Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T03:48:39.527Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  11 June 2020

Rufus Willett
Affiliation:
University of Hawaii, Manoa
Guoliang Yu
Affiliation:
Texas A & M University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Higher Index Theory , pp. 561 - 574
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. F.. Stable Homotopy and Generalised Homology. University of Chicago Press, 1974.Google Scholar
Antonini, P., Azzali, S. and Skandalis, G.. The Baum–Connes conjecture localised at the unit element of a discrete group. arXiv:1807.05892, 2018.Google Scholar
Ara, P., Li, K., Lledó, F. and Wu, J.. Amenability and uniform Roe algebras. J. Math. Anal. Appl. 459(2):257306, 2018.Google Scholar
Arveson, W.. A Short Course in Spectral Theory. Springer, 2002.Google Scholar
Arzhantseva, G. and Delzant, T.. Examples of random groups. Available at www.mat.univie.ac.at/%7Earjantseva/Abs/random.pdf, 2008.Google Scholar
Atiyah, M.. K-theory. W. A. Benjamin, 1967.Google Scholar
Atiyah, M.. Global theory of elliptic operators. In Proceedings of the International Conference on Functional Analysis and Related Topics, Tokyo, April 1969. University of Tokyo Press, pp. 21–30.Google Scholar
Atiyah, M.. Elliptic operators, discrete groups and von Neumann algebras. Asterisque, 32–33:4372, 1976.Google Scholar
Atiyah, M., Bott, R. and Shapiro, A.. Clifford modules. Topology, 3:338, 1964.Google Scholar
Atiyah, M. and Schmid, W.. A geometric construction of the discrete series for semisimple Lie groups. Invent. Math., 42:162, 1977.Google Scholar
Atiyah, M. and Segal, G.. The index of elliptic operators II. Ann. Math., 87(3):531545, 1968.Google Scholar
Atiyah, M. and Singer, I.. The index of elliptic operators I. Ann. Math., 87(3): 484530, 1968.Google Scholar
Atiyah, M. and Singer, I.. The index of elliptic operators III. Ann. Math., 87(3):546604, 1968.Google Scholar
Bartels, A.. Squeezing and higher algebraic K-theory. K-Theory, 28(1):1937, 2003.Google Scholar
Bartels, A.. K-theory and actions on Euclidean retracts. In Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures. World Scientific Publishing, 2018, pp. 10411062.Google Scholar
Bartels, A. and Bestvina, M.. The Farrell–Jones conjecture for mapping class groups. Invent. Math. 215(2):651712, 2019.Google Scholar
Bartels, A., Farrell, T., Jones, L. and Reich, H.. On the isomorphism conjecture in algebraic K-theory. Topology, 43:157213, 2004.Google Scholar
Bartels, A. and Lück, W.. The Borel conjecture for hyperbolic and CAT(0)-groups. Ann. Math., 175(2):631689, 2012.Google Scholar
Bartels, A., Lück, W. and Reich, H.. The K-theoretic Farrell–Jones conjecture for hyperbolic groups. Invent. Math., 172(1):2970, 2008.Google Scholar
Baum, P. and Connes, A.. Chern character for discrete groups. In Y. Matsumoto, T. Mizutani and S. Morita, eds., A Fête of Topology. Academic Press, 1988, pp. 163232.Google Scholar
Baum, P. and Connes, A.. Geometric K-theory for Lie groups and foliations. Enseign. Math. (2), 46:342, 2000 (first circulated 1982).Google Scholar
Baum, P., Connes, M. and Higson, N.. Classifying space for proper actions and K-theory of group C*-algebras. American Mathematical Society, 1994, pp. 241–291 (Contemporary Mathematics, vol. 167).Google Scholar
Baum, P. and Douglas, R. G.. K-homology and index theory. In R. V. Kadison, ed., Operator Algebras and Applications, Part I. American Mathematical Society, 1982, pp. 117–173 (Proceedings of Symposia in Pure Mathematics, vol. 38).Google Scholar
Baum, P. and Douglas, R. G., Index theory, bordism, and K-homology. In R. G. Douglas and C. Schochet, eds., Operator Algebras and K-theory. American Mathematical Society, 1982, pp. 1–31 (Contemporary Mathematics, vol. 10).Google Scholar
Baum, P., Guentner, E. and Willett, R.. Expanders, exact crossed products, and the Baum–Connes conjecture. Ann. K-theory, 1(2):155208, 2015.Google Scholar
Baum, P., Guentner, E. and Willett, R.. Exactness and the Kadison–Kaplansky conjecture. In R. S. Doran and E. Park, eds., Operator Algebras and Their Applications. American Mathematical Society, 2016, pp. 1–33 (Contemporary Mathematics, vol. 671).Google Scholar
Baum, P., Higson, N. and Schick, T.. On the equivalence of geometric and analytic K-homology. Pure Appl. Math. Q., 3(1):124, 2007.Google Scholar
Baum, P., Higson, N. and Schick, T.. A geometric description of equivariant K-homology for proper actions. In E. Blanchard et al., eds., Quanta of Maths. American Mathematical Society, 2010, pp. 1–22 (Clay Mathematics Proceedings, vol. 11).Google Scholar
Bekka, B., Cherix, P.-A. and Valette, A.. Proper affine isometric actions of amenable groups. In S. C. Ferry, A. Ranicki, and J. M. Rosenberg, eds., Novikov Conjectures, Index Theory Theorems and Rigidity, vol. 2. Cambridge University Press, 1993, pp. 1–4 (London Mathematical Society Lecture Note Series; vol. 227).Google Scholar
Berger, M.. A Panoramic View of Riemannian Geometry. Springer, 2003.Google Scholar
