Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T21:37:36.520Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2016

Manfred Stoll
Affiliation:
University of South Carolina
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] M., Abramowitz and I., Stegun. Handbook of Mathematical Functions. Applied Math. Series 55. National Bureau of Standards, 1964.
[2] P., Ahern, J., Bruna, and C., Cascante. Hp-theory for generalized M-harmonic functions on the unit ball. Indiana Univ. Math. J., 45(1):103–135, 1996.Google Scholar
[3] P., Ahern, M., Flores, and W., Rudin. An invariant volume mean value property. J. Funct. Analysis, 111:380–397, 1993.Google Scholar
[4] L., Ahlfors. Möbius Transformations in Several Dimensions. University of Minnesota, School of Mathematics, 1981.
[5] L. V., Ahlfors. Hyperbolic motions. Nagoya Math. J., 29:163–166, 1967.Google Scholar
[6] H., Aikawa. Tangential behavior of Green potentials and contractive properties of Lp-potentials. Tokyo J. Math., 9:223–245, 1986.Google Scholar
[7] J., Arazy and S., Fisher. The uniqueness of the Dirichlet space among Möbius invariant function spaces. Illinois J. Math., 29:449–462, 1985.Google Scholar
[8] D. H., Armitage. On the global integrability of superharmonic functions. J. London Math. Soc., 4:365–373, 1971.Google Scholar
[9] M., Arsove and A., Huber. On the existence of non-tangential limits of subharmonic functions. J. London Math. Soc., 42:125–132, 1967.Google Scholar
[10] S., Axler, P., Bourdon, and W., Ramey. Harmonic Function Theory. Springer- Verlag, New York, NY, 1992.
[11] A. F., Beardon. The Geometry of Discrete Groups. Springer-Verlag, New York, NY, 1983.
[12] A. P., Calderón. Commutators of singular integral operators. Proc. Nat. Acad. Sci. U. S. A., 53:1092–1099, 1965.Google Scholar
[13] I., Chavel. Eigenvalues in Riemannian Geometry. Academic Press, Orlando, FL, 1984.
[14] P., Cifuentis. Hp classes on rank one symmetric spaces of noncompact type. II. Nontangential maximal function and area integral. Bull. Sci. Math., 108:355–371, 1984.Google Scholar
[15] P., Cifuentis. A characterization of H2 classes on rank one symmetric spaces of noncompact type. Proc. Amer. Math. Soc., 106:519–525, 1989.Google Scholar
[16] J. A., Cima and C. S., Stanton. Admissible limits of M-subharmonic functions. Michigan Math. J., 32:211–220, 1985.Google Scholar
[17] O., Djordjević and M., Pavlović. On a Littlewood–Paley type inequality. Proc. Amer. Math. Soc., 135:3607–3611, 2007.Google Scholar
[18] N., Dunford and J. T., Schwartz. Linear Operators Part I. Interscience Publishers, Inc., New York, NY, 1957.
[19] P., Duren. Theory of Hp Spaces. Academic Press, New York, NY, 1970.
[20] A., Erdélyi, editor. Higher Transcendental Functions, Bateman Manuscript Project, volume I. McGraw-Hill, New York, NY, 1953.
[21] C., Fefferman and E., Stein. Hp spaces of several variables. Acta Math, 129: 137–193, 1972.Google Scholar
[22] T. M., Flett. On some theorems of Littlewood and Paley. J. London Math. Soc., 31:336–344, 1956.Google Scholar
[23] T. M., Flett. On the rate of growth of mean values of holomorphic functions. Proc. London Math. Soc., 20:749–768, 1970.Google Scholar
[24] H., Furstenberg. A Poisson formula for semisimple Lie groups. Ann. Math., 77:335–386, 1963.Google Scholar
[25] S. J., Gardiner. Growth properties of potentials in the unit ball. Proc. Amer. Math. Soc., 103:861–869, 1988.Google Scholar
[26] L., Garding and L., Hörmander. Strongly subharmonic functions. Math. Scand., 15:93–96, 1964.Google Scholar
[27] J. B., Garnett. Bounded Analytic Functions. Pure and Applied Mathematics. Academic Press, New York, NY, 1981.
