kutas, M. & Hillyard, S. A. (1983). Event-related brain potentials to grammatical errors and semantic anomalies. Memory & Cognition, 11: 539550.Google Scholar
Kwon, N., Kluender, R., Kutas, M., & Polinsky, M. (2013). Subject/object processing asymmetries in Korean relative clauses: evidence from ERP data. Language, 89: 537585.Google Scholar
Laszlo, S. & Armstrong, B. C. (2014). PSPs and ERPs: applying the dynamics of post-synaptic potentials to individual units in simulation of temporally extended event-related potential reading data. Brain and Language, 132: 2227.Google Scholar
Laszlo, S. & Federmeier, K. D. (2009). A beautiful day in the neighborhood: an event-related potential study of lexical relationships and prediction in context. Journal of Memory and Language, 61: 326338.Google Scholar
Laszlo, S. & Federmeier, K. D. (2014). Never seem to find the time: evaluating the physiological time course of visual word recognition with regression analysis of single-item event-related potentials. Language, Cognition and Neuroscience, 29: 642661.Google Scholar
Laszlo, S. & Plaut, D. (2012). A neurally plausible parallel distributed processing model of event-related potential word reading data. Brain and Language, 120: 271281.Google Scholar
Laszlo, S., Stites, M., & Federmeier, K. (2012). Won’t get fooled again: an event-related potential study of task and repetition effects on the semantic processing of items without semantics. Language and Cognitive Processes, 27: 257274.Google Scholar
Lau, E. F., Holcomb, P. J., & Kuperberg, G. R. (2013). Dissociating N400 effects of prediction from association in single-word contexts. Journal of Cognitive Neuroscience, 25: 484502.Google Scholar
Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (de)constructing the N400. Nature Reviews Neuroscience, 9: 920933.Google Scholar
Lewis, R. L., Vasishth, S., & Van Dyke, J. A. (2006). Computational principles of working memory in sentence comprehension. Trends in Cognitive Sciences, 10: 447454Google Scholar
Luka, B. J. & Van Petten, C. (2014). Prospective and retrospective semantic processing: prediction, time, and relationship strength in event-related potentials. Brain and Language, 135: 115129.Google Scholar
Maess, B., Herrmann, C. S., Hahne, A., Nakamura, A., & Friederici, A. D. (2006). Localizing the distributed language network responsible for the N400 measured by MEG during auditory sentence processing. Brain Research, 1096: 163172.Google Scholar
Makris, N. & Pandya, D. (2009). The extreme capsule in humans and rethinking of the language circuitry. Brain Structure & Function, 213: 343358.Google Scholar
Mancini, S., Molinaro, N., Rizzi, L., & Carreiras, M. (2011). When persons disagree: an ERP study of Unagreement in Spanish. Psychophysiology, 48: 13611371.Google Scholar
Martens, U., Ansorge, U., & Kiefer, M. (2011). Controlling the unconscious: attentional task sets modulate subliminal semantic and visuomotor processes differentially. Psychological Science, 22: 282291.Google Scholar
Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58: 2545.Google Scholar
Martin, A. E., Nieuwland, M. S., & Carreiras, M. (2014). Agreement attraction during comprehension of grammatical sentences: ERP evidence from ellipsis. Brain and Language, 135: 4251.Google Scholar
Martín-Loeches, M., Muñoz, F., Casado, P., Melcon, A., & Fernández-Frías, C. (2005). Are the anterior negativities to grammatical violations indexing working memory? Psychophysiology, 42: 508519.Google Scholar
McKinnon, R. & Osterhout, L. (1996). Constraints on movement phenomena in sentence processing: evidence from event-related brain potentials. Language and Cognitive Processes, 11: 495523.Google Scholar
Midgley, K. J., Holcomb, P. J., van Heuven, W. J. B., & Grainger, J. (2008). An electrophysiological investigation of cross-language effects of orthographic neighborhood. Brain Research, 1246: 123135.Google Scholar
Misra, M. & Holcomb, P. (2003). Event-related potential indices of masked repetition priming. Psychophysiology, 40: 115130.Google Scholar
Moreno, E., Federmeier, K., & Kutas, M. (2002). Switching languages, switching palabras (words): an electrophysiological study of code switching. Brain and Language, 80: 188207.Google Scholar
Morris, J. & Stockall, L. (2012). Early, equivalent ERP masked priming effects for regular and irregular morphology. Brain and Language, 123: 8193.Google Scholar
Moscoso del Prado, M., Hauk, O., & Pulvermüller, F. (2006). Category specificity in the processing of color-related and form-related words: an ERP study. NeuroImage, 29: 2937.Google Scholar
Müller, R. A. & Basho, S. (2004). Are nonlinguistic functions in “Broca’s area” prerequisites for language acquisition? FMRI findings from an ontogenetic viewpoint. Brain and Language, 89: 329336.Google Scholar
Münte, T. F., Heinze, H.-J., Matzke, M., Wieringa, B. M., & Johannes, S. (1998a). Brain potentials and syntactic violations revisited: no evidence for specificity of the syntactic positive shift. Neuropsychologia, 36: 217226.Google Scholar
Münte, T. F., Schiltz, K., & Kutas, M. (1998b). When temporal terms belie conceptual order. Nature, 395: 7173.Google Scholar
Newman, A., Supalla, T., Hauser, P, Newport, E., & Bavalier, D. (2010). Prosodic and narrative processing in American Sign Language: an fMRI study. NeuroImage, 52: 669676.Google Scholar
Nieuwland, M. S. (2014). “Who’s he?” Event-related brain potentials and unbound pronouns. Journal of Memory and Language, 76: 128.Google Scholar
Nieuwland, M. S. & Kuperberg, G. (2008). When the truth is not too hard to handle: an event-related potential study on the pragmatics of negation. Psychological Science, 19: 12131218.Google Scholar
Noppeney, U. & Price, C. J. (2004). An fMRI study of syntactic adaptation. Journal of Cognitive Neuroscience, 16: 702713.Google Scholar
Nunez-Pena, M. I. & Honrubia-Serrano, M. L. (2004). P600 related to rule violation in an arithmetic task. Cognitive Brain Research, 18: 130141.Google Scholar
Olichney, J., van Petten, C., Paller, K. A., Salmon, D. P., Iragui, V. J., & Kutas, M. (2000). Word repetition in amnesia: electrophysiological measures of impaired and spared memory. Brain, 123: 19481963.Google Scholar
Osterhout, L. (1997). On the brain response to syntactic anomalies: manipulations of word position and word class reveal individual differences. Brain and Language, 59: 494522.Google Scholar
Osterhout, L. & Hagoort, P. (1999). A superficial resemblance does not necessarily mean that you are part of the family: counterarguments to Coulson, King, and Kutas (1998) in the P600/SPS-P300 debate. Language and Cognitive Processes, 14: 114.Google Scholar
Palva, S., Palva, J. M., Shtyrov, Y., Kujala, T., Ilmoniemi, R. J., Kaila, K., & Näätänen, R. (2002). Distinct gamma-band evoked responses to speech and non-speech sounds in humans. Journal of Neuroscience, 22: RC211.Google Scholar
Patel, A. D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P. J. (1998). Processing syntactic relations in language and music: an event-related potential study. Journal of Cognitive Neuroscience, 10: 717733.Google Scholar
Pattamadilok, C., Perre, L., Dufau, S., & Ziegler, J. C. (2009). On-line orthographic influences on spoken language in a semantic task. Journal of Cognitive Neuroscience, 21: 169179.Google Scholar
Plaut, D. C. & Booth, J. R. (2000). Individual and developmental differences in semantic priming: empirical and computational support for a single-mechanism account of lexical processing. Psychological Review, 107: 786823.Google Scholar
Poeppel, D. (2001). Pure word deafness and the bilateral processing of the speech code. Cognitive Science, 25: 679693.Google Scholar
Poeppel, D., Emmorey, K., & Hickok, G. (2012). Towards a new neurobiology of language. Journal of Neuroscience, 32: 1412514131.Google Scholar
Price, C. J. & Devlin, J. T. (2011). The interactive account of ventral occipitotemporal contributions to reading. Trends in Cognitive Sciences, 15: 246253.Google Scholar
Rabovsky, M. & McRae, K. (2014). Simulating the N400 ERP component as semantic network error: insights from a feature-based connectionist attractor model of word meaning. Cognition, 132: 6889.Google Scholar
Rastle, K., Lavric, A., Elchepp, H., & Crepaldi, D. (2015). Processing differences across regular and irregular inflections revealed through ERPs. Journal of Experimental Psychology: Human Perception and Performance, 41: 747760Google Scholar
Rauschecker, J. P. & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12: 718724.Google Scholar
Regel, S., Coulson, S., & Gunter, T. (2010). The communicative style of a speaker can affect language comprehension? ERP evidence from the comprehension of irony. Brain Research, 1311: 121135.Google Scholar
Regel, S., Gunter, T. C., & Friederici, A. D. (2011). Isn’t it ironic? An electrophysiological exploration of figurative language processing. Journal of Cognitive Neuroscience, 23: 277293.Google Scholar
Rilling, J. K., Glasser, M. F., Jababdi, S., Andersson, J., & Preuss, T. M. (2012). Continuity, divergence, and the evolution of brain language pathways. Frontiers in Evolutionary Neuroscience, 3: 11.Google Scholar
Rogalsky, C. & Hickok, G. (2011). The role of Broca’s area in sentence comprehension. Journal of Cognitive Neuroscience, 23: 16641680.Google Scholar
Rolke, B., Heil, M., Streb, J., & Hennighausen, E. (2001). Missed prime words within the attentional blink evoke an N400 semantic priming effect. Psychophysiology, 38: 165174.Google Scholar
Roll, M., Horne, M., & Lindgren, M. (2007). Object shift and event-related brain potentials. Journal of Neurolinguistics, 20: 462481.Google Scholar
Schmitt, B. M., Schiltz, K., Zaake, W., Kutas, M., & Münte, T. F. (2001). An electrophysiological analysis of the time course of conceptual and syntactic encoding during tacit picture naming. Journal of Cognitive Neuroscience, 13: 510522.Google Scholar
Scott, S. K. & Wise, R. J. S. (2004). The functional neuroanatomy of prelexical processing in speech perception. Cognition, 92: 1345.Google Scholar
Sereno, S. C. & Rayner, K. (2003). Measuring word recognition in reading: eye movements and event-related potentials. Trends in Cognitive Sciences, 7: 489493.Google Scholar
Smolka, E., Khader, P. H., Wiese, R., Zwitserlood, P., & Rösler, F. (2013). Electrophysiological evidence for the continuous processing of linguistic categories of regular and irregular verb inflection in German. Journal of Cognitive Neuroscience, 25: 12841304.Google Scholar
St. George, M., Mannes, S., & Hoffinan, J. E. (1994). Global semantic expectancy and language comprehension. Journal of Cognitive Neuroscience, 6: 7083.Google Scholar
Steinhauer, K. & Drury, J. (2012). On the early left anterior negativity (ELAN) in syntax studies. Brain and Language, 120: 135162.Google Scholar
Stockall, L. & Marantz, A. (2006). A single route, full decomposition model of morphological complexity: MEG evidence. The Mental Lexicon, 1: 85123.Google Scholar
Strijkers, K., Holcomb, P., & Costa, A. (2011). Conscious intention to speak proactively facilitates lexical access during overt object naming. Journal of Memory and Language, 65: 345362.Google Scholar
Swaab, T., Ledoux, K., Camblin, C. C., & Boudewyn, M. A. (2011). Language-related ERP components. In Luck, S. & Kappenman, E., The Oxford Handbook of Event-Related Potential Components (pp. 397440). Oxford University Press.Google Scholar
Trumpp, N. M., Traub, F., & Kiefer, M. (2013). Masked priming of conceptual features reveals differential brain activation during unconscious access to conceptual action and sound information. PLoS One, 8: e65910.Google Scholar
Trumpp, N. M., Traub, F., Pulvermueller, F., & Kiefer, M. (2014). Unconscious automatic brain activation of acoustic and action-related conceptual features during masked repetition priming. Journal of Cognitive Neuroscience, 26: 352364.Google Scholar
Trupe, L., Varma, D., Gomez, Y., Race, D., Leigh, R., Hillis, A., & Gottesman, R. (2013). Chronic apraxia of speech and Broca’s area. Stroke, 44: 740744.Google Scholar
Tse, C. Y., Li, C.-L., Sullivan, J., Garnsey, S. M., Dell, G. S., Fabiani, M., & Gratton, G. (2007). Imaging cortical dynamics of language processing with the event-related optical signal. Proceedings of the National Academy of Sciences of the USA, 104: 1715717162.Google Scholar
Turken, A. U. & Dronkers, N. F. (2011). The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Frontiers in Systems Neuroscience, 5: 1.Google Scholar
Tyler, L. K., Marslen-Wilson, W. D., Randall, B., Wright, P., Devereux, B. J., Zhuang, J., & Stamatakis, E. A. (2011). Left inferior frontal cortex and syntax: function, structure and behaviour in left-hemisphere damaged patients. Brain, 134: 415431.Google Scholar
Vachon, F. & Jolicoeur, P. (2012). On the automaticity of semantic processing during task switching. Journal of Cognitive Neuroscience, 24: 611626.Google Scholar