Bestvina, M., Bromberg, K. and Fujiwara, K.. Constructing group actions on quasi-trees and applications to mapping class groups. Publ. Math. Inst. Hautes Études Sci., 122:164, 2015.Google Scholar
Bestvina, M., Guirardel, V. and Horbez, C.. Boundary amenability of Out (F n ). arXiv:1705.07017, 2017.Google Scholar
Blackadar, B.. K-Theory for Operator Algebras, 2nd ed. Cambridge University Press, 1998 (Mathematical Sciences Research Institute Publications, vol. 5).Google Scholar
Blackadar, B.. Operator Algebras: Theory of C ∗ -Algebras and Von Neumann Algebras. Springer, 2006.Google Scholar
Bökstedt, M., Hsiang, W. C. and Madsen, I.. The cyclotomic trace in algebraic K-theory of spaces. Invent. Math., 111(3):465539, 1993.Google Scholar
Bott, R. and Tu, L.. Differential Forms in Algebraic Topology. Springer-Verlag, 1982.Google Scholar
Braga, B. and Farah, I.. On the rigidity of uniform Roe algebras over uniformly locally finite coarse spaces. arXiv:1805.04236, 2018.Google Scholar
Bridson, M. and Haefliger, A.. Metric Spaces of Non-Positive Curvature. Springer, 1999. (Grundlehren der Mathematischen Wissenschaft; vol. 319.)Google Scholar
Brown, K. S.. Cohomology of Groups. Springer, 1982. (Graduate Texts in Mathematics; vol. 87.)Google Scholar
Brown, L. G.. Stable isomorphism of hereditary subalgebras of C ∗ -algebras. Pacific J. Math., 71(2):335348, 1977.Google Scholar
Brown, L. G.. The universal coefficient theorem for Ext and quasidiagonality. In Arsene, G., ed., Operator Algebras and Group Representations, vol. I (Neptun, 1980). Pitman, 1984, pp. 60–64 (Monographs and Studies in Mathematics; vol. 17).Google Scholar
Brown, L. G., Douglas, R. G. and Fillmore, P.. Extensions of C -algebras and K-homology. Ann. Math., 105:265324, 1977.Google Scholar
Brown, N. and Guentner, E.. Uniform embeddings of bounded geometry spaces into reflexive Banach spaces. Proc. Amer. Math. Soc., 133(7):20452050, 2005.Google Scholar
Brown, N. and Ozawa, N.. C ∗ -Algebras and Finite-Dimensional Approximations. American Mathematical Society, 2008. (Graduate Studies in Mathematics; vol. 88.)Google Scholar
Buss, A., Echterhoff, S. and Willett, R.. Exotic crossed products and the Baum– Connes conjecture. J. Reine Angew. Math., 740:111159, 2018.Google Scholar
Carlsson, G. and Pedersen, E.. Controlled algebra and the Novikov conjecture for K- and L-theory. Topology, 34(3):731758, 1995.Google Scholar
Carrión, J. and Dadarlat, M.. Almost flat K-theory of classifying spaces. J. Noncommut. Geom. 12(2):407-438, 2018.Google Scholar
Chabert, J. and Echterhoff, S.. Permanence properties of the Baum–Connes conjecture. Doc. Math., 6:127183, 2001.Google Scholar
Chabert, J., Echterhoff, S. and Nest, R.. The Connes–Kasparov conjecture for almost connected groups and for linear p-adic groups. Publ. Math. Inst. Hautes Études Sci., 97(1):239278, 2003.Google Scholar
Chabert, J., Echterhoff, S. and Oyono-Oyono, H.. Going-down functors, the Künneth formula, and the Baum–Connes conjecture. Geom. Funct. Anal., 14(3):491528, 2004.Google Scholar
Chang, S., Weinberger, S. and Yu, G.. Positive scalar curvature and a new index theory for noncompact manifolds. J. Geom. Phys., 149:22pp., 2020.Google Scholar
Chen, X., Tessera, R., Wang, X. and Yu, G.. Metric sparsification and operator norm localization. Adv. Math., 218(5):14961511, 2008.Google Scholar
Chen, X. and Wang, Q.. Ideal structure of uniform Roe algebras of coarse spaces. J. Funct. Anal., 216(1):191211, 2004.Google Scholar
Chen, X., Wang, Q. and Yu, G.. The maximal coarse Baum–Connes conjecture for spaces which admit a fibred coarse embedding into Hilbert space. Adv. Math., 249:88130, 2013.Google Scholar
Chen, X. and Wei, S.. Spectral invariant subalgebras of reduced crossed product C ∗ -algebras. J. Funct. Anal., 197(1):228246, 2003.Google Scholar
Coburn, L. A., Douglas, R. G., Schaeffer, D. G. and Singer, I.. C ∗-algebras of operators on a half-space II: Index theory. Publ. Math. Inst. Hautes Études Sci., 40(1):6979, 1971.Google Scholar
Connes, A.. A survey of foliations and operator algebras. In R. V. Kadison, ed., Operator Algebras and Applications, Part I. American Mathematical Society, 1982, pp. 521–628 (Proceedings of the Symposium in Pure Mathematics; vol. 38).Google Scholar
Connes, A.. Non-commutative differential geometry. Publ. Math. Inst. Hautes Études Sci., 62(2):41144, 1985.Google Scholar
Connes, A.. Cyclic cohomology and the transverse fundamental class of a folitation. In H. Araki and E. G. Effros, eds., Geometric Methods in Operator Algebras. Longman Scientific & Technical, 1986, pp. 52–144 (Pitman Research Notes in Mathematics; vol. 123).Google Scholar
Connes, A.. Noncommutative Geometry. Academic Press, 1994.Google Scholar
Connes, A. and Higson, N.. Déformations, morphismes asymptotiques et K-théorie bivariante. C. R. Acad. Sci. Paris Sér. I Math., 311:101106, 1990.Google Scholar
Connes, A., Gromov, Mikhael and Moscovici, H.. Conjecture de Novikov et fibrés presque plats. C. R. Acad. Sci. Paris Sér. I Math., 310(5):273277, 1990.Google Scholar