[28] F.W., Gehring. On the radial order of subharmonic functions. J. Math. Soc. Japan, 9:77–79, 1957.Google Scholar
[29] I., Graham. The radial derviative, fractional integrals, and the comparitive growth of means of holomorphic functions on the unit ball in Cn. Annals Math. Studies, 100:171–178, 1981.Google Scholar
[30] M. D., Greenberg. Ordinary Differential Equations. Wiley, Hoboken, NJ, 2014.
[31] S., Grellier and P., Jaming. Harmonic functions on the real hyperbolic ball II. Hardy–Sobolev and Lipschitz spaces. Math. Nachr., 268:50–73, 2004.Google Scholar
[32] K. T., Hahn and D., Singman. Boundary behavior of invariant Green's potentials on the unit ball of Cn. Trans. Amer. Math. Soc., 309:339–354, 1988.Google Scholar
[33] D. J., Hallenbeck. Radial growth of subharmonic functions. Pitman Research Notes, 262:113–121, 1992.Google Scholar
[34] G. H., Hardy and J. E., Littlewood. Some properties of fractional integrals, II. Math. Z., 34:403–439, 1932.Google Scholar
[35] J. H., Hardy and J. E., Littlewood. The strong summability of Fourier series. Fund. Math., 25:162–189, 1935.Google Scholar
[36] H., Hedenmalm, B., Korenblum, and K., Zhu. Theory of Bergman Spaces, volume 199 of Graduate Texts in Mathematics. Springer, New York, NY, 2000.
[37] M., Heins. The minimum modulus of a bounded analytic function. Duke Math. J., 14:179–215, 1947.Google Scholar
[38] S., Helgason. Groups and Geometric Analysis. American Mathematical Society, Providence, RI, 2000.
[39] E., Hewitt and K., Stromberg. Real and Abstract Analysis. Springer-Verlag, New York, NY, 1965.
[40] L., Hörmander. Linear Partial Differential Operators. Springer-Verlag, New York, NY, 1963.
[41] P., Jaming. Trois problémes d'analyse harmonique. PhD thesis, Université d'Orléans, 1998.
[42] P., Jaming. Harmonic functions on the real hyperbolic ball I. Boundary values and atomic decomposition of Hardy spaces. Colloq. Math., 80:63–82, 1999.Google Scholar
[43] P., Jaming. Harmonic functions on classical rank one balls. Boll. Unione Mat. Italia, 8:685–702, 2001.Google Scholar
[44] M., Jevtić. Tangential characterizations of Hardy and mixed-norm spaces of harmonic functions on the real hyperbolic ball. Acta Math. Hungar., 113: 119–131, 2006.Google Scholar
[45] A. W., Knapp. Fatou's theorem for symmetric spaces, I. Ann. Math, 88(2): 106–127, 1968.Google Scholar
[46] A., Koranyi. Harmonic functions on Hermitian hyperbolic space. Trans. Amer. Math. Soc., 135:507–516, 1969.Google Scholar
[47] A., Koranyi. Harmonic functions on symmetric spaces. In W. M., Boothby and G. L., Weiss, editors, Symmetric Spaces, Marcel Dekker, Inc., New York, NY, 1972.
[48] A., Koranyi and R. P., Putz. Local Fatou theorem and area theorem for symmetric spaces of rank one. Trans. Amer. Math. Soc., 224:157–168, 1976.Google Scholar
[49] Ü., Kuran. Subharmonic behavior of |h|p (p > 0, h harmonic). J. London Math. Soc., 8:529–538, 1974.Google Scholar
[50] N. N., Lebedev. Special Functions and their Applications. Dover Publications, New York, NY, 1972.