van Berkum, J. J. A. (2009). The neuropragmatics of “simple” utterance comprehension: an ERP review. In Sauerland, U. & Yatsushiro, K. (eds.), Semantics and Pragmatics: From Experiment to Theory (pp. 276316). Basingstoke: Palgrave Macmillan.Google Scholar
van Berkum, J. J. A., Brown, C., & Hagoort, P. (1999). Early referential context effects in sentence processing: evidence from event-related brain potentials. Journal of Memory and Language, 41: 147182.Google Scholar
van Berkum, J., Holleman, B., Nieuwland, M., Otten, M., & Murre, J. (2009). Right or wrong? The brain’s fast response to morally objectionable statements. Psychological Science, 20: 10921099.Google Scholar
van Berkum, J. J. A., Koornneef, A., Otten, M., & Nieuwland, M. (2007). Establishing reference in language comprehension: an electrophysiological perspective. Brain Research, 1146: 158171.Google Scholar
van den Brink, D., van Berkum, J., Bastiaansen, M. C., Tesink, C., Kos, M., Buitelaar, J., & Hagoort, P. (2012) Empathy matters: ERP evidence for inter-individual differences in social language processing, Social Cognitive and Affective Neuroscience, 7: 173183.Google Scholar
Van Petten, C. & Luka, B. J. (2006). Neural localization of semantic context effects in electromagnetic and hemodynamic studies. Brain and Language, 97: 279293.Google Scholar
Van Petten, C. & Luka, B. (2012). Prediction during language comprehension: benefits, costs, and ERP components. International Journal of Psychophysiology, 83: 176190.Google Scholar
van Turennout, M., Hagoort, P., & Brown, C. M. (1998). Brain activity during speaking: from syntax to phonology in 40 milliseconds. Science, 280: 572574.Google Scholar
Vigliocco, G., Vinson, D. P., Druks, J., Barber, H., & Cappa, S. F. (2011). Nouns and verbs in the brain: a review of behavioural, electrophysiological, neuropsychological and imaging studies. Neuroscience & Biobehavioral Reviews, 35: 407426.Google Scholar
Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 24: 16561674.Google Scholar
Vos, S. H., Gunter, T. C., Schriefers, H., & Friederici, A. (2001). Syntactic parsing and working memory: the effects of syntactic complexity, reading span, and concurrent load. Language and Cognitive Processes, 16: 65103.Google Scholar
West, W. C. & Holcomb, P. J. (2000). Imaginal, semantic, and surface-level processing of concrete and abstract words: an electrophysiological investigation. Journal of Cognitive Neuroscience, 12: 10241037.Google Scholar
Wilson, S. M., Galantucci, S., Tartaglia, M. C., Rising, K., Patterson, D. K., Henry, M., … & Gorno-Tempini, M. (2011). Syntactic processing depends on dorsal language tracts. Neuron, 72: 397403.Google Scholar
Xiang, M. & Kuperberg, G. (2015). Reversing expectations during discourse comprehension. Language, Cognition, and Neuroscience, 30: 648672.Google Scholar
Zhang, Y. & Zhang, J. (2008). Brain responses to agreement violations of Chinese grammatical aspect. NeuroReport, 19: 10391043.Google Scholar

References

Albert, W. J., Everson, D., Rae, M., Callaghan, J. P., Croll, J., & Kuruganti, U. (2014). Biomechanical and ergonomic assessment of urban transit operators. Work, 47: 3344.Google Scholar
Alberti, K. G., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., … & Smith, S. C. Jr. (2009). Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 120: 16401645.Google Scholar
Antoni, M. H., Cruess, D. G., Cruess, S., Lutgendorf, S., Kumar, M., Ironson, G., … & Schneiderman, N. (2000a). Cognitive-behavioral stress management intervention effects on anxiety, 24-hr urinary norepinephrine output, and T-cytotoxic/suppressor cells over time among symptomatic HIV-infected gay men. Journal of Consulting and Clinical Psychology, 68: 3145.Google Scholar
Antoni, M. H., Cruess, S., Cruess, D. G., Kumar, M., Lutgendorf, S., Ironson, G., … & Schneiderman, N. (2000b). Cognitive-behavioral stress management reduces distress and 24-hour urinary free cortisol output among symptomatic HIV-infected gay men. Annals of Behavioral Medicine, 22: 2937.Google Scholar
Arnold, S. V., Smolderen, K. G., Buchanan, D. M., Li, Y., & Spertus, J. A. (2012). Perceived stress in myocardial infarction: long-term mortality and health status outcomes. Journal of the American College of Cardiology, 60: 17561763.Google Scholar
Ashina, M. (2004). Neurobiology of chronic tension-type headache. Cephalalgia, 24: 161172.Google Scholar
Bahreinian, S., Ball, G. D., Vander Leek, T. K., Colman, I., McNeil, B. J., Becker, A. B., & Kozyrskyj, A. L. (2013). Allostatic load biomarkers and asthma in adolescents. American Journal of Respiratory and Critical Care Medicine, 187: 144152.Google Scholar
Barnes, V. A., Treiber, F. A., Davis, H., Kelley, T. R., & Strong, W. B. (1998). Central adiposity and hemodynamic functioning at rest and during stress in adolescents. International Journal of Obesity, 22: 10791083.Google Scholar
Bernal, D., Campos-Serna, J., Tobias, A., Vargas-Prada, S., Benavides, F. G., & Serra, C. (2015). Work-related psychosocial risk factors and musculoskeletal disorders in hospital nurses and nursing aides: a systematic review and meta-analysis. International Journal of Nursing Studies, 52: 635648.Google Scholar
Bjorntorp, P. (2001). Do stress reactions cause abdominal obesity and comorbidities? Obesity Reviews, 2: 7386.Google Scholar
Blumenthal, J. A., Sherwood, A., Babyak, M. A., Watkins, L. L., Waugh, R., Georgiades, A., … & Hinderliter, A. (2005). Effects of exercise and stress management training on markers of cardiovascular risk in patients with ischemic heart disease: a randomized controlled trial. Journal of the American Medical Association, 293: 16261634.Google Scholar
Blumenthal, J. A., Sherwood, A., Gullette, E. C., Georgiades, A., & Tweedy, D. (2002). Biobehavioral approaches to the treatment of essential hypertension. Journal of Consulting and Clinical Psychology, 70: 569589.Google Scholar
Boehm, J. K., Trudel-Fitzgerald, C., Kivimaki, M., & Kubzansky, L. D. (2015). The prospective association between positive psychological well-being and diabetes. Health Psychology, 34: 10131021.Google Scholar
Bongers, P. M., Kremer, A. M., & ter Laak, J. (2002). Are psychosocial factors, risk factors for symptoms and signs of the shoulder, elbow, or hand/wrist? A review of the epidemiological literature. American Journal of Industrial Medicine, 41: 315342.Google Scholar
Broadley, A. J., Korszun, A., Abdelaal, E., Moskvina, V., Jones, C. J., Nash, G. B., … & Frenneaux, M. P. (2005). Inhibition of cortisol production with metyrapone prevents mental stress-induced endothelial dysfunction and baroreflex impairment. Journal of the American College of Cardiology, 46: 344350.Google Scholar
Brydon, L., Edwards, S., Mohamed-Ali, V., & Steptoe, A. (2004). Socioeconomic status and stress-induced increases in interleukin-6. Brain, Behavior, and Immunity, 18: 281290.Google Scholar
Burg, M. M., Meadows, J., Shimbo, D., Davidson, K. W., Schwartz, J. E., & Soufer, R. (2014). Confluence of depression and acute psychological stress among patients with stable coronary heart disease: effects on myocardial perfusion. Journal of the American Heart Association, 3: e000898.Google Scholar
Burris, H. H., Baccarelli, A. A., Wright, R. O., & Wright, R. J. (2016). Epigenetics, linking social and environmental exposures to preterm birth. Pediatric Research, 79: 136–40.Google Scholar
Buske-Kirschbaum, A., Fischbach, S., Rauh, W., Hanker, J., & Hellhammer, D. (2004). Increased responsiveness of the hypothalamus–pituitary–adrenal (HPA) axis to stress in newborns with atopic disposition. Psychoneuroendocrinology, 29: 705711.Google Scholar
Buske-Kirschbaum, A., Jobst, S., Wustmans, A., Kirschbaum, C., Rauh, W., & Hellhammer, D. (1997). Attenuated free cortisol response to psychosocial stress in children with atopic dermatitis. Psychosomatic Medicine, 59: 419426.Google Scholar
Buske-Kirschbaum, A., von Auer, K., Krieger, S., Weis, S., Rauh, W., & Hellhammer, D. (2003). Blunted cortisol responses to psychosocial stress in asthmatic children: a general feature of atopic disease? Psychosomatic Medicine, 65: 806810.Google Scholar
Cacioppo, J., Kiecolt-Glaser, J., Malarkey, W., Laskowski, B., Rozlog, L., Poehlmann, K., … & Glaser, R. (2002). Autonomic and glucocorticoid associations with the steady-state expression of latent Epstein-Barr virus. Hormones and Behavior, 42: 3241.Google Scholar
Canter, P. H. & Ernst, E. (2004). Insufficient evidence to conclude whether or not transcendental meditation decreases blood pressure: results of a systematic review of randomized clinical trials. Journal of Hypertension, 22: 20492054.Google Scholar
Caspi, A., Harrington, H., Moffitt, T. E., Milne, B. J., & Poulton, R. (2006). Socially isolated children 20 years later: risk of cardiovascular disease. Archives of Pediatric and Adolescent Medicine, 160: 805811.Google Scholar
Chida, Y. & Steptoe, A. (2009). The association of anger and hostility with future coronary heart disease: a meta-analytic review of prospective evidence. Journal of the American College of Cardiology, 53: 936946.Google Scholar
Chida, Y. & Steptoe, A. (2010). Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: a meta-analysis of prospective evidence. Hypertension, 55: 10261032.Google Scholar
Cohen, F., Kemeny, M. E., Kearney, K. A., Zegans, L. S., Neuhaus, J. M., & Conant, M. A. (1999a). Persistent stress as a predictor of genital herpes recurrence. Archives of Internal Medicine, 159: 24302436.Google Scholar
Cohen, S., Doyle, W. J., & Skoner, D. P. (1999b). Psychological stress, cytokine production, and severity of upper respiratory illness. Psychosomatic Medicine, 61: 175180.Google Scholar
Cohen, S., Doyle, W. J., Turner, R. B., Alper, C. M., & Skoner, D. P. (2003). Emotional style and susceptibility to the common cold. Psychosomatic Medicine, 65: 652657.Google Scholar
Cohen, S., Line, S., Manuck, S. B., Rabin, B. S., Heise, E. R., & Kaplan, J. R. (1997). Chronic social stress, social status, and susceptibility to upper respiratory infections in nonhuman primates. Psychosomatic Medicine, 59: 213221.Google Scholar
Cohen, S., Tyrrell, D. A. J., & Smith, A. P. (1991). Psychosocial stress and susceptibility to the common cold. New England Journal of Medicine, 325: 606612.Google Scholar
Cosgrove, M. (2004). Do stressful life events cause type 1 diabetes? Occupational Medicine (London), 54: 250254.Google Scholar
Dahlen, I. & Janson, C. (2002). Anxiety and depression are related to the outcome of emergency treatment in patients with obstructive pulmonary disease. Chest, 122: 16331637.Google Scholar
Davis, K. G., Marras, W. S., Heaney, C. A., Waters, T. R., & Gupta, P. (2002). The impact of mental processing and pacing on spine loading: 2002 Volvo Award in biomechanics. Spine, 27: 26452653.Google Scholar
de Visser, D. C., van Hooft, I. M., van Doornen, L. J., Hofman, A., Orlebeke, J. F., & Grobbee, D. E. (1995). Cardiovascular response to mental stress in offspring of hypertensive parents: the Dutch Hypertension and Offspring Study. Journal of Hypertension, 13: 901908.Google Scholar
Epel, E. S., McEwen, B., Seeman, T., Matthews, K., Castellazzo, G., Brownell, K. D., … & Ickovics, J. R. (2000). Stress and body shape: stress-induced cortisol secretion is consistently greater among women with central fat. Psychosomatic Medicine, 62: 623632.Google Scholar
Fredrikson, M. & Matthews, K. A. (1990). Cardiovascular responses to behavioral stress and hypertension: a meta-analytic review. Annals of Behavioral Medicine, 12: 3039.Google Scholar
Gabbay, F. H., Krantz, D. S., Kop, W. J., Hedges, S. M., Klein, J., Gottdeiner, J. S., & Rozanski, A. (1996). Triggers of myocardial ischemia during daily life in patients with coronary artery disease: physical and mental activities, anger and smoking. Journal of the American College of Cardiology, 27: 585592.Google Scholar
Garde, A. H., Laursen, B., Jorgensen, A. H., & Jensen, B. R. (2002). Effects of mental and physical demands on heart rate variability during computer work. European Journal of Applied Physiology, 87: 456461.Google Scholar
Gerin, W. & Pickering, T. G. (1995). Association between delayed recovery of blood pressure after acute mental stress and parental history of hypertension. Journal of Hypertension, 13: 603610.Google Scholar
Ghiadoni, L., Donald, A., Cropley, M., Mullen, M. J., Oakley, G., Taylor, M., … & Deanfield, J. E. (2000). Mental stress induces transient endothelial dysfunction in humans. Circulation, 102: 24732478.Google Scholar
Glymour, M. M., Avendano, M., & Kawachi, I. (2015). Socioeconomic status and health. In Berkman, L. F., Kawachi, I., & Glymour, M. M. (eds.), Social Epidemiology, 2nd edn. (pp. 1762). Oxford University Press.Google Scholar
Goadsby, P. J. (2005). Migraine pathophysiology. Headache, 45: S14S24.Google Scholar
Greenhalgh, J., Dickson, R., & Dundar, Y. (2010). Biofeedback for hypertension: a systematic review. Journal of Hypertension, 28: 644652.Google Scholar