Connes, A., Gromov, Mikhael and Moscovici, H.. Group cohomology with Lipschitz control and higher signatures. Geom. Funct. Anal., 2(1):178, 1993.Google Scholar
Connes, A. and Moscovici, H.. The L2 -index theorem for homogeneous spaces of Lie groups. Ann. Math., 115(2):291330, 1982.Google Scholar
Connes, A. and Moscovici, H.. Cyclic cohomology, the Novikov conjecture and hyperbolic groups. Topology, 29(3):345388, 1990.Google Scholar
Connes, A. and Skandalis, G.. The longitudinal index theorem for foliations. Publ. Math. Inst. Hautes Études Sci., 20:11391183, 1984.Google Scholar
Cortiñas, G.. Algebraic v. topological K-theory: A friendly match. In P. Baum and G. Cortiñas, eds., Topics in Algebraic and Topological K-theory, Springer Lecture Notes, 2008.Google Scholar
Cortiñas, G. and Tartaglia, G.. Operator ideals and assembly maps in K-theory. Proc. Amer. Math. Soc., 142:10891099, 2014.Google Scholar
Cuntz, J.. Generalized homomorphisms between C ∗ -algebras and KK-theory. In Ph. Blanchard and L. Streit, eds., Dynamics and Processes (Bielefeld 1981). Springer, 1983, pp. 31–45 (Lecture Notes in Mathematics, vol. 1031).Google Scholar
Cuntz, J.. Noncommutative simplicial complexes and the Baum–Connes conjecture. Geom. Funct. Anal., 12(2):307329, 2002.Google Scholar
Cuntz, J., Meyer, R. and Rosenberg, J.. Topological and Bivariant K-theory. Birkhäuser, 2007 (Oberwolfach Seminars; vol. 36).Google Scholar
Cycon, H., Froese, R., Kirsch, W. and Simon, B.. Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry. Springer, 1987.Google Scholar
Dadarlat, M.. Group quasi-representations and index theory. J. Topol. Anal., 4(3):297319, 2012.Google Scholar
Dadarlat, M. and Guentner, E.. Uniform embeddability of relatively hyperbolic groups. J. Reine Angew. Math., 612:115, 2007.Google Scholar
Dadarlat, M., Willett, R. and Localization, J. Wu. C ∗ -algebras and K-theoretic duality. Ann. K-theory, 3(4):615630, 2018.Google Scholar
Davidson, K.. C ∗ -algebras by Example. Fields Institute monographs, 1996.Google Scholar
Davis, J. and Lück, W.. Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory. K-Theory, 15:201252, 1998.Google Scholar
Davis, M.. Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. Math., 117(2):293324, 1983.Google Scholar
Deeley, R. and Goffeng, M.. Realizing the analytic surgery group of Higson and Roe geometrically, part I: The geometric model. J. Homotopy Relat. Str., 12:109– 142, 2017.Google Scholar
Dixmier, J.. C ∗-Algebras. North Holland Publishing Company, 1977.Google Scholar
Douglas, R. G.. Banach Algebra Techniques in Operator Theory. Academic Press, 1972.Google Scholar
Douglas, R. G.. C ∗ -algebra Extensions and K-homology. Princeton University Press, 1980 (Annals of Mathematics Studies, vol. 95).Google Scholar
Dranishnikov, A., Ferry, S. and Weinberger, S.. Large Riemannian manifolds which are flexible. Ann. Math., 157:919938, 2003.Google Scholar
Dranishnikov, A., Ferry, S. and Weinberger, S.. An étale approach to the Novikov conjecture. Comm. Pure Appl. Math., 61(2):139155, 2007.Google Scholar
Dranishnikov, A., Keesling, J. and Uspenskii, V. V.. On the Higson corona of uniformly contractible spaces. Topology, 37(4):791803, 1998.Google Scholar
Deitmar, A. and Echterhoff, S.. Principles of Harmonic Analysis. Springer, 2009.Google Scholar
Eilenberg, S. and Steenrod, N.. Foundations of Algebraic Topology. Princeton University Press, 1952.Google Scholar
Elliott, G., Natsume, T. and Nest, R.. The Atiyah–Singer index theorem as passage to the classical limit in quantum mechanics. Comm. Math. Phys., 182(3):505– 533, 1996.Google Scholar
Emerson, H.. Noncommutative Poincaré duality for boundary actions of hyperbolic groups. J. Reine Angew. Math., 564:133, 2003.Google Scholar
Emerson, H. and Meyer, R.. Dualizing the coarse assembly map. J. Inst. Math. Jussieu, 5:161186, 2006.Google Scholar
Emerson, H. and Meyer, R.. A descent principle for the Dirac dual Dirac method. Topology, 46:185209, 2007.Google Scholar
Farley, D.. Proper isometric actions of Thompson’s groups on Hilbert space. Int. Math. Res. Not., 45:24092414, 2003.Google Scholar
Farrell, T. and Hsiang, W. C.. On Novikov’s conjecture for non-positively curved manifolds. Ann. Math., 113:199209, 1981.Google Scholar
Farrell, T. and Jones, L.. K-theory and dynamics I. Ann. Math., 124(2):531569, 1986.Google Scholar
Farrell, T. and Jones, L.. A topological analogue of Mostow’s rigidity theorem. J. Amer. Math. Soc., 2:257370, 1989.Google Scholar
Farrell, T. and Jones, L.. Classical aspherical manifolds. In CBMS Regional Conference Series in Mathematics, volume 75, 1990.Google Scholar
Farrell, T. and Jones, L.. Topological rigidity for compact non-positively curved manifolds. In R. Greene and S. T. Yau, eds., Differential Geometry: Riemannian Geometry. American Mathematical Society, 1993, pp. 229274 (Proceedings of the Symposium in Pure Mathematics, vol. 54).Google Scholar
Farrell, T. and Jones, L.. Rigidity for aspherical manifolds with π 1 ⊂ GLm (R). Asian J. Math., 2:215262, 1998.Google Scholar