[51] J. E., Littlewood and R. E. A. C., Paley. Theorems on Fourier series and power series. Proc. London Math. Soc., 42:52–89, 1936.Google Scholar
[52] D. H., Luecking. Boundary behavior of Green potentials. Proc. Amer. Math. Soc., 96:481–488, 1986.Google Scholar
[53] D. H., Luecking. A new proof of an inequality of Littlewood and Paley. Proc. Amer. Math. Soc., 103(3):887–893, 1988.Google Scholar
[54] N., Lusin. Sur une propriété des fonctions à carré sommable. Bull. Calcutta Math. Soc., 20:139–154, 1930.Google Scholar
[55] B. D., MacCluer. Compact composition operators of Hp(Bn). Michigan Math. J., 32:237–248, 1985.Google Scholar
[56] J., Marcinkiewicz and A., Zygmund. A theorem of Lusin. Duke Math. J., 4: 473–485, 1938.Google Scholar
[57] K., Minemura. Harmonic functions on real hyperbolic spaces. Hiroshima Math. J., 3:121–151, 1973.Google Scholar
[58] K., Minemura. Eigenfunctions of the Laplacian on a real hyperbolic space. J. Math. Soc. Japan, 27(1):82–105, 1975.Google Scholar
[59] Y., Mizuta. On the boundary limits of harmonic functions with gradient in Lp. Ann. Inst. Fourier, Grenoble, 34:99–109, 1984.Google Scholar
[60] Y., Mizuta. On the boundary limits of harmonic functions. Hiroshima Math. J., 18:207–217, 1988.Google Scholar
[61] A., Nagel, W., Rudin, and J. H., Shapiro. Tangential boundary behavior of functions in Dirichlet-type spaces. Ann. Math., 116:331–360, 1982.Google Scholar
[62] M., Pavlović. Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball. Indag. Mathem., N. S., 2:89–98, 1991.Google Scholar
[63] M., Pavlović. On subharmonic behavior and oscillation of functions in balls in Rn. Publ. Inst. Math. (N.S.), 69:18–22, 1994.Google Scholar
[64] M., Pavlović. A Littlewood–Paley theorem for subharmonic functions. Publ. Inst. Math. (Beograd), 68(82):77–82, 2000.Google Scholar
[65] M., Pavlović. A short proof of an inequality of Littlewood and Paley. Proc. Amer. Math. Soc, 134:3625–3627, 2006.Google Scholar
[66] M., Pavlović and J., Riihentaus. Classes of quasi-nearly subharmonic functions. Potential Analysis, 29:89–104, 2008.Google Scholar
[67] Marco M., Peloso. Möbius invariant spaces on the unit ball. Michigan Math. J, 39:509–536, 1992.Google Scholar
[68] I., Privalov. Sur une généralization du théorème de Fatou. Rec. Math. (Mat. Sbornik), 31:232–235, 1923.Google Scholar
[69] T., Ransford. Potential Theory in the Complex Plane. London Math. Soc. Student Texts 28, Cambridge University Press, 1995.
[70] J., Riihentaus. On a theorem of Avanissian–Arsove. Exposition. Math., 7:69–72, 1989.Google Scholar
[71] H. L., Royden. Real Analysis. Macmillan Publishing Co., New York, NY, third edition, 1988.
[72] W., Rudin. Function Theory in the Unit Ball of Cn. Springer-Verlag, New York, NY, 1980.
[73] H., Samii. Les transformations de Poisson dans le boule hyperbolic. PhD thesis, Université Nancy 1, 1982.
[74] I., Sokolnikoff. Tensor Analysis. Wiley, New York, NY, 1964.
[75] E. M., Stein. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NJ, 1970.
[76] E. M., Stein and G., Weiss. Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, NJ, 1971.