Gruenewald, T. L., Karlamangla, A. S., Hu, P., Stein-Merkin, S., Crandall, C., Koretz, B., & Seeman, T. E. (2012). History of socioeconomic disadvantage and allostatic load in later life. Social Science & Medicine, 74: 7583.Google Scholar
Gullette, E. C., Blumenthal, J. A., Babyak, M., Jiang, W., Waugh, R. A., Frid, D. J., … & Krantz, D. S. (1997). Effects of mental stress on myocardial ischemia during daily life. Journal of the American Medical Association, 277: 15211526.Google Scholar
Haapakoski, R., Mathieu, J., Ebmeier, K. P., Alenius, H., & Kivimaki, M. (2015). Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain, Behavior, and Immunity, 49: 206215.Google Scholar
Hackett, R. A., Hamer, M., Endrighi, R., Brydon, L., & Steptoe, A. (2012). Loneliness and stress-related inflammatory and neuroendocrine responses in older men and women. Psychoneuroendocrinology, 37: 18011809.Google Scholar
Hackett, R. A., Kivimaki, M., Kumari, M., & Steptoe, A. (2016). Diurnal cortisol patterns, future diabetes, and impaired glucose metabolism in the Whitehall II cohort study. Journal of Clinical Endocrinology and Metabolism, 101: 619625.Google Scholar
Hägg, G. M. & Astrom, A. (1997). Load pattern and pressure pain threshold in the upper trapezius muscle and psychosocial factors in medical secretaries with and without shoulder/neck disorders. International Archive of Occupational and Environmental Health, 69: 423432.Google Scholar
Hamer, M., Endrighi, R., Venuraju, S. M., Lahiri, A., & Steptoe, A. (2012). Cortisol responses to mental stress and the progression of coronary artery calcification in healthy men and women. PLoS One, 7: e31356.Google Scholar
Hawkley, L. C., Thisted, R. A., Masi, C. M., & Cacioppo, J. T. (2010). Loneliness predicts increased blood pressure: 5-year cross-lagged analyses in middle-aged and older adults. Psychology and Aging, 25: 132141.Google Scholar
Hemingway, H., Shipley, M., Brunner, E., Britton, A., Malik, M., & Marmot, M. (2005). Does autonomic function link social position to coronary risk? The Whitehall II study. Circulation, 111: 30713077.Google Scholar
Hjemdahl, P. & Von Kanel, R. (2012). Haemostatic effects of stress. In Hjemdahl, P., Rosengren, A., & Steptoe, A. (eds.), Stress and Cardiovascular Disease (pp. 89110). London: Springer.Google Scholar
Holroyd, K. A. (2002). Assessment and psychological management of recurrent headache disorders. Journal of Consulting and Clinical Psychology, 70: 656677.Google Scholar
Horsten, M., Mittleman, M. A., Wamala, S. P., Schenck-Gustafsson, K., & Orth-Gomer, K. (1999). Social relations and the metabolic syndrome in middle-aged Swedish women. Journal of Cardiovascular Risk, 6: 391397.Google Scholar
Institute of Medicine (2001). Musculoskeletal Disorders in the Workplace: Low Back and Upper Extremities. Washington, DC: National Academy Press.Google Scholar
Ismail, K., Winkley, K., & Rabe-Hesketh, S. (2004). Systematic review and meta-analysis of randomised controlled trials of psychological interventions to improve glycaemic control in patients with type 2 diabetes. Lancet, 363: 15891597.Google Scholar
Jennings, J. R., Kamarck, T. W., Everson-Rose, S. A., Kaplan, G. A., Manuck, S. B., & Salonen, J. T. (2004). Exaggerated blood pressure responses during mental stress are prospectively related to enhanced carotid atherosclerosis in middle-aged Finnish men. Circulation, 110: 21982203.Google Scholar
Jiang, W. (2015). Emotional triggering of cardiac dysfunction: the present and future. Current Cardiology Reports, 17: 635.Google Scholar
Jiang, W., Samad, Z., Boyle, S., Becker, R. C., Williams, R., Kuhn, C., … & Velazquez, E. J. (2013). Prevalence and clinical characteristics of mental stress-induced myocardial ischemia in patients with coronary heart disease. Journal of the American College of Cardiology, 61: 714722.Google Scholar
Jokela, M., Elovainio, M., Nyberg, S. T., Tabak, A. G., Hintsa, T., Batty, G. D., & Kivimaki, M. (2014). Personality and risk of diabetes in adults: pooled analysis of 5 cohort studies. Health Psychology, 33: 16181621.Google Scholar
Jonas, B. S. & Lando, J. F. (2000). Negative affect as a prospective risk factor for hypertension. Psychosomatic Medicine, 62: 188196.Google Scholar
Jorgensen, R. S., Johnson, B. T., Schreer, G. E., & Kolodziej, M. E. (1996). Elevated blood pressure and personality: a meta-analytic review. Psychological Bulletin, 120: 293320.Google Scholar
Katon, W. J., Richardson, L., Lozano, P., & McCauley, E. (2004). The relationship of asthma and anxiety disorders. Psychosomatic Medicine, 66: 349355.Google Scholar
Keefe, F. J., Abernethy, A. P., & Campbell, L. C. (2005). Psychological approaches to understanding and treating disease-related pain. Annual Review of Psychology, 56: 601630.Google Scholar
Kemmer, F. W., Bisping, R., Steingruber, H. J., Baar, H., Hardtmann, F., Schlaghecke, R., & Berger, M. (1986). Psychological stress and metabolic control in patients with type I diabetes mellitus. New England Journal of Medicine, 314: 10781084.Google Scholar
Kiecolt-Glaser, J. K., Glaser, R., Gravenstein, S., Malarkey, W. B., & Sheridan, J. (1996). Chronic stress alters the immune response to influenza virus vaccine in older adults. Proceedings of the National Academy of Sciences of the USA, 93: 30433047.Google Scholar
Kiecolt-Glaser, J. K., Preacher, K. J., MacCallum, R. C., Atkinson, C., Malarkey, W. B., & Glaser, R. (2003). Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proceedings of the National Academy of Sciences of the USA, 100: 90909095.Google Scholar
Kindelan-Calvo, P., Gil-Martinez, A., Paris-Alemany, A., Pardo-Montero, J., Munoz-Garcia, D., Angulo-Diaz-Parreno, S., & La Touche, R. (2014). Effectiveness of therapeutic patient education for adults with migraine: a systematic review and meta-analysis of randomized controlled trials. Pain Medicine, 15: 16191636.Google Scholar
Kivimaki, M. & Kawachi, I. (2015). Work stress as a risk factor for cardiovascular disease. Current Cardiology Reports, 17: 74.Google Scholar
Klumb, P. L. & Lampert, T. (2004). Women, work, and well-being 1950–2000: a review and methodological critique. Social Science & Medicine, 58: 10071024.Google Scholar
Knox, S. S., Weidner, G., Adelman, A., Stoney, C. M., & Ellison, R. C. (2004). Hostility and physiological risk in the National Heart, Lung, and Blood Institute Family Heart Study. Archives of Internal Medicine, 164: 24422448.Google Scholar
Kop, W. J., Berman, D. S., Gransar, H., Wong, N. D., Miranda-Peats, R., White, M. D., … & Rozanski, A. (2005). Social network and coronary artery calcification in asymptomatic individuals. Psychosomatic Medicine, 67: 343352.Google Scholar
Kop, W. J., Verdino, R. J., Gottdiener, J. S., O’Leary, S. T., Bairey Merz, C. N., & Krantz, D. S. (2001). Changes in heart rate and heart rate variability before ambulatory ischemic events. Journal of the American College of Cardiology, 38: 742749.Google Scholar
Kraatz, S., Lang, J., Kraus, T., Munster, E., & Ochsmann, E. (2013). The incremental effect of psychosocial workplace factors on the development of neck and shoulder disorders: a systematic review of longitudinal studies. International Archive of Occupational and Environmental Health, 86: 375395.Google Scholar
Lampert, R. (2010). Anger and ventricular arrhythmias. Current Opinion in Cardiology, 25: 4652.Google Scholar
Lampert, R., Joska, T., Burg, M. M., Batsford, W. P., McPherson, C. A., & Jain, D. (2002). Emotional and physical precipitants of ventricular arrhythmia. Circulation, 106: 18001805.Google Scholar
Laursen, B., Jensen, B. R., Garde, A. H., & Jorgensen, A. H. (2002). Effect of mental and physical demands on muscular activity during the use of a computer mouse and a keyboard. Scandinavian Journal of Work and Environmental Health, 28: 215221.Google Scholar
Lehrer, P. M. & Gevirtz, R. (2014). Heart rate variability biofeedback: how and why does it work? Frontiers in Psychology, 5: 756.Google Scholar
Lehrer, P. M., Vaschillo, E., Vaschillo, B., Lu, S. E., Scardella, A., Siddique, M., & Habib, R. H. (2004). Biofeedback treatment for asthma. Chest, 126: 352361.Google Scholar
Leor, J., Poole, W. K., & Kloner, R. A. (1996). Sudden cardiac death triggered by an earthquake. New England Journal of Medicine, 334: 413419.Google Scholar
Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473: 317325.Google Scholar
Light, K. C., Girdler, S. S., Sherwood, A., Bragdon, E. E., Brownley, K. A., West, S. G., & Hinderliter, A. L. (1999). High stress responsivity predicts later blood pressure only in combination with positive family history and high life stress. Hypertension, 33: 14581464.Google Scholar
Ljung, T., Holm, G., Friberg, P., Andersson, B., Bengtsson, B. A., Svensson, J., … & Bjorntorp, P. (2000). The activity of the hypothalamic–pituitary–adrenal axis and the sympathetic nervous system in relation to waist/hip circumference ratio in men. Obesity Research, 8: 487495.Google Scholar
Lloyd, C. E., Dyer, P. H., Lancashire, R. J., Harris, T., Daniels, J. E., & Barnett, A. H. (1999). Association between stress and glycemic control in adults with type 1 (insulin-dependent) diabetes. Diabetes Care, 22: 12781283.Google Scholar
Lustman, P. J., Clouse, R. E., Ciechanowski, P. S., Hirsch, I. B., & Freedland, K. E. (2005). Depression-related hyperglycemia in type 1 diabetes: a mediational approach. Psychosomatic Medicine, 67: 195199.Google Scholar
Manuck, S. B., Polefrone, J. M., Terrell, D. F., Muldoon, M. F., Kasprowicz, A. L., Waldstein, S. R., … & Graham, R. E. (1996). Absence of enhanced sympathoadrenal activity and behaviorally evoked cardiovascular reactivity among offspring of hypertensives. American Journal of Hypertension, 9: 248255.Google Scholar
Markovitz, J. H., Matthews, K. A., Kannel, W. B., Cobb, J. L., & D’Agostino, R. B. (1993). Psychological predictors of hypertension in the Framingham Study: is there tension in hypertension? Journal of the American Medical Association, 270: 24392443.Google Scholar
Marras, W. S., Davis, K. G., Heaney, C. A., Maronitis, A. B., & Allread, W. G. (2000). The influence of psychosocial stress, gender, and personality on mechanical loading of the lumbar spine. Spine, 25: 30453054.Google Scholar
Marsland, A. L., Cohen, S., Rabin, B. S., & Manuck, S. B. (2001). Associations between stress, trait negative affect, acute immune reactivity, and antibody response to hepatitis B injection in healthy young adults. Health Psychology, 20: 411.Google Scholar
Marsland, A. L., Cohen, S., Rabin, B. S., & Manuck, S. B. (2006). Trait positive affect and antibody response to hepatitis B vaccination. Brain, Behavior, and Immunity, 20: 261269.Google Scholar
Matthews, K. A., Chang, Y. F., Sutton-Tyrrell, K., Edmundowicz, D., & Bromberger, J. T. (2010). Recurrent major depression predicts progression of coronary calcification in healthy women: Study of Women’s Health Across the Nation. Psychosomatic Medicine, 72: 742747.Google Scholar
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338: 171179.Google Scholar
Meyer, R. & Haggerty, R. J. (1962). Streptococcal infections in families. Pediatrics, 29: 539549.Google Scholar
Mezuk, B., Eaton, W. W., Albrecht, S., & Golden, S. H. (2008). Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care, 31: 23832390.Google Scholar
Miller, G. E. & Cohen, S. (2005). Infectious disease and psychoneuroimmunology. In Vedhara, K. & Irwin, M. (eds.), Human Psychoneuroimmunology (pp. 219242). Oxford University Press.Google Scholar
Ming, E. E., Adler, G. K., Kessler, R. C., Fogg, L. F., Matthews, K. A., Herd, J. A., & Rose, R. M. (2004). Cardiovascular reactivity to work stress predicts subsequent onset of hypertension: the Air Traffic Controller Health Change Study. Psychosomatic Medicine, 66: 459465.Google Scholar
Miranda, H., Viikari-Juntura, E., Heistaro, S., Heliovaara, M., & Riihimaki, H. (2005). A population study on differences in the determinants of a specific shoulder disorder versus nonspecific shoulder pain without clinical findings. American Journal of Epidemiology, 161: 847855.Google Scholar
Mittleman, M. A. & Mostofsky, E. (2011). Physical, psychological and chemical triggers of acute cardiovascular events: preventive strategies. Circulation, 124: 346354.Google Scholar
Moher, D., Schulz, K. F., & Altman, D. G. (2001). The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomised trials. Lancet, 357: 11911194.Google Scholar
Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., … & American Heart Association Committee (2015). Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation, 131: e29322.Google Scholar
Muldoon, M. F., Herbert, T. B., Patterson, S. M., Kameneva, M., Raible, R., & Manuck, S. B. (1995). Effects of acute psychological stress on serum lipid levels, hemoconcentration, and blood viscosity. Archives of Internal Medicine, 155: 615620.Google Scholar