Ferry, S., Ranicki, A. and Rosenberg, J.. A history and survey of the Novikov conjecture. In S. Ferry, A. Ranicki and J. Rosenberg, eds. Novikov Conjectures, Index Theorems and Rigidity, Volume I. Cambridge University Press, 1993, pp. 7–66 (London Mathematical Society Lecture Note Series, vol. 226).Google Scholar
Ferry, S. and Weinberger, S.. Curvature, tangentiality, and controlled topology. Invent. Math., 105(2):401414, 1991.Google Scholar
Ferry, S. and Weinberger, S.. A coarse approach to the Novikov conjecture. In S. Ferry, A. Ranicki and J. Rosenberg, eds., Novikov Conjectures, Index Theory Theorems and Rigidity, Volume I. Cambridge University Press, 1993, pp. 147–163 (London Mathematical Society Lecture Note Series, vol. 226).Google Scholar
Finn-Sell, M.. Fibred coarse embeddings, a-T-menability and the coarse analogue of the Novikov conjecture. J. Funct. Anal., 267(10):37583782, 2014.Google Scholar
Finn-Sell, M. and Wright, N.. Spaces of graphs, boundary groupoids and the coarse Baum–Connes conjecture. Adv. Math., 259:306338, 2014.Google Scholar
Fu, B. and Wang, Q.. The equivariant coarse Baum–Connes conjecture for spaces which admit an equivariant coarse embedding into Hilbert space. J. Funct. Anal., 271(4):799832, 2016.Google Scholar
Ghys, E. and de la Harpe, P., editors. Sur les groupes hyperboliques d’après Mikhael Gromov. Birkhäuser, 1990 (Progress in Mathematics, no. 83).Google Scholar
Gong, G., Wang, Q. and Yu, G.. Geometrization of the strong Novikov conjecture for residually finite groups. J. Reine Angew. Math., 621:159189, 2008.Google Scholar
Gong, G. and Yu, G.. Volume growth and positive scalar curvature. Geom. Funct. Anal., 10:821828, 2000.Google Scholar
Gong, S., Wu, J. and Yu, G.. The Novikov conjecture, the group of volume preserving diffeomoprhisms and Hilbert–Hadamard spaces. arXiv:1811.02086, 2018.Google Scholar
Grigorchuk, R.. Degrees of growth of finitely generated groups and the theory of invariant means. Izv. Akad. Nauk SSSR, 48(2):939985, 1984.Google Scholar
Gromov, M.. Asymptotic invariants of infinite groups. In G. Niblo and M. Roller, eds., Geometric Group Theory, volume 2, pp. 1–295. Cambridge University Press, 1993. London Math Society Lecture Notes vol. 182.Google Scholar
Gromov, M.. Random walks in random groups. Geom. Funct. Anal., 13(1): 73146, 2003.Google Scholar
Guentner, E., Higson, N. and Trout, J.. Equivariant E-theory. Mem. Amer. Math. Soc., 148(703), 2000.Google Scholar
Guentner, E., Higson, N. and Weinberger, S.. The Novikov conjecture for linear groups. Publ. Math. Inst. Hautes Études Sci., 101:243268, 2005.Google Scholar
Guentner, E. and Kaminker, J.. Exactness and the Novikov conjecture. Topology, 41(2):411418, 2002.Google Scholar
Guentner, E., Tessera, R. and Yu, G.. Operator norm localization for linear groups and its applications to K-theory. Adv. Math., 226(4):34953510, 2010.Google Scholar
Guentner, E., Tessera, R. and Yu, G.. A notion of geometric complexity and its application to topological rigidity. Invent. Math., 189(2):315357, 2012.Google Scholar
Guentner, E., Willett, R. and Yu, G.. Finite dynamical complexity and controlled operator K-theory. arXiv:1609.02093, 2016.Google Scholar
Guentner, E., Willett, R. and Yu, G.. Dynamic asymptotic dimension: relation to dynamics, topology, coarse geometry, and C ∗ -algebras. Math. Ann., 367(1): 785829, 2017.Google Scholar
Haagerup, U. and Kraus, J.. Approximation properties for group C ∗ -algebras and group von Neumann algebras. Trans. Amer. Math. Soc., 344:667699, 1994.Google Scholar
Hamenstädt, U.. Geometry of the mapping class groups. I. Boundary amenability. Invent. Math., 175(3):545609, 2009.Google Scholar
Hanke, B. and Schick, T.. Enlargeability and index theory. J. Differential Geometry, 74(2):293320, 2006.Google Scholar
Hanke, B. and Schick, T.. The strong Novikov conjecture for low degree cohomology. Geometriae Dedicata, 135:119127, 2008.Google Scholar
Hatcher, A.. Algebraic Topology. Cambridge University Press, 2002.Google Scholar
Higson, N.. C ∗-algebra extension theory and duality. J. Funct. Anal., 129: 349363, 1995.Google Scholar
Higson, N.. The Baum–Connes conjecture. In Proceedings of the International Congress of Mathematicians, Volume II (Berlin 1998). Doc. Math., Extra Vol. II, 637–646, 1998.Google Scholar
Higson, N.. Counterexamples to the coarse Baum–Connes conjecture. Unpublished paper, Pennsylvania State University. Available at http://www.personal.psu.edu/ndh2/math/Unpublished files/Higson%20-%201999%20-%20Counter examples%20to%20the%20coarse%20Baum-Connes%20conjecture.pdfGoogle Scholar
Higson, N.. Bivariant K-theory and the Novikov conjecture. Geom. Funct. Anal., 10:563581, 2000.Google Scholar
Higson, N. and Guentner, E.. Group C ∗ -algebras and K-theory. In S. Doplicher and R. Longo, eds., Noncommutative Geometry. Springer, 2004, pp. 137–252 (Springer Lecture Notes, no. 1831).Google Scholar
Higson, N. and Kasparov, G.. E-theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math., 144:2374, 2001.Google Scholar