[77] S., Stević. A Littlewood–Paley type inequality. Bull. Braz. Math. Soc., 34:1–7, 2003.Google Scholar
[78] M., Stoll. Hardy-type spaces of harmonic functions on symmetric spaces of noncompact type. J. Reine Angew. Math., 271:63–76, 1974.Google Scholar
[79] M., Stoll. Mean value theorems for harmonic and holomorphic functions on bounded symmetric domains. J. Reine Angew. Math., 290:191–198, 1977.Google Scholar
[80] M., Stoll. Boundary limits of Green potentials in the unit disc. Arch. Math., 44:451–455, 1985.Google Scholar
[81] M., Stoll. Rate of growth of pth means of invariant potentials in the unit ball of Cn. J. Math. Analysis & Appl., 143:480–499, 1989.Google Scholar
[82] M., Stoll. Rate of growth of pth means of invariant potentials in the unit ball of Cn, II. J. Math. Analysis & Appl., 165:374–398, 1992.Google Scholar
[83] M., Stoll. Tangential boundary limits of invariant potentials in the unit ball of Cn. J. Math. Anal. Appl., 177(2):553–571, 1993.Google Scholar
[84] M., Stoll. Invariant potential theory in the unit ball of Cn, volume 199 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1994.
[85] M., Stoll. Boundary limits and non-integrability ofM-subharmonic functions in the unit ball of Cn (n ≥ 1). Trans. Amer. Math. Soc., 349(9):3773–3785, 1997.Google Scholar
[86] M., Stoll. Weighted tangential boundary limits of subharmonic functions on domains in RnM (n ≥ 1). Math. Scand., 83(2):300–308, 1998.Google Scholar
[87] M., Stoll. On generalizations of the Littlewood–Paley inequalities to domains in Rn (n ≥ 2). Unpublished manuscript, 2004. www.researchgate.net/profile/Manfred Stoll/publications.
[88] M., Stoll. The Littlewood–Paley inequalities for Hardy–Orlicz spaces of harmonic function on domains in Rn. Advanced Studies in Pure Mathematics, 44:363–376, 2006.Google Scholar
[89] M., Stoll. Weighted Dirichlet spaces of harmonic functions on the real hyperbolic ball. Complex Var. and Elliptic Equ., 57(1):63–89, 2012.Google Scholar
[90] M., Stoll. On the Littlewood–Paley inequalities for subharmonic functions on domains in Rn. In Recent Advances in Harmonic Analysis and Applications, pages 357–383. Springer–Verlag, New York, NY, 2013.Google Scholar
[91] M., Stoll. Littlewood–Paley theory for subharmonic functions on the unit ball in Rn. J. Math. Analysis & Appl., 420:483–514, 2014.Google Scholar
[92] N., Suzuki. Nonintegrability of harmonic functions in a domain. Japan J. Math., 16:269–278, 1990.Google Scholar
[93] D., Ullrich. Möbius-invariant potential theory in the unit ball of Cn. PhD thesis, University of Wisconsin, 1981.
[94] D., Ullrich. Radial limits ofM-subharmonic functions. Trans. Amer. Math. Soc., 292:501–518, 1985.Google Scholar
[95] J.-M. G., Wu. Lp densities and boundary behavior of Green potentials. Indiana Univ. Math. J., 28:895–911, 1979.Google Scholar
[96] S., Zhao. On the weighted Lp-integrability of nonnegative M-superharmonic functions. Proc. Amer. Math. Soc, 113:677–685, 1992.Google Scholar
[97] K., Zhu. Möbius invariant Hilbert spaces of holomorphic functions in the unit ball of Cn. Trans. Amer. Math. Soc., 323:823–842, 1991.Google Scholar
[98] L., Ziomek. On the boundary behavior in the metric Lp of subharmonic functions. Studia Math., 29:97–105, 1967.Google Scholar
[99] A., Zygmund. Trigonometric Series. Cambridge University Press, London, 1968.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Manfred Stoll, University of South Carolina
  • Book: Harmonic and Subharmonic Function Theory on the Hyperbolic Ball
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316341063.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Manfred Stoll, University of South Carolina
  • Book: Harmonic and Subharmonic Function Theory on the Hyperbolic Ball
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316341063.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Manfred Stoll, University of South Carolina
  • Book: Harmonic and Subharmonic Function Theory on the Hyperbolic Ball
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316341063.012
Available formats
×