Myers, A. & Dewar, H. A. (1975). Circumstances attending 100 sudden deaths from coronary artery disease with coroner’s necropsies. British Heart Journal, 37: 11331143.Google Scholar
Nagele, E., Jeitler, K., Horvath, K., Semlitsch, T., Posch, N., Herrmann, K. H., … & Siebenhofer, A. (2014). Clinical effectiveness of stress-reduction techniques in patients with hypertension: systematic review and meta-analysis. Journal of Hypertension, 32: 19361944.Google Scholar
Nahit, E. S., Hunt, I. M., Lunt, M., Dunn, G., Silman, A. J., & Macfarlane, G. J. (2003). Effects of psychosocial and individual psychological factors on the onset of musculoskeletal pain: common and site-specific effects. Annals of Rheumatic Disease, 62: 755760.Google Scholar
Nicholson, A., Kuper, H., & Hemingway, H. (2006). Depression as an aetiologic and prognostic factor in coronary heart disease: a meta-analysis of 6362 events among 146 538 participants in 54 observational studies. European Heart Journal, 27: 27632774.Google Scholar
Nyberg, S. T., Fransson, E. I., Heikkila, K., Ahola, K., Alfredsson, L., Bjorner, J. B., … & IPD-Work Consortium (2014). Job strain as a risk factor for type 2 diabetes: a pooled analysis of 124,808 men and women. Diabetes Care, 37: 22682275.Google Scholar
Pan, A., Lucas, M., Sun, Q., van Dam, R. M., Franco, O. H., Willett, W. C., … & Hu, F. B. (2011). Increased mortality risk in women with depression and diabetes mellitus. Archives of General Psychiatry, 68: 4250.Google Scholar
Pedersen, A., Zachariae, R., & Bovbjerg, D. H. (2010). Influence of psychological stress on upper respiratory infection: a meta-analysis of prospective studies. Psychosomatic Medicine, 72: 823832.Google Scholar
Phillips, A. C., Carroll, D., Burns, V. E., & Drayson, M. (2005). Neuroticism, cortisol reactivity, and antibody response to vaccination. Psychophysiology, 42: 232238.Google Scholar
Phillips, A. C., Roseboom, T. J., Carroll, D., & de Rooij, S. R. (2012). Cardiovascular and cortisol reactions to acute psychological stress and adiposity: cross-sectional and prospective associations in the Dutch Famine Birth Cohort Study. Psychosomatic Medicine, 74: 699710.Google Scholar
Pierce, T. W., Grim, R. D., & King, J. S. (2005). Cardiovascular reactivity and family history of hypertension: a meta-analysis. Psychophysiology, 42: 125131.Google Scholar
Rains, J. C., Penzien, D. B., McCrory, D. C., & Gray, R. N. (2005). Behavioral headache treatment: history, review of the empirical literature, and methodological critique. Headache, 45: S92S109.Google Scholar
Riazi, A., Pickup, J., & Bradley, C. (2004). Daily stress and glycaemic control in type 1 diabetes: individual differences in magnitude, direction, and timing of stress-reactivity. Diabetes Research and Clinical Practice, 66: 237244.Google Scholar
Rissen, D., Melin, B., Sandsjo, L., Dohns, I., & Lundberg, U. (2000). Surface EMG and psychophysiological stress reactions in women during repetitive work. European Journal of Applied Physiology, 83: 215222.Google Scholar
Ritz, T., Dahme, B., & Roth, W. T. (2004). Behavioral interventions in asthma: biofeedback techniques. Journal of Psychosomatic Research, 56: 711720.Google Scholar
Ritz, T. & Steptoe, A. (2000). Emotion and pulmonary function in asthma: reactivity in the field and relationship with laboratory induction of emotion. Psychosomatic Medicine, 62: 808815.Google Scholar
Ritz, T., Steptoe, A., DeWilde, S., & Costa, M. (2000). Emotions and stress increase respiratory resistance in asthma. Psychosomatic Medicine, 62: 401412.Google Scholar
Rostrup, M., Mundall, H. H., Westheim, A., & Eide, I. (1991). Awareness of high blood pressure increases arterial plasma catecholamines, platelet noradrenaline and adrenergic responses to mental stress. Journal of Hypertension, 9: 159166.Google Scholar
Rotella, F. & Mannucci, E. (2013). Diabetes mellitus as a risk factor for depression: a meta-analysis of longitudinal studies. Diabetes Research and Clinical Practice, 99: 98104.Google Scholar
Rutledge, T. & Hogan, B. E. (2002). A quantitative review of prospective evidence linking psychological factors with hypertension development. Psychosomatic Medicine, 64: 758766.Google Scholar
Sandercock, G. R., Bromley, P. D., & Brodie, D. A. (2005). Effects of exercise on heart rate variability: inferences from meta-analysis. Medicine and Science in Sports and Exercise, 37: 433439.Google Scholar
Schwartz, J. E. & Stone, A. A. (1998). Strategies for analyzing ecological momentary assessment data. Health Psychology, 17: 616.Google Scholar
Segerstrom, S. C., Hardy, J. K., Evans, D. R., & Greenberg, R. N. (2012). Vulnerability, distress, and immune response to vaccination in older adults. Brain, Behavior, and Immunity, 26: 747753.Google Scholar
Sepa, A., Wahlberg, J., Vaarala, O., Frodi, A., & Ludvigsson, J. (2005). Psychological stress may induce diabetes-related autoimmunity in infancy. Diabetes Care, 28: 290295.Google Scholar
Shankar, A., McMunn, A., Banks, J., & Steptoe, A. (2011). Loneliness, social isolation, and behavioral and biological health indicators in older adults. Health Psychology, 30: 377385.Google Scholar
Smith, D. R., Wei, N., Zhao, L., & Wang, R. S. (2004). Musculoskeletal complaints and psychosocial risk factors among Chinese hospital nurses. Occupational Medicine (London), 54: 579582.Google Scholar
Sparrenberger, F., Cichelero, F. T., Ascoli, A. M., Fonseca, F. P., Weiss, G., Berwanger, O., … & Fuchs, F. D. (2009). Does psychosocial stress cause hypertension? A systematic review of observational studies. Journal of Human Hypertension, 23: 1219.Google Scholar
Steptoe, A. (ed.) (2010). Handbook of Behavioral Medicine. New York: Springer.Google Scholar
Steptoe, A. (2012). Socioeconomic status, inflammation, and immune function. In Segerstrom, S. G. (ed.), The Oxford Handbook of Psychoneuroimmunology (pp. 234253). Oxford University Press.Google Scholar
Steptoe, A. & Brydon, L. (2005). Associations between acute lipid stress responses and fasting lipid levels 3 years later. Health Psychology, 24: 601607.Google Scholar
Steptoe, A., Hackett, R. A., Lazzarino, A. I., Bostock, S., La Marca, R., Carvalho, L. A., & Hamer, M. (2014). Disruption of multisystem responses to stress in type 2 diabetes: investigating the dynamics of allostatic load. Proceedings of the National Academy of Sciences of the USA, 111: 1569315698.Google Scholar
Steptoe, A., Hamer, M., & Chida, Y. (2007). The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain, Behavior, and Immunity, 21: 901912.Google Scholar
Steptoe, A. & Kivimaki, M. (2013). Stress and cardiovascular disease: an update on current knowledge. Annual Review of Public Health, 34: 337354.Google Scholar
Steptoe, A., Kunz-Ebrecht, S. R., Brydon, L., & Wardle, J. (2004). Central adiposity and cortisol responses to waking in middle-aged men and women. International Journal of Obesity, 28: 11681173.Google Scholar
Steptoe, A. & Wardle, J. (2005). Cardiovascular stress responsivity, body mass and abdominal adiposity. International Journal of Obesity, 29: 13291337.Google Scholar
Sterman, M. B. (2000). Basic concepts and clinical findings in the treatment of seizure disorders with EEG operant conditioning. Clinical Electroencephalography, 31: 4555.Google Scholar
Stone, G. W., Maehara, A., Lansky, A. J., de Bruyne, B., Cristea, E., Mintz, G. S., … & Serruys, P. W. (2011). A prospective natural-history study of coronary atherosclerosis. New England Journal of Medicine, 364: 226235.Google Scholar
Stoney, C. M., Bausserman, L., Niaura, R., Marcus, B., & Flynn, M. (1999). Lipid reactivity to stress: II. Biological and behavioral influences. Health Psychology, 18: 251261.Google Scholar
Strehl, U., Kotchoubey, B., Trevorrow, T., & Birbaumer, N. (2005). Predictors of seizure reduction after self-regulation of slow cortical potentials as a treatment of drug-resistant epilepsy. Epilepsy and Behavior, 6: 156166.Google Scholar
Strike, P. C., Magid, K., Brydon, L., Edwards, S., McEwan, J. R., & Steptoe, A. (2004). Exaggerated platelet and hemodynamic reactivity to mental stress in men with coronary artery disease. Psychosomatic Medicine, 66: 492500.Google Scholar
Strike, P. C. & Steptoe, A. (2003). Systematic review of mental stress-induced myocardial ischaemia. European Heart Journal, 24: 690703.Google Scholar
Sturdy, P. M., Victor, C. R., Anderson, H. R., Bland, J. M., Butland, B. K., Harrison, B. D., … & Taylor, J. C. (2002). Psychological, social and health behaviour risk factors for deaths certified as asthma: a national case-control study. Thorax, 57: 10341039.Google Scholar
Sundin, O., Ohman, A., Palm, T., & Strom, G. (1995). Cardiovascular reactivity, type A behavior, and coronary heart disease: comparisons between myocardial infarction patients and controls during laboratory-induced stress. Psychophysiology, 32: 2835.Google Scholar
Thayer, J. F. & Lane, R. D. (2007). The role of vagal function in the risk for cardiovascular disease and mortality. Biological Psychology, 74: 224242.Google Scholar
Todaro, J. F., Con, A., Niaura, R., Spiro, A. III, Ward, K. D., & Roytberg, A. (2005). Combined effect of the metabolic syndrome and hostility on the incidence of myocardial infarction (the Normative Aging Study). American Journal of Cardiology, 96: 221226.Google Scholar
Torp, S., Riise, T., & Moen, B. E. (2001). The impact of psychosocial work factors on musculoskeletal pain: a prospective study. Journal of Occupational and Environmental Medicine, 43: 120126.Google Scholar
Troxel, W. M., Matthews, K. A., Gallo, L. C., & Kuller, L. H. (2005). Marital quality and occurrence of the metabolic syndrome in women. Archives of Internal Medicine, 165: 10221027.Google Scholar
Vedhara, K., Cox, N. K. M., Wilcock, G. K., Perks, P., Hunt, M., Anderson, S., … & Shanks, N. M. (1999). Chronic stress in elderly carers of dementia patients and antibody response to influenza vaccination. Lancet, 353: 627631.Google Scholar
Veiersted, K. B., Westgaard, R. H., & Andersen, P. (1993). Electromyographic evaluation of muscular work pattern as a predictor of trapezius myalgia. Scandinavian Journal of Work and Environmental Health, 19: 284290.Google Scholar
Waller, J., McCaffery, K. J., Forrest, S., & Wardle, J. (2004). Human papillomavirus and cervical cancer: issues for biobehavioral and psychosocial research. Annals of Behavioral Medicine, 27: 6879.Google Scholar
Wamala, S. P., Lynch, J., Horsten, M., Mittleman, M. A., Schenck-Gustafsson, K., & Orth-Gomer, K. (1999). Education and the metabolic syndrome in women. Diabetes Care, 22: 19992003.Google Scholar
Wamboldt, M. Z., Laudenslager, M., Wamboldt, F. S., Kelsay, K., & Hewitt, J. (2003). Adolescents with atopic disorders have an attenuated cortisol response to laboratory stress. Journal of Allergy and Clinical Immunology, 111: 509514.Google Scholar
Whang, W., Albert, C. M., Sears, S. F. Jr., Lampert, R., Conti, J. B., Wang, P. J., … & Mittleman, M. A. (2005). Depression as a predictor for appropriate shocks among patients with implantable cardioverter-defibrillators: results from the Triggers of Ventricular Arrhythmias (TOVA) study. Journal of the American College of Cardiology, 45: 10901095.Google Scholar
Wiesli, P., Schmid, C., Kerwer, O., Nigg-Koch, C., Klaghofer, R., Seifert, B., … & Schwegler, K. (2005). Acute psychological stress affects glucose concentrations in patients with type 1 diabetes following food intake but not in the fasting state. Diabetes Care, 28: 19101915.Google Scholar
Wright, R. J., Cohen, S., Carey, V., Weiss, S. T., & Gold, D. R. (2002). Parental stress as a predictor of wheezing in infancy: a prospective birth-cohort study. American Journal of Respiratory Critical Care Medicine, 165: 358365.Google Scholar
Wright, R. J., Cohen, R. T., & Cohen, S. (2005). The impact of stress on the development and expression of atopy. Current Opinion in Allergy and Clinical Immunology, 5: 2329.Google Scholar
Yan, L. L., Liu, K., Matthews, K. A., Daviglus, M. L., Ferguson, T. F., & Kiefe, C. I. (2003). Psychosocial factors and risk of hypertension: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Journal of the American Medical Association, 290: 21382148.Google Scholar
Yorke, J., Fleming, S., Shuldham, C., Rao, H., & Smith, H. (2015). Non-pharmacological interventions aimed at modifying health and behavioural outcomes for adults with asthma: a critical review. Clinical and Experimental Allergy, 45: 17501764.Google Scholar
Yusuf, S., Hawken, S., Ounpuu, S., Dans, T., Avezum, A., Lanas, F., … & Lisheng, L. (2004). Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet, 364: 937952.Google Scholar

References

Achim, A. M & Lepage, M. (2005). Episodic memory-related activation in schizophrenia: meta-analysis. British Journal of Psychiatry, 187: 500509.Google Scholar