Higson, N., Kasparov, G. and Trout, J.. A Bott periodicity theorem for infinite dimensional Hilbert space. Adv. Math., 135:140, 1999.Google Scholar
Higson, N., Lafforgue, V. and Skandalis, G.. Counterexamples to the Baum– Connes conjecture. Geom. Funct. Anal., 12:330354, 2002.Google Scholar
Higson, N., Pedersen, E. and Roe, J.. C ∗ -algebras and controlled topology. K-Theory, 11:209239, 1997.Google Scholar
Higson, N. and Roe, J.. On the coarse Baum–Connes conjecture. In S. C. Ferry, A. Ranicki, and J. M. Rosenberg, eds., Novikov Conjectures, Index Theory Theorems and Rigidity, vol. 2. London Mathematical Society, 1995, pp. 227–254 (London Mathematical Society Lecture Note Series, vol. 227).Google Scholar
Higson, N. and Roe, J.. Amenable group actions and the Novikov conjecture. J. Reine Angew. Math., 519:143153, 2000.Google Scholar
Higson, N. and Roe, J.. Analytic K-homology. Oxford University Press, 2000.Google Scholar
Higson, N. and Roe, J.. Mapping surgery to analysis I: Analytic signatures. K-theory, 33:277299, 2005.Google Scholar
Higson, N. and Roe, J.. Mapping surgery to analysis II: Geometric signatures. K-theory, 33:301324, 2005.Google Scholar
Higson, N. and Roe, J.. Mapping surgery to analysis III: Exact sequences. K-theory, 33:325346, 2005.Google Scholar
Higson, N., Roe, J. and Yu, G.. A coarse Mayer–Vietoris principle. Math. Proc. Cambridge Philos. Soc., 114:8597, 1993.Google Scholar
Hilsum, M. and Skandalis, G.. Invariance par homotopie de la signature á coefficients dans un fibré presque plat. J. Reine Angew. Math., 423:7399, 1992.Google Scholar
Hitchin, N.. Harmonic spinors. Adv. Math., 14:155, 1974.Google Scholar
Hörmander, L.. The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Springer, 1994 (Grundlehren der Mathematischen Wis-senschaften, vol. 274).Google Scholar
Hsiang, W. C.. Geometric applications of algebraic K-theory. In Proceedings of the International Congress of Mathematics, Volumes 1,2 (Warsaw 1983). PWN, 1984, pp. 98–118, 1983.Google Scholar
Hunger, B.. Almost flat bundles and homological invariance of infinite K-area. arXiv:1607.07820, 2016.Google Scholar
Johnson, W. B. and N. L. Randrianarivony. l p (p > 2) does not coarsely embed into a Hilbert space. Proc. Amer. Math. Soc., 4(4):1045–1050, 2006.Google Scholar
Kaminker, J. and Miller, J. G.. Homotopy invariance of the analytic index of signature operators over C ∗ -algebras. J. Operat. Theor., 14(1):113127, 1985.Google Scholar
Karoubi, M.. K-theory. Springer, 1978.Google Scholar
Kasparov, G.. Topological invariants of elliptic operators I: K-homology. Math. USSR-Izv., 9(4):751792, 1975.Google Scholar
Kasparov, G.. Equivariant KK-theory and the Novikov conjecture. Invent. Math., 91(1):147201, 1988.Google Scholar
Kasparov, G.. K-theory, group C ∗ -algebras, and higher signatures (conspectus). In S. Ferry, A. Ranicki and J. Rosenberg, eds., Novikov Conjectures, Index Theory Theorems and Rigidity, Volume I. Cambridge University Press, 1993, pp. 101–147 (London Mathematical Society Lecture Note Series, vol. 226).Google Scholar
Kasparov, G. and Skandalis, G.. Groups acting on buildings, operator K-theory and Novikov’s conjecture. K-theory, 4:303337, 1991.Google Scholar
Kasparov, G. and Skandalis, G.. Groups acting properly on “bolic” spaces and the Novikov conjecture. Ann. Math., 158(1):165206, June 2003.Google Scholar
Kasparov, G. and Yu, G.. The coarse geometric Novikov conjecture and uniform convexity. Adv. Math., 206(1):156, 2006.Google Scholar
Kasparov, G. and Yu, G.. The Novikov conjecture and geometry of Banach space. Geom. Topol., 16:18591880, 2012.Google Scholar
Keesling, J.. The one-dimensional Čech cohomology of the Higson compactification and its corona. Topology Proc., 19:129148, 1994.Google Scholar
Kida, Y.. The mapping class group from the viewpoint of measure equivalence. Mem. Amer. Math. Soc., 916, 2008.Google Scholar
Kondo, T.. CAT (0) spaces and expanders. Math. Z., 271(1–2):343-355, 2012Google Scholar
Kubota, Y.. The realtive Mischenko–Fomenko higher index and almost flat bundles. arXiv:1807.03181, 2018.Google Scholar
Lafforgue, V.. Banach KK-theory and the Baum–Connes conjecture. In D. Li, ed., Proceedings of the International Congress of Mathematics, Vol. II (Beijing, 2002). Higher Ed. Press, 2002, pp. 795812.Google Scholar
Lafforgue, V.. Un renforcement de la propriété (T). Duke Math. J., 143(3): 559602, 2008.Google Scholar
Lafforgue, V.. La conjecture de Baum–Connes à coefficients pour les groupes hyperboliques. J. Noncommut. Geom., 6(1):1197, 2012.Google Scholar
Lafforgue, V. and de la Salle, M.. Non commutative Lp without the completely bounded approximation property. Duke Math. J., 160:71116, 2011.Google Scholar
Lance, E. C.. Hilbert C ∗ -modules (A Toolkit for Operator Algebraists). Cambridge University Press, 1995.Google Scholar
Lawson, H. B. and Michelsohn, M.-L.. Spin Geometry. Princeton University Press, 1989.Google Scholar
Leichtnam, E. and Piazza, P.. Spectral sections and higher Atiyah–Patodi–Singer index theory on Galois coverings. Geom. Funct. Anal., 8(1):1758, 1998.Google Scholar