Antisevic, A., Van Snellenberg, J. X., Cohen, R. E., Repovs, G., Dowd, E. C., & Barch, D. M. (2012). Amygdala recruitment in schizophrenia in response to aversive emotional material: a meta-analysis of neuroimaging studies. Schizophrenia Bulletin, 38: 608621.Google Scholar
Aron, A. R., Robbins, T. W., & Poldrack, R.A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8: 170177.Google Scholar
Aupperle, R. L. & Paulus, M. P. (2010). Neural systems underlying approach and avoidance in anxiety disorders. Dialogues in Clinical Neuroscience, 12: 517531.Google Scholar
Ax, A. F. (1962). Psychophysiological methodology for the study of schizophrenia. In Roessler, R. & Greenfield, N. S. (eds.), Physiological Correlates of Psychological Disorder (pp. 2944). Madison: University of Wisconsin Press.Google Scholar
Banich, M. T. (2009). Executive function: the search for an integrated account. Current Directions in Psychological Science, 18: 8994.Google Scholar
Banich, M. T., Mackiewicz, K. L., Depue, B. E., Whitmer, A. J., Miller, G. A., & Heller, W. (2009). Cognitive control mechanisms, emotion and memory: a neural perspective with implications for psychopathology. Neuroscience & Biobehavioral Reviews, 33: 613630.Google Scholar
Barch, D. M. & Dowd, E. C. (2010). Goal representation and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophrenia Bulletin, 36: 919934.Google Scholar
Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychological Bulletin, 133: 124.Google Scholar
Benjamin, L. S. (1967). Facts and artifacts in using analysis of covariance to “undo” the law of initial values. Psychophysiology, 4: 187206.Google Scholar
Berenbaum, H. (2013). Classification and psychopathology research. Journal of Abnormal Psychology, 122: 894901.Google Scholar
Bramon, E., Rabe-Hesketh, S., Sham, P., Murray, R. M., & Frangou, S. (2004). Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophrenia Research, 70: 315329.Google Scholar
Bredemeier, K. & Berenbaum, H. (2013). Cross-sectional and longitudinal relations between working memory performance and worry. Journal of Experimental Psychopathology, 4: 420434.Google Scholar
Bress, J. N., Foti, D., Kotov, R., Klein, D. N., & Hajcak, G. (2013). Blunted neural response to rewards prospectively predicts depression in adolescent girls. Psychophysiology, 50: 7481.Google Scholar
Bress, J. N., Smith, E., Foti, D., Klein, D. N., & Hajcak, G. (2012). Neural response to reward and depressive symptoms in late childhood to early adolescence. Biological Psychology, 89: 156162.Google Scholar
Buck, C. W., Carscallen, H. B., & Hobbs, G. E. (1950). Temperature regulation in schizophrenia: I. Comparison of schizophrenic and normal subjects. II. Analysis of duration of psychosis. Archives of Neurology and Psychiatry, 64: 828842.Google Scholar
Buck, C. W., Carscallen, H. B., & Hobbs, G. E. (1951). Effect of prefrontal lobotomy on temperature regulation in schizophrenic patients. Archives of Neurology and Psychiatry, 65: 197205.Google Scholar
Cacioppo, J. T., Berntson, G. G., & Nusbaum, H. C. (2008). Neuroimaging as a new tool in the toolbox of psychological science. Current Directions in Psychological Science, 17: 6267.Google Scholar
Cacioppo, J. T. & Cacioppo, S. (2013). Social neuroscience. Perspectives on Psychological Science, 8: 667669.Google Scholar
Canolty, R. T. & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14: 506515.Google Scholar
Castaneda, A. E., Suvisaari, J., Marttunen, M., Perälä, J., Saarni, S. I., Aalto-Setälä, T., … & Tuulio-Henriksson, A. (2010). Cognitive functioning in a population-based sample of young adults with anxiety disorders. European Psychiatry, 26: 346353.Google Scholar
Chapman, L. J. & Chapman, J. P. (1973). Problems in the measurement of cognitive deficit. Psychological Bulletin, 79: 380385.Google Scholar
Chapman, L. J. & Chapman, J. P. (1989). Strategies for resolving the heterogeneity of schizophrenics and their relatives using cognitive measures. Journal of Abnormal Psychology, 98: 357366.Google Scholar
Chapman, L. J. & Chapman, J. P. (2001). Commentary on two articles concerning generalized and specific cognitive deficits. Journal of Abnormal Psychology, 110: 3139.Google Scholar
Chen, Y.-H., Stone-Howell, B., Edgar, J. C., Huang, M., Wootton, C., Hunter, M. A., … & Cañive, J. C. (2016). Frontal slow-wave activity as a predictor of negative symptoms, cognition and functional capacity in schizophrenia. British Journal of Psychiatry, 206: 160167.Google Scholar
Cisler, J. M., Bacon, A. K., & Williams, N. L. (2009). Phenomenological characteristics of attentional biases toward threat: a critical review. Cognitive Therapy and Research, 33: 221234.Google Scholar
Cohen, L. H. & Patterson, M. (1937). Effect of pain on the heart rate of normal and schizophrenic individuals. Journal of General Psychology, 17: 273289.Google Scholar
Collette, F., Hogge, M., Salmon, E., & Van der Linden, M. (2006). Exploration of the neural substrates of executive functioning by functional neuroimaging. Neuroscience, 139: 209221.Google Scholar
Collette, F., Van der Linden, M., Laureys, S., Delfiore, G., Degueldre, C., Luxen, A., & Salmon, E. (2005). Exploring the unity and diversity of the neural substrates of executive functioning. Human Brain Mapping, 25: 409423.Google Scholar
Crocker, L. D., Heller, W., Warren, S. L., O’Hare, A. J., Infantolino, Z. P., & Miller, G. A. (2013). Relationships among cognition, emotion, and motivation: implications for intervention and neuroplasticity in psychopathology. Frontiers in Human Neuroscience, 7: 261.Google Scholar
Cuthbert, B. N. (2014a). The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry, 13: 2835.Google Scholar
Cuthbert, B. N. (2014b). Translating intermediate phenotypes to psychopathology: the NIMH research domain criteria. Psychophysiology, 51: 12051206.Google Scholar
Davidson, R. J. (1998). Review of psychophysiology: the mind–body perspective. Psychophysiology, 35: 352355.Google Scholar
Davis, P. A. & Davis, H. (1939). The electroencephalograms of psychotic patients. American Journal of Psychiatry, 95: 10071025.Google Scholar
Decety, J. & Cacioppo, J. (2010). Frontiers in human neuroscience: the golden triangle and beyond. Perspectives on Psychological Science, 5: 767771.Google Scholar
Derakshan, N. & Eysenck, M. W. (1998). Working memory capacity in high trait-anxious and repressor groups. Cognition & Emotion, 12: 697713.Google Scholar
Derakshan, N. & Eysenck, M. W. (2009). Anxiety, processing efficiency, and cognitive performance: new developments from attentional control theory. European Psychologist, 14: 168176.Google Scholar
Dichter, G. S., Felder, J. N., Petty, C., Bizzell, J., Ernst, M., & Smoski, M. J. (2009). The effects of psychotherapy on neural responses to rewards in major depression. Biological Psychiatry, 66: 886897.Google Scholar
Duffy, E. (1962). Activation and Behavior. New York: John Wiley.Google Scholar
Edgar, J. C., Hanlon, F. M., Huang, M. X., Weisend, M. P., Thoma, R. J., Carpenter, B., … & Miller, G. A. (2008). Superior temporal gyrus spectral abnormalities in schizophrenia. Psychophysiology, 45: 812824.Google Scholar
Edgar, J. C., Keller, J., Heller, W., & Miller, G. A. (2007). Psychophysiology in the study of psychopathology. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (eds.), Handbook of Psychophysiology, 3rd edn. (pp. 665687). Cambridge University Press.Google Scholar
Engels, A. S., Heller, W., Mohanty, A., Herrington, J. D., Banich, M. T., Webb, A. G., & Miller, G. A. (2007). Specificity of regional brain activity in anxiety types during emotion processing. Psychophysiology, 44: 352363.Google Scholar
Engels, A. S., Heller, W., Spielberg, J. M., Warren, S. L., Sutton, B. P., Banich, M. T., & Miller, G. A. (2010). Co-occurring anxiety influences patterns of brain activity in depression. Cognitive, Affective, & Behavioral Neuroscience, 10: 141156.Google Scholar
Epstein, J., Pan, H., Kocsis, J. H., Yang, Y., Butler, T., Chusid, J., … & Silbersweig, D. A. (2006). Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. American Journal of Psychiatry, 163: 17841790.Google Scholar
Esslinger, C., Englisch, S., Inta, D., Rausch, F., Schirmbeck, F., Mier, D., … & Zink, M. (2012). Ventral striatal activation during attribution of stimulus saliency and reward anticipation is correlated in unmedicated first episode schizophrenia patients. Schizophrenia Research, 140: 114121.Google Scholar
Etkin, A. & Wager, T. D. (2007). Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164: 14761488.Google Scholar
Eysenck, M. W. & Derakshan, N. (2011). New perspectives in attentional control theory. Personality and Individual Differences, 50: 955960.Google Scholar
Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: attentional control theory. Emotion, 7: 336353.Google Scholar
Eysenck, M. W., Payne, S., & Derakshan, N. (2005). Trait anxiety, visuospatial processing, and working memory. Cognition & Emotion, 19: 12141228.Google Scholar
Fabiani, M. (2015). The embodied brain. Psychophysiology, 52: 15.Google Scholar
Fenton, A. A. (2015). Excitation-inhibition discoordination in rodent models of mental disorders. Biological Psychiatry, 77: 10791088.Google Scholar
Figee, M., Vink, M., de Geus, F., Vulink, N., Veltman, D. J., Westenberg, H., & Denys, D. (2011). Dysfunctional reward circuitry in obsessive-compulsive disorder. Biological Psychiatry, 69: 867874.Google Scholar
Fleiss, J. L. & Tanur, J. M. (1973). The analysis of covariance in psychopathology. In Hammer, M., Salzinger, K., & Sutton, S. (eds.), Psychopathology: Contributions from the Social, Behavioral, and Biological Sciences (pp. 509527). New York: John Wiley.Google Scholar
Forbes, E. E., Hariri, A. R., Martin, S. L., Silk, J. S., Moyles, D. L., Fisher, P. M., … & Dahl, R. E. (2009). Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. American Journal of Psychiatry, 166: 6473.Google Scholar
Forbes, E. E., May, J. C., Siegle, G. J., Ladouceur, C. D., Ryan, N. D., Carter, C. S., … & Dahl, R. E. (2006). Reward-related decision-making in pediatric major depressive disorder: an fMRI study. Journal of Child Psychology and Psychiatry, 47: 10311040.Google Scholar
Foti, D. & Hajcak, G. (2009). Depression and reduced sensitivity to non-rewards versus rewards: evidence from event-related potentials. Biological Psychology, 81: 18.Google Scholar
Frances, A. (2013). Saving Normal: An Insider’s Revolt against Out-of-Control Psychiatric Diagnosis, DSM-5, Big Pharma, and the Medicalization of Ordinary Life. New York: HarperCollins.Google Scholar
Friedman, T., Sehatpour, P., Dias, E., Perrin, M., & Javitt, D. C. (2012). Differential relationships of mismatch negativity and visual P1 deficits to premorbid characteristics and functional outcome in schizophrenia. Biological Psychiatry, 71: 521529.Google Scholar
Goeleven, E., De Raedt, R., Baert, S., & Koster, E. H. W. (2006). Deficient inhibition of emotional information in depression. Journal of Affective Disorders, 93: 149157.Google Scholar
Gold, J. M., Barch, D. M., Carter, C. S., Dakin, S., Luck, S. J., Macdonald, A. W. III, … & Strauss, M. (2012). Clinical, functional, and intertask correlations of measures developed by the Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia Consortium. Schizophrenia Bulletin, 38: 144152.Google Scholar
Gotlib, I. H., Hamilton, J. P., Cooney, R. E., Singh, M. K., Henry, M. L., & Joormann, J. (2010). Neural processing of reward and loss in girls at risk for major depression. Archives of General Psychiatry, 67: 380387.Google Scholar
Gotlib, I. H. & Joormann, J. (2010). Cognition and depression: current status and future directions. Annual Review of Clinical Psychology, 6: 285312.Google Scholar
Grimm, O., Heinz, A., Walter, H., Kirsch, P., Erik, S., Haddad, L., … & Meyer-Lindenberg, A. (2014). Striatal response to reward anticipation: evidence for a systems-level intermediate phenotype for schizophrenia. JAMA Psychiatry, 71: 531539.Google Scholar
Guyer, A. E., Choate, V. R., Detloff, A., Benson, B., Nelson, E. E., Perez-Edgar, K., … & Ernst, M. (2012). Striatal functional alteration during incentive anticipation in pediatric anxiety disorders. American Journal of Psychiatry, 169: 205212.Google Scholar
Guyer, A. E., Nelson, E. E., Perez-Edgar, K., Hardin, M. G., Roberson-Nay, R., Monk, C. S., … & Ernst, M. (2006). Striatal functional alteration in adolescents characterized by early childhood behavioral inhibition. Journal of Neuroscience, 26: 63996405.Google Scholar
Hamilton, H. K., Sun, J. C., Green, M. F., Kee, K. S., Lee, J., Sergi, M., … & Yee, C.M. (2014). Social cognition and functional outcome in schizophrenia: the moderating role of cardiac vagal tone. Journal of Abnormal Psychology, 123: 764770.Google Scholar
Hanlon, F. M., Houck, J. M., Pyeatt, C. J., Lundy, L. S., Euler, M. J., Weisend, M. P., … & Tesche, C. D. (2011). Bilateral hippocampal dysfunction in schizophrenia. NeuroImage, 58: 11581168.Google Scholar