Li, K. and Willett, R.. Low-dimensional properties of uniform Roe algebras. J. London Math. Soc., 97:98124, 2018.Google Scholar
Li, X. and Renault, J.. Cartan subalgebras in C ∗-algebras. Existence and uniqueness. Trans. Amer. Math. Soc. 372:19852010, 2019.Google Scholar
Lichnerowicz, A.. Spineurs harmoniques. C. R. Acad. Sci. Paris, 257:79, 1963.Google Scholar
Loday, J.-L.. K-théorie algébrique et représentations de groupes. Ann. Sci. École Norm. S., 9(3):309377, 1976.Google Scholar
Lott, J.. Higher eta-invariants. K-theory, 6(3):191233, 1992.Google Scholar
Lubotzky, A.. Discrete Groups, Expanding Graphs and Invariant Measures. Birkhäuser, 1994.Google Scholar
Lück, W.. The relationship between the Baum–Connes conjecture and the trace conjecture. Invent. Math., 149:123152, 2002.Google Scholar
Lück, W. and Reich, H.. The Baum–Connes and Farrell–Jones conjectures in K- and L-theory. In E. Friedlander and D. Grayson, eds., Handbook of K-theory, volume 2. Springer, 2005, pp. 703842.Google Scholar
Lusztig, G.. Novikov’s higher signature and families of elliptic operators. J. Differential Geometry, 7:229256, 1972.Google Scholar
Mathai, V.. The Novikov conjecture for low degree cohomology classes. Geometriae Dedicata, 99:115, 2003.Google Scholar
Mendel, M. and Naor, A.. Non-linear spectral caculus and super-expanders. Publ. Math. Inst. Hautes Études Sci., 119(1):195, 2014.Google Scholar
Meyer, R. and Nest, R.. The Baum–Connes conjecture via localisation of categories. Topology, 45(2):209259, March 2006.Google Scholar
Gromov, Mikhael. Spaces and questions. Geom. Funct. Anal., 2000, Special Volume, Part I, 118–161.Google Scholar
Gromov, Mikhael and H. Blaine Lawson Jr. Spin and scalar curvature in the presence of a fundamental group. Ann. Math., 111(2):209–230, 1980.Google Scholar
Gromov, Mikhael and H. Blaine Lawson, Jr. Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ. Math. Inst. Hautes Études Sci., 58(1):295–408, 1983.Google Scholar
Milnor, J.. On axiomatic homology theory. Pacific J. Math., 12(1):337341, 1962.Google Scholar
Milnor, J.. Morse Theory. Princeton University Press, 1963.Google Scholar
Milnor, J.. Introduction to Algebraic K-theory. Princeton University Press, 1971 (Annals of Mathematics Studies, vol. 72).Google Scholar
Mineyev, I. and The, G. Yu. Baum–Connes conjecture for hyperbolic groups. Invent. Math., 149(1):97122, 2002.Google Scholar
Miščenko, A. S.. Infinite dimensional representations of discrete groups and higher signatures. Izv. Akad. Nauk. SSSR Ser. Mat., 8(1):81106, 1974.Google Scholar
Moore, C. and Schochet, C.. Global analysis on foliated spaces, 2nd ed. New York: Cambridge University Press, 2006 (Mathematical Sciences Research Institute Publications, vol. 9).Google Scholar
Moriyoshi, H. and Piazza, P.. Eta cocycles, relative pairings and the Godbillon– Vey index theorem. Geom. Funct. Anal., 22(6):17081813, 2012.Google Scholar
Munkres, J.. Topology, 2nd ed. Prentice-Hall, 2000.Google Scholar
Murphy, G.. C ∗ -algebras and Operator Theory. Academic Press, 1990.Google Scholar
Naor, A. and Mendel, M.. Metric cotype. Ann. Math., 168(1):247298, 2008.Google Scholar
Nishikawa, S.. Direct splitting method for the Baum–Connes conjecture. arXiv:1808.08298, 2018.Google Scholar
Noether, F.. Über eine klasse singulärer integralgleichungen. Math. Ann., 82(1-2): 4263, 1920.Google Scholar
Novikov, S.. Topological invariance of rational classes of Pontrjagin (in Russian). Dokl. Akad. Nauk SSSR, 163:298300, 1965.Google Scholar
Novikov, S.. Algebraic construction and properties of Hermitian analogues of K-theory over rings with involution from the point of view of Hamiltonian formalism: Some applications to differential topology and to the theory of characteristic classes. Izv. Akad. Nauk SSSR, 34:253–288, 475–500, 1970.Google Scholar
Nowak, P. and G. Yu. Large scale geometry. European Mathematical Society, 2012 (EMS Textbooks in Mathematics).Google Scholar
Osajda, D.. Small cancellation labellings of some infinite graphs and applications. arXiv:1406.5015, 2014.Google Scholar
Oyono-Oyono, H. and Yu, G.. K-theory for the maximal Roe algebra of certain expanders. J. Funct. Anal., 257(10):32393292, 2009.Google Scholar
Oyono-Oyono, H. and Yu, G.. On quantitative operator K-theory. Ann. Inst. Fourier (Grenoble), 65(2):605–674, 2015.Google Scholar
Oyono-Oyono, H. and Quantitative, G. Yu. K-theory and Künneth formula for operator algebras. J. Funct. Anal., 277(7):20032091, 2019.Google Scholar
Oyono-Oyono, H., Yu, G. and Zhou, D.. Quantitative index, Novikov conjecture, and coarse decomposability. Preprint, 2019.Google Scholar
Ozawa, N.. Amenable actions and exactness for discrete groups. C. R. Acad. Sci. Paris Sér. I Math., 330:691695, 2000.Google Scholar
Ozawa, N.. Boundary amenability of relatively hyperbolic groups. Topol. Appl., 153:26242630, 2006.Google Scholar
Paschke, W. L.. K-theory for commutants in the Calkin algebra. Pac. J. Math., 95:427437, 1981.Google Scholar
Pedersen, G. K.. C ∗ -Algebras and their Automorphism Groups. Academic Press, 1979.Google Scholar