Haut, K. M., van Erp, T. G., Knowlton, B., Bearden, C. E., Subotnik, K., Ventura, J., … & Cannon, T. D. (2015). Contributions of feature binding during encoding and functional connectivity of the medial temporal lobe structures to episodic memory deficits across the prodromal and first-episode phases of schizophrenia. Clinical Psychological Science, 3: 159174.Google Scholar
Hazlett, H., Dawson, M. E., Schell, A. M., & Nuechterlein, K. H. (1997). Electrodermal activity as a prodromal sign in schizophrenia. Biological Psychiatry, 41: 111113.Google Scholar
Heller, W., Koven, N. S., & Miller, G. A. (2003). Regional brain activity in anxiety and depression, cognition/emotion interaction, and emotion regulation. In Hugdahl, K. & Davidson, R. J. (eds.), The Asymmetrical Brain (pp. 533564). Cambridge, MA: MIT Press.Google Scholar
Heller, W., Nitschke, J. B., Etienne, M. A., & Miller, G. A. (1997). Patterns of regional brain activity differentiate types of anxiety. Journal of Abnormal Psychology, 106: 376385.Google Scholar
Hempel, R. J., Tulen, J. H., van Beveren, N. J., van Steenis, H. G., Mulder, P. G., & Hengeveld, M. W. (2005). Physiological responsivity to emotional pictures in schizophrenia. Journal of Psychiatric Research, 39: 509518.Google Scholar
Herrington, J. D., Koven, N., Heller, W., Miller, G. A., & Nitschke, J. B. (2009). Frontal asymmetry in emotion, motivation, personality and psychopathology: Electrocortical and hemodynamic neuroimaging. In Wood, S. J., Allen, N., & Pantelis, C. (eds.), The Neuropsychology of Mental Illness (pp. 4966). Cambridge University Press.Google Scholar
Horan, W. P., Foti, D., Hajcak, G., Wynn, J. K., & Green, M. F. (2012). Intact motivated attention in schizophrenia: evidence from event-related potentials. Schizophrenia Research, 135: 9599.Google Scholar
Horan, W. P., Wynn, J. K., Kring, A. M., Simons, R. F., & Green, M. F. (2010). Electrophysiological correlates of emotional responding in schizophrenia. Journal of Abnormal Psychology, 119: 1830.Google Scholar
Hyman, S. E. (2010). The diagnosis of mental disorders: the problem of reification. Annual Review of Clinical Psychology, 69: 155179.Google Scholar
Insel, T. R. & Cuthbert, B. N. (2015). Brain disorders? Precisely. Science, 348: 499500.Google Scholar
Javitt, D. C., Spencer, K. M., Thaker, G. K., Winterer, G., & Hajos, M. (2008). Neurophysiological biomarkers for drug development in schizophrenia. Nature Reviews Drug Discovery, 7: 6883.Google Scholar
Jeon, Y. W. & Polich, J. (2003). Meta-analysis of P300 and schizophrenia: patients, paradigms, and practical implications. Psychophysiology, 40: 684701.Google Scholar
Johnson, D. R. (2009). Emotional attention set-shifting and its relationship to anxiety and emotion regulation. Emotion, 9: 681690.Google Scholar
Joormann, J. (2010). Cognitive inhibition and emotion regulation in depression. Current Directions in Psychological Science, 19: 161166.Google Scholar
Kappenman, E. S., Kaiser, S. T., Robinson, B. M., Morris, S. E., Hahn, B., Beck, V. M., … & Luck, S. J. (2012). Response activation impairments in schizophrenia: evidence from the lateralized readiness potential. Psychophysiology, 49: 7384.Google Scholar
Kappenman, E. S. & Luck, S. J. (2010). The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology, 47: 888904.Google Scholar
Keil, A., Debener, S., Gratton, G., Junghöfer, M., Kappenman, E. S., Luck, S. J., … & Yee, C. M. (2014). Committee report. Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51: 121.Google Scholar
Keller, J., Hicks, B. D., & Miller, G. A. (2000). Psychophysiology in the study of psychopathology. In Tassinary, L. G., Cacioppo, J. T., & Berntson, G. G. (eds.), Handbook of Psychophysiology, 2nd edn. (pp. 719750). Cambridge University Press.Google Scholar
Knutson, B., Bhanji, J. P., Cooney, R. E., Atlas, L. Y., & Gotlib, I. H. (2008). Neural responses to monetary incentives in major depression. Biological Psychiatry, 63: 686692.Google Scholar
Koster, E. H. W., Fox, E., & MacLeod, C. (2009). Introduction to the special section on cognitive bias modification in emotional disorders. Journal of Abnormal Psychology, 118: 14.Google Scholar
Kozak, M. J. & Cuthbert, B. N. (2016). The NIMH Research Domain Criteria initiative: background, issues, and pragmatics. Psychophysiology, 53: 286297.Google Scholar
Kozak, M. J. & Miller, G. A. (1982). Hypothetical constructs versus intervening variables: a re-appraisal of the three-systems model of anxiety assessment. Behavioral Assessment, 14: 347358.Google Scholar
Kring, A. M., Germans Gard, M., & Gard, D. E. (2011). Emotion deficits in schizophrenia: timing matters. Journal of Abnormal Psychology, 120: 7987.Google Scholar
Kujawa, A., Proudfit, G. H., & Klein, D. N. (2014). Neural reactivity to rewards and losses in offspring of mothers and fathers with histories of depressive and anxiety disorders. Journal of Abnormal Psychology, 123: 287297.Google Scholar
Landis, C. (1932). Electrical phenomena of the skin. Psychological Bulletin, 29: 693752.Google Scholar
Lang, P. J. (1968). Fear reduction and fear behavior: problems in treating a construct. In Shlien, J. M. (ed.), Research in Psychotherapy, Volume 3 (pp. 90102). Washington, DC: American Psychological Association.Google Scholar
Lang, P. J. (1978). Anxiety: toward a psychophysiological definition. In Akiskal, H. S. & Webb, W. L. (eds.), Psychiatric Diagnosis: Exploration of Biological Criteria (pp. 265389). New York: Spectrum.Google Scholar
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1990). Emotion, attention, and the startle reflex. Psychological Review, 97: 377395.Google Scholar
Lang, P. J. & Buss, A. H. (1968). Psychological deficit in schizophrenia: II. Interference and activation. In Holmes, D. S. (ed.), Reviews of Research in Behavior Pathology (pp. 400452). New York: John Wiley.Google Scholar
Letkiewicz, A. M., Miller, G. A., Crocker, L. D., Warren, S. L., Infantolino, Z. P., Mimnaugh, K. J., & Heller, W. (2014). Executive function deficits in daily life prospectively predict increases in depressive symptoms. Cognitive Therapy and Research, 38: 612620Google Scholar
Levin, R. L., Heller, W., Mohanty, A., Herrington, J. D., & Miller, G. A. (2007). Cognitive deficits in depression and functional specificity of regional brain activity. Cognitive Therapy and Research, 31: 211233.Google Scholar
Lilienfeld, S. O. (2007). Cognitive neuroscience and depression: legitimate versus illegitimate reductionism and five challenges. Cognitive Therapy and Research, 31: 263272.Google Scholar
Lilienfeld, S. O. (2014). The Research Domain Criteria (RDoC): an analysis of methodological and conceptual challenges. Behaviour Research and Therapy, 62: 129139.Google Scholar
Liu, W. H., Wang, L. Z., Shang, H. R., Shen, Y., Li, Z., Cheung, E. F., & Chan, R. C. (2014). The influence of anhedonia on feedback negativity in major depressive disorder. Neuropsychologia, 53: 213220.Google Scholar
Luck, S. J., Fuller, R. L., Braun, E. L., Robinson, B., Summerfelt, A., & Gold, J. M. (2006). The speed of visual attention in schizophrenia: electrophysiological and behavioral evidence. Schizophrenia Research, 85: 174195.Google Scholar
Luck, S. J., Mathalon, D. H., O’Donnell, B. F., Hämäläinen, M. S., Spencer, K. M., Javitt, D. C., & Uhlhaas, P. J. (2011). A roadmap for the development and validation of event-related potential biomarkers in schizophrenia research. Biological Psychiatry, 70: 2834.Google Scholar
Malmo, R. B. & Shagass, C. (1949). Physiological studies of reaction to stress in anxiety states and early schizophrenia. Psychosomatic Medicine, 11: 924.Google Scholar
Malmo, R. B. & Shagass, C. (1952). Studies of blood pressure in psychiatric patients under stress. Psychosomatic Medicine, 14: 8293.Google Scholar
Martinez, A., Hillyard, S. A., Dias, E. C., Hagler, D. J. Jr., Butler, P. D., Guilfoyle, D. N., … & Javitt, D. C. (2008). Magnocellular pathway impairment in schizophrenia: evidence from functional magnetic resonance imaging. Journal of Neuroscience, 28: 74927500.Google Scholar
Mathews, A. & MacLeod, C. (1994). Cognitive approaches to emotion and emotional disorders. Annual Review of Psychology, 45: 2550.Google Scholar
Mathews, A. & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annual Review of Clinical Psychology, 1: 167195.Google Scholar
McCabe, C., Cowen, P. J., & Harmer, C. J. (2009). Neural representation of reward in recovered depressed patients. Psychopharmacology, 205: 667677.Google Scholar
Meehl, P. E. (1971). High school yearbooks: a reply to Schwartz. Journal of Abnormal Psychology, 77: 143148.Google Scholar
Miller, G. A. (ed.) (1995). The Behavioral High-Risk Paradigm in Psychopathology. New York: Springer-Verlag.Google Scholar
Miller, G. A. (1996). Presidential address. How we think about cognition, emotion, and biology in psychopathology. Psychophysiology, 33: 615628.Google Scholar
Miller, G. A. (2000). Editorial. Psychophysiology, 37: 14.Google Scholar
Miller, G. A. (2010). Mistreating psychology in the decades of the brain. Perspectives on Psychological Science, 5: 716743.Google Scholar
Miller, G. A. & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110: 4048.Google Scholar
Miller, G. A., Crocker, L. D., Spielberg, J. M., Infantolino, Z. P, & Heller, W. (2013). Issues in localization of brain function: the case of lateralized frontal cortex in cognition, emotion, and psychopathology. Frontiers in Integrative Neuroscience, 7: 19.Google Scholar
Miller, G. A., Elbert, T., Sutton, B. P., & Heller, W. (2007a). Innovative clinical assessment technologies: challenges and opportunities in neuroimaging. Psychological Assessment, 19: 5873.Google Scholar
Miller, G. A., Engels, A. S., & Herrington, J. D. (2007b). The seduction of clinical science: challenges in psychological and biological convergence. In Treat, T. A., Bootzin, R. R., & Baker, T. B. (eds.), Psychological Clinical Science: Papers in Honor of Richard McFall (pp. 5374). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Miller, G. A. & Kozak, M. J. (1993). Three-system assessment and the construct of emotion. In Birbaumer, N. & Öhman, A. (eds.), The Structure of Emotion: Psychophysiological, Cognitive and Clinical Aspects (pp. 3147). Seattle: Hogrefe & Huber Publishers.Google Scholar
Miller, G. A., & Rockstroh, B. (2013). Endophenotypes in psychopathology research: where do we stand? Annual Review of Clinical Psychology, 9: 177213.Google Scholar
Miller, M. B., Chapman, J. P., Chapman, L. J., & Collins, J. (1995). Task difficulty and cognitive deficits in schizophrenia. Journal of Abnormal Psychology, 104: 251258.Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognitive Psychology, 41: 49100.Google Scholar
Monk, C. S., Klein, R. G., Telzer, E. H., Schroth, E. A., Mannuzza, S., Moulton, J. L. III, … & Ernst, M. (2008). Amygdala and nucleus accumbens activation to emotional facial expressions in children and adolescents at risk for major depression. American Journal of Psychiatry, 165: 9098.Google Scholar
Moran, Z. D., Williams, T. J., Bachman, P., Nuechterlein, K. H., Subotnik, K., & Yee, C. M. (2012). Spectral decomposition of P50 suppression in schizophrenia during concurrent visual processing. Schizophrenia Research, 140: 237242.Google Scholar
Morris, R. W., Vercammen, A., Lenroot, R., Moore, L., Langton, J. M., Short, B., … & Weickert, W. (2012). Disambiguating ventral striatum fMRI-related bold signal during reward prediction in schizophrenia. Molecular Psychiatry, 17: 280289.Google Scholar
Moser, J. S., Moran, T. P., & Jendrusina, A. A. (2012). Parsing relationships between dimensions of anxiety and action monitoring brain potentials in female undergraduates. Psychophysiology, 49: 310.Google Scholar
Moser, J. S., Moran, T. P., Schroder, H. S., Donnellan, M. B., & Yeung, N. (2013). On the relationship between anxiety and error monitoring: a meta-analysis and conceptual framework. Frontiers in Human Neuroscience, 7: 466.Google Scholar
Nielsen, M. O., Rostrup, E., Wulff, S., Bak, N., Lublin, H., Kapur, S., & Glenthøj, B. (2012). Alterations of the brain reward system in antipsychotic naïve schizophrenia patients. Biological Psychiatry, 71: 898905.Google Scholar
Nitschke, J. B., Heller, W., Palmieri, P. A., & Miller, G. A. (1999). Contrasting patterns of brain activity in anxious apprehension and anxious arousal. Psychophysiology, 36: 628637.Google Scholar
Olino, T. M., McMakin, D. L., Dahl, R. E., Ryan, N. D., Silk, J. S., Birmaher, B., … & Forbes, E. E. (2011). “I won, but I’m not getting my hopes up”: depression moderates the relationship of outcomes and reward anticipation. Psychiatry Research, 194: 393395.Google Scholar
Olvet, D. M. & Hajcak, G. (2008). The error-related negativity (ERN) and psychopathology: toward an endophenotype. Clinical Psychology Review, 28: 13431354Google Scholar
Pimia, T., Woods, R. P., Hamilton, L. S., Lyden, H., Joshi, S. H., Asarnow, R. F., … & Narr, K. L. (2015). Hippocampal dysfunction during declarative memory encoding in schizophrenia and effects of genetic liability. Schizophrenia Research, 161: 357366.Google Scholar