Pflaum, M., Posthuma, H. and Tang, X.. The transverse index theorem for proper cocompact actions of Lie groupoids. J. Differ. Geom., 99(3):443472, 2015.Google Scholar
Piazza, P. and Schick, T.. Rho-classes, index theory, and Stolz’ positive scalar curvature sequence. J. Topol., 4:9651004, 2014.Google Scholar
Pimsner, M. and Voiculescu, D.-V.. Exact sequences for K-groups and Ext-groups of certain crossed product C ∗ -algebras. J. Operat. Theor., 4(1):93118, 1980.Google Scholar
Qiao, Y. and Roe, J.. On the localization algebra of Guoliang Yu. Forum Math., 22(4):657665, 2010.Google Scholar
Raeburn, I. and Williams, D.. Morita Equivalence and Continuous Trace C ∗ -algebras. American Mathematical Society, 1998.Google Scholar
Ramras, D. A., Tessera, R. and Yu, G.. Finite decomposition complexity and the integral Novikov conjecture for higher algebraic K-theory. J. Reine Angew. Math., 694:129178, 2014.Google Scholar
Reed, M. and Simon, B.. Methods of Modern Mathematical Physics I: Functional Analysis, revised and enlarged edition. Academic Press, 1980.Google Scholar
Roe, J.. An index theorem on open mainfolds, I. J. Differ. Geom., 27:87113, 1988.Google Scholar
Roe, J.. An index theorem on open mainfolds, II. J. Differ. Geom., 27:115136, 1988.Google Scholar
Roe, J.. Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer. Math. Soc., 104(497), 1993.Google Scholar
Roe, J.. From foliations to coarse geometry and back. In X. Masa and J. A. Alvarez López, eds., Analysis and geometry in foliated manifolds (Santiago de Compostela, 1994). World Scientific, 1995, pp. 195205.Google Scholar
Roe, J.. Index Theory, Coarse Geometry and Topology of Manifolds. American Mathematical Society, 1996 (CBMS Conference Proceedings, vol. 90).Google Scholar
Roe, J.. Elliptic Operators, Topology and Asymptotic Methods, 2nd edition. Chapman and Hall, 1998.Google Scholar
Roe, J.. Lectures on Coarse Geometry. American Mathematical Society, 2003 (University Lecture Series, vol. 31).Google Scholar
Roe, J.. Hyperbolic groups have finite asymptotic dimension. Proc. Amer. Math. Soc., 133(9):24892490, 2005.Google Scholar
Roe, J. and Willett, R.. Ghostbusting and property A. J. Funct. Anal., 266(3):16741684, 2014.Google Scholar
Rørdam, M., Larsen, F. and Laustsen, N.. An Introduction to K-Theory for C ∗ -Algebras. Cambridge University Press, 2000.Google Scholar
Rosenberg, J.. C ∗ -algebras, positive scalar curvature, and the Novikov conjecture. Publ. Math. Inst. Hautes Études Sci., 58(1):197212, 1983.Google Scholar
Rosenberg, J.. Analytic Novikov for topologists. In S. Ferry, A. Ranicki, and J. Rosenberg, eds., Novikov Conjectures, Index Theory Theorems and Rigidity, Volume I. Cambridge University Press, 1993, pp. 338–368 (London Mathematical Society Lecture Note Series, vol. 226).Google Scholar
Rosenberg, J.. Algebraic K-theory and its applications. Springer, 1994.Google Scholar
Rosenberg, J.. Manifolds of positive scalar curvature: a progress report. In Cheeger, J. and Grove, K., eds., Surveys in Differential Geometry XI: Metric and Comparison Geometry. International Press, 2007.Google Scholar
Rosenberg, J. and Schochet, C.. The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized K-functor. Duke Math. J., 55(2): 431474, 1987.Google Scholar
Rosenberg, J. and Stolz, S.. Manifolds of positive scalar curvature. In G. E. Carlsson, R. L. Cohen, W. C. Hsiang and J. D. S. Jones, eds., Algebraic Topology and Its Applications. Springer, 1994, pp. 241–267 (Mathematical Sciences Research Institute Publications, vol. 27).Google Scholar
Sako, H.. Property A and the operator norm localization property for discrete metric spaces. J. Reine Angew. Math., 690:207216, 2014.Google Scholar
Sapir, M.. A Higman embedding preserving asphericity. J. Amer. Math. Soc., 27:142, 2014.Google Scholar
Schick, T.. A counterexample to the (unstable) Gromov–Lawson–Rosenberg conjecture. Topology, 37(6):11651168, 1998.Google Scholar
Schoen, R. and Yau, S.-T.. Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds of non-negative scalar curvature. Ann. Math., 110:127142, 1979.Google Scholar
Schoen, R. and Yau, S.-T.. On the structure of manifolds with positive scalar curvature. Manuscripta Math., 28:159183, 1979.Google Scholar
Schweitzer, L.. A short proof that Mn (A) is local if A is local and Fréchet. Internat. J. Math., 4(2), 1992.Google Scholar
Sela, Z.. Uniform embeddings of hyperbolic groups in Hilbert space. Isr. J. Math., 80(1-2):171181, 1992.Google Scholar
Shan, L. and Wang, Q.. The coarse geometric Novikov conjecture for subspaces of non-postively curved manifolds. J. Funct. Anal., 248(2):448471, 2007.Google Scholar
Simon, B.. Trace ideals and their applications, 2nd edition. American Mathematical Society, 2005.Google Scholar
Stolz, S.. Simply connected manifolds of positive scalar curvature. Ann. Math., 136(3):511540, 1992.Google Scholar
Takesaki, M.. On the cross-norm of the direct product of C ∗ -algebras. Tohoku Math. J., 16(1):111122, 1964.Google Scholar