Pizzagalli, D. A., Holmes, A. J., Dillon, D. G., Goetz, E. L., Birk, J. L., Ryan Bogdan, A. M., … & Fava, M. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. American Journal of Psychiatry, 166: 702710.Google Scholar
Popov, T. G., Carolus, A., Schubring, D., Popova, P., Miller, G. A., & Rockstroh, B. S. (2015). Targeted training modifies oscillatory brain activity in schizophrenia patients. NeuroImage: Clinical, 7: 807814.Google Scholar
Popov, T., Jordanov, T., Rockstroh, B., Elbert, T., Merzenich, M. M., & Miller, G. A. (2011a). Specific cognitive training normalizes auditory sensory gating in schizophrenia: a randomized trial. Biological Psychiatry, 69: 465471.Google Scholar
Popov, T., Jordanov, T., Weisz, N., Elbert, T., Rockstroh, B., & Miller, G. A. (2011b). Evoked and induced oscillatory activity contributes to abnormal auditory sensory gating in schizophrenia. NeuroImage, 56: 307314.Google Scholar
Popov, T., Miller, G. A., Rockstroh, B., & Weisz, N. (2013). Modulation of alpha power and functional connectivity during facial affect recognition. Journal of Neuroscience, 33: 60186026.Google Scholar
Ragland, J. D., Laird, A. R., Ranganath, C., Blumenfeld, R. S., Gonzales, S. M., & Glahn, D. C. (2009). Prefrontal activation deficits during episodic memory in schizophrenia. American Journal of Psychiatry, 166: 863874.Google Scholar
Rasetti, R., Mattay, V. S., White, M. G., Sambataro, F., Podell, J. E., Zoltick, B., … & Weinberger, D. R. (2014). Altered hippocampal-parahippocampal function during stimulus encoding: a potential indicator of genetic liability for schizophrenia. JAMA Psychiatry, 71: 236247.Google Scholar
Salmelin, R. & Hari, R. (1994). Characterization of spontaneous MEG rhythms in healthy adults. Electroencephalograhy and Clinical Neurophysiology, 91: 237248.Google Scholar
Sanislow, C. A., Pine, D. S., Quinn, K. J., Kozak, M. J., Garvey, M. A., Heinssen, R. K., … & Cuthbert, B. N. (2010). Developing constructs for psychopathology research: Research Domain Criteria. Journal of Abnormal Psychology, 119: 631639.Google Scholar
Sass, S. M., Heller, W., Stewart, J. L., Silton, R. L., Edgar, C., Fisher, J. E., & Miller, G. A. (2010). Time course of attentional bias to threat in anxiety: emotion and gender specificity. Psychophysiology, 47: 247259.Google Scholar
Schaefer, H. S., Putnam, K. M., Benca, R. M., & Davidson, R. J. (2006). Event-related functional magnetic resonance imaging measures of neural activity to positive social stimuli in pre- and post-treatment depression. Biological Psychiatry, 60: 974986.Google Scholar
Sharp, P. B., Miller, G. A., & Heller, W. (2015). Transdiagnostic dimensions of anxiety: neural mechanisms, executive functions, and new directions. International Journal of Psychophysiology, 98: 365377.Google Scholar
Shvil, E., Rusch, H. L., Sullivan, G. M., & Neria, Y. (2013). Neural, psychophysiological, and behavioral markers of fear processing in PTSD: a review of the literature. Current Psychiatry Reports, 15: 110.Google Scholar
Silton, R. L., Heller, W., Towers, D. N., Engels, A. S., Edgar, J. C., Spielberg, J. M., … & Miller, G. A. (2011). Depression and anxious apprehension distinguish frontocingulate cortical activity during top-down attentional control. Journal of Abnormal Psychology, 120: 272285.Google Scholar
Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychological Bulletin, 139: 81132.Google Scholar
Snyder, H. R., Miyake, A., & Hankin, B. L. (2015). Advancing understanding of executive function impairments and psychopathology: bridging the gap between clinical and cognitive approaches. Frontiers in Psychology, 6: 328.Google Scholar
Somerville, L. H., Wagner, D. D., Wig, G. S., Moran, J. M., Whalen, P. J., & Kelley, W. M. (2012). Interactions between transient and sustained neural signals support the generation and regulation of anxious emotion. Cerebral Cortex, 23: 4960.Google Scholar
Spielberg, J. M., De Leon, A. A., Bredemeier, K., Heller, W., Engels, A. S., Warren, S. L., … & Miller, G. A. (2013). Anxiety type modulates immediate vs. delayed engagement of attention-related brain regions. Brain and Behavior, 3: 532551.Google Scholar
Spielberg, J. M., Heller, W., Silton, R. L., Stewart, J. L., & Miller, G. A. (2011). Approach and avoidance profiles distinguish dimensions of anxiety and depression. Cognitive Therapy and Research, 35: 359371.Google Scholar
Spielberg, J. M., Miller, G. A., Warren, S. L., Engels, A. S., Crocker, L. D., Banich, M. T., … & Heller, W. (2012). A brain network instantiating approach and avoidance motivation. Psychophysiology, 49: 12001214.Google Scholar
Spielberg, J. M., Stewart, J. L., Levin, R. L., Miller, G. A., & Heller, W. (2008). Prefrontal cortex, emotion, and approach/withdrawal motivation. Social and Personality Psychology Compass, 2: 135153.Google Scholar
Spitzer, R. L. (2009). DSM-V transparency: fact or rhetoric? Psychiatric Times, March 6, 2009. Retrieved June 6, 2015 from http://www.psychiatrictimes.com/articles/dsm-v-transparency-fact-or-rhetoricGoogle Scholar
Stein, M. B. & Paulus, M. P. (2009). Imbalance of approach and avoidance: the yin and yang of anxiety disorders. Biological Psychiatry, 66: 10721074.Google Scholar
Stern, J. A. (1964). Toward a definition of psychophysiology. Psychophysiology, 1: 9091.Google Scholar
Stoy, M., Schlagenhauf, F., Sterzer, P., Bermpohl, F., Hägele, C., Suchotzki, K., … & Ströhle, A. (2012). Hyporeactivity of ventral striatum towards incentive stimuli in unmedicated depressed patients normalizes after treatment with escitalopram. Journal of Psychopharmacology, 26: 677688.Google Scholar
Taylor, S. F., Kang, J., Brege, I. S., Tso, I. F., Hosanagar, A., & Johnson, T. D. (2012). Meta-analysis of functional neuroimaging studies of emotion perception and experience in schizophrenia. Biological Psychiatry, 71: 136145.Google Scholar
Taylor, S. F., Phan, K. L., Britton, J. C., & Liberzon, I. (2005). Neural response to emotional salience in schizophrenia. Neuropsychopharmacology, 30: 984995.Google Scholar
Tierney, A. L., Gabard-Durnam, L., Vogel-Farley, V., Tager-Flusberg, H., & Nelson, C. A. (2012). Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder. PLoS One, 7: e39127.Google Scholar
Tong, F. & Pratte, M. S. (2012). Decoding patterns of human brain activity. Annual Review of Psychology, 63: 483509.Google Scholar
Ursu, S., Kring, A. M., Gard, M. G., Minzenberg, M. J., Yoon, J. H., & Ragland, J. D., … & Carter, C. S. (2011). Prefrontal cortical deficits and impaired cognition–emotion interactions in schizophrenia. American Journal of Psychiatry, 168: 276285.Google Scholar
Verona, E. & Miller, G. A. (2015). Analysis of covariance. In Cautin, R. L. & Lilienfeld, S. O. (eds.), The Encyclopedia of Clinical Psychology (pp. 16). New York: John Wiley.Google Scholar
Volz, M., Hamm, A. O., Kirsch, P., & Rey, E. R. (2003). Temporal course of emotional startle modulation in schizophrenia patients. International Journal of Psychophysiology, 49: 123137.Google Scholar
Waltz, J. A., Schweitzer, J. B., Ross, T. J., Kurup, P. K., Salmeron, B. J., Rose, E. J., … & Stein, E. A. (2010). Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia. Neuropsychopharmacology, 35: 24272439.Google Scholar
Warren, S. L., Crocker, L. D., Spielberg, J. M., Engels, A. S., Banich, M. T., Sutton, B. P., … & Heller, W. (2013). Cortical organization of inhibition-related functions and modulation by psychopathology. Frontiers in Human Neuroscience, 7: 271.Google Scholar
Whitfield-Gabrieli, S. & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annual Review of Clinical Psychology, 8: 4976.Google Scholar
Williams, T. J., Nuechterlein, K. H., Subotnik, K. L., & Yee, C. M. (2011). Distinct neural generators of sensory gating in schizophrenia. Psychophysiology, 48: 470478.Google Scholar
Woodward, N. D., Waldie, B., Rogers, B., Tibbo, P., Seres, P., & Purdon, S. E. (2009). Abnormal prefrontal cortical activity and connectivity during response selection in first episode psychosis, chronic schizophrenia, and unaffected siblings of individuals with schizophrenia. Schizophrenia Research, 109: 182190.Google Scholar
Yee, C. M., Mathis, K. I., Sun, J. C., Sholty, G. L., Lang, P. J., Bachman, P., … & Nuechterlein, K. H. (2010a). Integrity of emotional and motivational states during the prodromal, first-episode and chronic phases of schizophrenia. Journal of Abnormal Psychology, 119: 7182.Google Scholar
Yee, C. M., Sholty, G. L., Sun, J. C., Mathis, K. I., Williams, T. J., Bachman, P., … & Nuechterlein, K. H. (2015). Elevated cortisol as a predictor of clinical state across the prodromal, first-episode, and chronic phases of schizophrenia. (Manuscript in preparation.)Google Scholar
Yee, C. M., Williams, T. J., White, P. M., Nuechterlein, K. H., Ames, D., & Subotnik, K. L. (2010b). Attentional modulation of the P50 suppression deficit in recent-onset and chronic schizophrenia. Journal of Abnormal Psychology, 119: 3139.Google Scholar

References

American Polygraph Association (2011). Meta-analytic survey of criterion accuracy of validated polygraph techniques. Polygraph, 40: 194305.Google Scholar
Bennett, C. M. & Miller, M. B. (2010). How reliable are the results from functional magnetic resonance imaging? Annals of the New York Academy of Sciences of the USA, 1191: 133155.Google Scholar
Ben-Shakhar, G. (2002). A critical review of the control questions test (CQT). In Kleiner, M. (ed.), Handbook of Polygraph Testing (pp. 103126). San Diego, CA: Academic Press.Google Scholar
Ben-Shakhar, G. (2008). The case against the use of polygraph examinations to monitor post-conviction sex offenders. Legal and Criminological Psychology, 13: 191207.Google Scholar
Ben-Shakhar, G. (2011). Countermeasurs. In Verscheure, B., Ben-Shakhar, G., & Meijer, E. (eds.), Memory Detection: Theory and Application of the Concealed Information Test (pp. 200214). Cambridge University Press.Google Scholar
Ben-Shakhar, G. (2012). Current research and potential applications of the concealed information test: an overview. Frontiers in Psychology, 3: 342.Google Scholar
Ben-Shakhar, G. & Elaad, E. (2003). The validity of psychophysiological detection of information with the Guilty Knowledge Test: a meta-analytic review. Journal of Applied Psychology, 88: 131151.Google Scholar
Ben-Shakhar, G. & Kremnitzer, M. (2011). The concealed information test in the courtroom: legal aspects. In Verschuere, B., Ben-Shakhar, G., & Meijer, E. (eds.), Memory Detection: Theory and Application of the Concealed Information Test (pp. 276290). Cambridge University Press.Google Scholar
Bowman, H., Filetti, M., Alsufyani, A., Janssen, D., & Su, L. (2014). Countering countermeasures: detecting identity lies by detecting conscious breakthrough. PLoS One, 9: e90595.Google Scholar
Carmel, D., Dayan, E., Naveh, A., Raveh, O., & Ben-Shakhar, G. (2003). Estimating the validity of the guilty knowledge test from simulated experiments: the external validity of mock crime studies. Journal of Experimental Psychology: Applied, 9: 261269.Google Scholar
Christ, S. E., Van Essen, D. C., Watson, J. M., Brubaker, L. E., & McDermott, K. B. (2009). The contributions of prefrontal cortex and executive control to deception: evidence from activation likelihood estimate meta-analyses. Cerebral Cortex, 19: 15571566.Google Scholar
Christianson, S. A. (2007). Offenders’ Memories of Violent Crimes. Chichester: John Wiley.Google Scholar
Daubert v. Merrell Dow Pharmaceuticals (1993). 113 C.Ct. 2786.Google Scholar
Elaad, E. (1990). Detection of guilty knowledge in real-life criminal investigation. Journal of Applied Psychology, 75: 521529.Google Scholar
Elaad, E. & Ben-Shakhar, G. (2009). Countering countermeasures in the concealed information test using covert respiration measures. Applied Psychophysiology and Biofeedback, 34: 197208.Google Scholar
Elaad, E., Ginton, A., & Jungman, N. (1992). Detection measures in real-life criminal guilty knowledge tests. Journal of Applied Psychology, 77: 757767.Google Scholar
Faigman, D. L., Blumenthal, J. A., Cheng, E. K., Mnookin, J. L., Murphy, E. E., & Sanders, J. (2014). Modern Scientific Evidence: The Law and Science of Expert Testimony. Eagen, MN: Thomson Reuters.Google Scholar
Farah, M. J., Hutchinson, J. B., Phelps, E. A., & Wagner, A. D. (2014). Functional MRI-based lie detection: scientific and societal challenges. Nature Reviews Neuroscience, 15: 123131.Google Scholar
Farwell, L. A. (2012). Brain fingerprinting: a comprehensive tutorial review of detection of concealed information with event-related brain potentials. Cognitive Neurodynamics, 6: 115154.Google Scholar
Farwell, L. A. & Richardson, D. C. (2013). Brain fingerprinting: let’s focus on the science – a reply to Meijer, Ben-Shakhar, Verschuere, and Donchin. Cognitive Neurodynamics, 7: 159166.Google Scholar
Farwell, L. A., Richardson, D. C., & Richardson, G. (2011). Brain fingerprinting field studies comparing P300-MERMER and P300 ERPs in the detection of concealed information. Psychophysiology, 48: S95S96.Google Scholar
Farwell, L. A., Richardson, D. C., Richardson, G. M., & Furedy, J. J. (2014). Brain fingerprinting classification concealed information test detects US Navy military medical information with P300. Frontiers in Neuroscience, 8: 410.Google Scholar
Fiedler, K., Schmod, J., & Stahl, T. (2002). What is the current truth about polygraph lie detection? Basic & Applied Social Psychology, 24: 313324.Google Scholar
Frye v. United States (1924). 293 F.1013.Google Scholar
Gamer, M. (2011). Detecting of deception and concealed information using neuroimaging techniques. In Verschuere, B., Ben-Shakhar, G., & Meijer, E. (eds.), Theory and Application of the Concealed Information Test (pp. 90113). Cambridge University Press.Google Scholar
Gamer, M. (2014). Mind reading using neuroimaging: is this the future of deception detection? European Psychologist, 19: 172183.Google Scholar
Gamer, M. & Ambach, W. (2014). Deception research today. Frontiers in Psychology, 5: 256.Google Scholar
Granhag, P. A., Vrij, A., & Verschuere, B. (2015). Detecting Deception: Current Challenges and Cognitive Approaches. Malden, MA: John Wiley.Google Scholar
Harrington v. Iowa (1997). 109 F. 3d 1275 – Court of Appeals, 8th Circuit C.F.R.Google Scholar
Honts, C. R. (1996). Criterion development and validity of the CQT in field application. Journal of General Psychology, 123: 309324.Google Scholar
Honts, C. R. (2004). The psychophysiological detection of deception. In Granhag, P. A. & Stromwall, L. A. (eds.), The Detection of Deception in Forensic Contexts (pp. 103123). Cambridge University press.Google Scholar
Honts, C. R. (2014). Countermeasures and credibility assessment. In Raskin, D. C., Honts, C. R., & Kircher, J. C. (eds.), Credibility Assessment: Scientific Research and Applications (pp. 131158). Oxford: Academic Press.Google Scholar
Honts, C. R. & Alloway, W. R. (2007). Information does not affect the validity of a comparison question test. Legal & Criminal Psychology, 12: 311320.Google Scholar
Honts, C. R., Hodes, R. L., & Raskin, D. C. (1985). Effects of physical countermeasures on the physiological detection of deception. Journal of Applied Psychology, 70: 177187.Google Scholar
Honts, C. R., Raskin, D., & Kircher, J. (1994). Mental and physical countermeasures reduce the accuracy of polygraph tests. Journal of Applied Psychology, 79: 252259.Google Scholar
Honts, C. R., Raskin, D. C., & Kircher, J. C. (2009). The case for polygraph tests. In Faigman, D. L., Saks, M. J., Sanders, J., & Cheng, E. K. (eds.), Modern Scientific Evidence: The Law and Science of Expert Testimony, vol. 5 (pp. 297341). Eagan, MN: Thomson Reuters/West.Google Scholar
Iacono, W. G. (1985). Guilty knowledge. Society, 22: 5254.Google Scholar
Iacono, W. G. (1991). Can we determine the accuracy of polygraph tests? In Jennings, J. R., Ackles, P. K., & Coles, M. G. H. (eds.), Advances in Psychophysiology (pp. 201207). London: Jessica Kingsley.Google Scholar
Iacono, W. G. (2000). The detection of deception. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. (eds.), Handbook of Psychophysiology, 2nd edn. (pp. 772793). Cambridge University Press.Google Scholar
Iacono, W. G. (2007). Detection of deception. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (eds.), Handbook of Psychophysiology, 3rd edn. (pp. 688703). Cambridge University Press.Google Scholar
Iacono, W. G. (2008a). Accuracy of polygraph techniques: problems using confessions to determine ground truth. Physiology & Behavior, 95: 2426.Google Scholar
Iacono, W. G. (2008b). Effective policing: understanding how polygraph tests work and are used. Criminal Justice & Behavior, 35: 12951308.Google Scholar
Iacono, W. G. (2008c). The forensic application of “brain fingerprinting”: why scientists should encourage the use of P300 memory detection methods. American Journal of Bioethics, 8: 3032.Google Scholar
Iacono, W. G. (2009). Psychophysiological detection of deception and guilty knowledge. In Skeem, J. L., Douglas, K. S., & Lilienfeld, S. O. (eds.), Psychological Science in the Courtroom: Controversies and Consensus (pp. 224241). New York: Guilford Press.Google Scholar
Iacono, W. G. (2011). Encourgaing the use of the guilty knowledge test (GKT): what the GKT has to offer law enforcement In Verschuere, B., Ben-Shakhar, G., & Meijer, E. (eds.), Memory Detection: Theory and Application of the Concealed Information Test (pp. 1223). Cambridge University Press.Google Scholar
Iacono, W. G. (2015). Forensic application of event-related brain potentials to detect guilty knowledge. In Granhag, P. A., Vrij, A., & Verschuere, B. (eds.), Detecting Deception: Current Challenges and Cognitive Approaches. London: John Wiley.Google Scholar
Iacono, W. G., Boisvenu, G. A., & Fleming, J. A. (1984). The effects of diazepam and methylphenidate on the electrodermal detection of guilty knowledge. Journal of Applied Psychology, 69: 289299.Google Scholar
Iacono, W. G. & Lykken, D. T. (2009). The case against polygraph tests. In Faigman, D. L., Saks, M. J., Sanders, J., & Cheng, E. K. (eds.), Modern Scientific Evidence: The Law and Science of Expert Testimony, vol. 5 (pp. 342406). Eagan, MN: Thomson Reuters/West.Google Scholar
Iacono, W. G. & Patrick, C. J. (1988). Assessing deception: polygraph techniques. In Rogers, R. (ed.), Clinical Assessment of Malingering and Deception (pp. 205233). New York: Guilford Press.Google Scholar
Iacono, W. G. & Patrick, C. J. (2014). Employing polygraph assessment. In Weiner, I. B. & Otto, R. K. (eds.), The Handbook of Forensic Psychology, 4th edn. (pp. 613658). Hoboken, NJ: John Wiley.Google Scholar
Johnson, R. J. Jr. (2014). The neural basis of deception and credibility assessment: a cognitive neuroscience perspective. In Raskin, D. C., Honts, C. R., & Kircher, J. C. (eds.), Credibility Assessment: Scientific Research and Applications (pp. 217300). Oxford: Academic Press.Google Scholar
Kleinberg, B. & Verschuere, B. (2015). Memory detection 2.0: the first web-based memory detection test. PLoS One, 10: e0118715.Google Scholar
Kleinmuntz, B. & Szucko, J. S. (1984). A field study of the fallibility of polygraphic lie detection. Nature, 308: 449450.Google Scholar
Lykken, D. T. (1959). The GSR in the detection of guilt. Journal of Applied Psychology, 43: 385388.Google Scholar
Lykken, D. T. (1960). The validity of the guilty knowledge technique: the effects of faking. Journal of Applied Psychology, 44: 258262.Google Scholar
Lykken, D. T. (1981). A Tremor in the Blood: Uses and Abuses of the Lie Detector. New York: McGraw-Hill.Google Scholar
Lykken, D. T. (1998). A Tremor in the Blood: Uses and Abuses of the Lie Detector. 2nd edn. New York: Plenum Press.Google Scholar
Mangan, D. J., Armitage, T. E., & Adams, G. C. (2008). A field study on the validity of the quadri-track zone comparison technique. Physiology & Behavior, 95: 1723.Google Scholar
Meijer, E. H., Ben-Shakhar, G., Verschuere, B., & Donchin, E. (2012). A comment on Farwell (2012): Brain fingerprinting: a comprehensive tutorial review of detection of concealed information with event-related brain potentials. Cognitive Neurodynamics, 7: 155158.Google Scholar
Meijer, E. H., Selle, N. K., Elber, L., & Ben-Shakhar, G. (2014). Memory detection with the concealed information test: a meta analysis of skin conductance, respiration, heart rate, and P300 data. Psychophysiology, 51: 879904.Google Scholar
Meijer, E. H., Verschuere, B., Merckelbach, H. L., & Crombez, G. (2008). Sex offender management using the polygraph: a critical review. International Journal of Law and Psychiatry, 31: 423429.Google Scholar
Meixner, J. B., Labkovsky, E., Rosenfeld, J. P., Winograd, M., Sokolovsky, A., Weishaar, J., & Ullmann, T. (2013). P900: a putative novel ERP component that indexes countermeasure use in the P300-based concealed information test. Applied Psychophysiology and Biofeedback, 38: 121132.Google Scholar
Meixner, J. B. & Rosenfeld, J. P. (2014). Detecting knowledge of incidentally acquired, real-world memories using a P300-based concealed-information test. Psychological Science, 25: 19942005.Google Scholar
Monteleone, G. T., Phan, K. L., Nusbaum, H. C., Fitzgerald, D., Irick, J. S., Fienberg, S. E., & Cacioppo, J. T. (2009). Detection of deception using fMRI: better than chance, but well below perfection. Social Neuroscience, 4: 528538.Google Scholar
National Research Council (2003). The Polygraph and Lie Detection. Washington, DC: National Academies Press.Google Scholar
Ogawa, T., Matsuda, I., & Tsuneoka, M. (2015). The comparison question test versus the concealed information test? That was the question in Japan: a comment on Palmatier and Rovner (2015). International Journal of Psychophysiology, 95: 2930.Google Scholar
Oksol, E. M. & O’Donohue, W. T. (2003). A critical analysis of the polygraph. In O’Donohue, W. T. & Levensky, E. R. (eds.), Handbook of Forensic Psychology: Resource for Mental Health and Legal Professionals (pp. 601634). San Diego, CA: Academic Press.Google Scholar
Osugi, A. (2011). Daily application of the concealed information test: Japan. In Verschuere, B., Ben-Shakhar, G., & Meijer, E. (eds.), Memory Detection: Theory and Application of the Concealed Information Test (pp. 253275). Cambridge University Press.Google Scholar
Patrick, C. J. & Iacono, W. G. (1991a). A comparison of field and laboratory polygraphs in the detection of deception. Psychophysiology, 28: 632638.Google Scholar
Patrick, C. J., & Iacono, W. G. (1991b). Validity of the control question polygraph test: The problem of sampling bias. Journal of Applied Psychology, 76: 229238.Google Scholar
Plichta, M. M., Schwarz, A. J., Grimm, O., Morgen, K., Mier, D., Haddad, L., … & Meyer-Lindenberg, A. (2012). Test–retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery. NeuroImage, 60: 17461758.Google Scholar
Podlesny, J. A. (1993). Is the guilty knowledge polygraph technique applicable in criminal investigations? A review of FBI case records. Crime Laboratory Digest, 20: 5761.Google Scholar
Raskin, D. C., Honts, C. R., & Kircher, J. C. (eds.) (2014). Credibility Assessment: Scientific Research and Applications. Oxford: Academic Press.Google Scholar
Raskin, D. C. & Kircher, J. C. (2014). Validity of polygraph techniques and decision methods. In Raskin, D. C., Honts, C. R., & Kircher, J. C. (eds.), Credibility Assessment: Scientific Research and Applications (pp. 65129). San Diego, CA: Academic Press.Google Scholar
Rosenfeld, J. P. (2005). “Brain fingerprinting”: a critical analysis. Scientific Review of Mental Health Practice, 4: 2037.Google Scholar
Rosenfeld, J. P. (2011). P300 in detecting concealed information. In Verschuere, B., Ben-Shakhar, G., & Meijer, E. (eds.), Memory Detection: Theory and Application of the Concealed Information Test (pp. 6389). Cambridge University Press.Google Scholar
Rosenfeld, J. P., Ben-Shakhar, G., & Ganis, G. (2012). Detection of concealed stored memeories with psychophysiological and neuroimaging methods. In Nadal, L. & Sinnott-Armstrong, W. (eds.), Memory and Law (pp. 263303). Oxford University Press.Google Scholar
Rosenfeld, J. P., Hu, X., Labkovsky, E., Meixner, J., & Winograd, M. R. (2013). Review of recent studies and issues regarding the P300-based complex trial protocol for detection of concealed information. International Journal of Psychophysiology, 90: 118134.Google Scholar
Rosenfeld, J. P. & Labkovsky, E. (2010). New P300-based protocol to detect concealed information: resistance to mental countermeasures against only half the irrelevant stimuli and a possible ERP indicator of countermeasures. Psychophysiology, 47: 10021010.Google Scholar
Saxe, L., Dougherty, D., & Cross, T. (1985). The validity of polygraph testing: scientific analysis and public controversy. American Psychologist, 40: 355366.Google Scholar
Shen, F. X. & Jones, O. D. (2011). Brain scans as evidence: truths, proofs, lies, and lessons. Mercer Law Review, 62: 861883.Google Scholar
United States v. Semrau (2012). No. 1:07-cr-10074–1. United States Court of Appeals, 6th Circuit.Google Scholar
Verschuere, B., Ben-Shakhar, G., & Meijer, E. (eds.) (2011). Memory Detection: Theory and Application of the Concealed Information Test. Cambridge University Press.Google Scholar
Verschuere, B., Meijer, E., & Merkelbach, H. (2008). The quadri-track zone comparison technique: it’s just not science. A critique to Mangan, Armitage, and Adams (2008). Physiology & Behavior, 95: 2728.Google Scholar
Vrij, A. (2008). Detecting Lies and Deceit: Pitfalls and Opportunities, 2nd edn. Chichester: John Wiley.Google Scholar
Wilson v. Corestaff Services (2010). WL 1949095 (N.Y. sup. Ct., May 14, 2010).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×