Tang, X., Willett, R. and Yao, Y.-J.. Roe C ∗ -algebra for groupoids and generalized Lichnerowicz vanishing theorem for foliated manifolds. Math. Z. 290(3-4):13091338, 2018.Google Scholar
Trout, J.. On graded K-theory, elliptic operators, and the functional calculus. Illinois J. Math., 44(2):194309, 2000.Google Scholar
Tu, J.-L.. Remarks on Yu’s property A for discrete metric spaces and groups. B. Soc. Math. Fr., 129:115139, 2001.Google Scholar
von Neumann, J.. Continuous Geometry. Princeton University Press, 1998 (Princeton Landmarks in Mathematics and Physics).Google Scholar
Špakula, J. and Willett, R.. Maximal and reduced Roe algebras of coarsely embeddable spaces. J. Reine Angew. Math., 678:3568, 2013.Google Scholar
Špakula, J. and Willett, R.. On rigidity of Roe algebras. Adv. Math., 249:289310, 2013.Google Scholar
Wahl, C.. Higher ρ-invariants and the surgery structure set. J. Topol., 6(1):154– 192, 2013.Google Scholar
Wall, C. T. C.. Surgery on Compact Manifolds, 2nd edition. American Mathematical Society, 1999 (Mathematical Surveys and Monographs, vol. 69).Google Scholar
Wang, B.-L. and Wang, H.. Localized index and L2 -Lefschetz fixed point theorem for orbifolds. J. Differ. Geom., 102(2):285349, 2016.Google Scholar
Wegge-Olsen, N. E.. K-Theory and C ∗ -Algebras (A Friendly Approach). Oxford University Press, 1993.Google Scholar
Wei, S.. On the quasidiagonality of Roe algebras. Sci. China Math., 54: 10111018, 2011.Google Scholar
Weibel, C.. The K-book: An Introduction to Algebraic K-theory. American Mathematical Society, 2013 (Graduate Studies in Mathematics, vol. 145).Google Scholar
Weinberger, S.. Aspects of the Novikov conjecture. In J. Kaminker, ed., Geometric and Topological Invariants of Elliptic Operators. American Mathematical Society, 1990, pp. 281–297 (Contemporary Mathematics, vol. 105).Google Scholar
Weinberger, S.. The Topological Classification of Stratified Spaces. University of Chicago Press, 1994.Google Scholar
Weinberger, S.. Variations on a theme of Borel. Available at http://math.uchicago .edu/∼shmuel/VTBdraft.pdf, 2017.Google Scholar
Weinberger, S., Xie, Z. and Yu, G.. Additivity of higher rho invariants and nonrigidity of topological manifolds. arXiv:1608.03661, 2016. To appear, Comm. Pure. Appl. Math.Google Scholar
Weinberger, S. and Yu, G.. Finite part of operator K-theory for groups finitely embeddable into Hilbert space and the degree of nonrigidity of manifolds. Geom. Topol., 19(5):27672799, 2015.Google Scholar
White, S. and Willett, R.. Cartan subalgebras in uniform Roe algebras. arXiv:1808.04410, 2018. To appear, Groups, Geom, Dyn.Google Scholar
Willett, R.. Some notes on property A. In G. Arzhantseva and A. Valette, eds., Limits of Graphs in Group Theory and Computer Science. EPFL Press, 2009, pp. 191281.Google Scholar
Willett, R. and Yu, G.. Higher index theory for certain expanders and Gromov monster groups I. Adv. Math., 229(3):13801416, 2012.Google Scholar
Willett, R. and Yu, G.. Higher index theory for certain expanders and Gromov monster groups II. Adv. Math., 229(3):17621803, 2012.Google Scholar
Willett, R. and Yu, G.. Geometric property (T). Chinese Ann. Math. Ser. B, 35(5):761800, 2014.Google Scholar
Winter, W. and Zacharias, J.. The nuclear dimension of C ∗ -algebras. Adv. Math., 224(2):461498, 2010.Google Scholar
Wright, N.. C0 coarse geometry. PhD thesis, The Pennsylvania State University, 2002.Google Scholar
Wright, N.. Simultaneous metrizability of coarse spaces. Proc. Amer. Math. Soc., 139(9):32713278, 2011.Google Scholar
Wulff, C.. Coarse co-assembly as a ring homomorphism. J. Noncommut. Geom. 10(2):471514, 2016.Google Scholar
Xie, Z. and Yu, G.. Positive scalar curvature, higher rho invariants and localization algebras. Adv. Math., 262:823866, 2014.Google Scholar
Xie, Z. and Yu, G.. Higher rho invariants and the moduli space of positive scalar curvature metrics. Adv. Math., 307:10461069, 2017.Google Scholar
Xie, Z. and Yu, G.. Delocalized eta invariants, algebraicity, and K-theory of group C -algebras. arXiv:1805.07617, 2018. To appear, Int. Math. Res. Not.Google Scholar
Yu, G.. Baum–Connes conjecture and coarse geometry. K-theory, 9(3):223231, 1995.Google Scholar
Yu, G.. Coarse Baum–Connes conjecture. K-theory, 9:199221, 1995.Google Scholar
Yu, G.. Localization algebras and the coarse Baum–Connes conjecture. K-theory, 11(4):307318, 1997.Google Scholar
The, G. Yu. Novikov conjecture for groups with finite asymptotic dimension. Ann. Math., 147(2):325355, 1998.Google Scholar
Yu, G.. The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math., 139(1):201240, 2000.Google Scholar
Yu, G.. The algebraic K-theory Novikov conjecture for group algebras over the ring of Schatten class operators. Adv. Math., 307:727753, 2017.Google Scholar
Zacharias, J.. On the invariant translation approximation property for discrete groups. Proc. Amer. Math. Soc., 134(7):19091916, 2006.Google Scholar
Zeidler, R.. Secondary large-scale index theory and positive scalar curvature. PhD thesis, Georg-August-Universität, Göttingen, 2016.Google Scholar
Zenobi, V. F.. Mapping the surgery exact sequence for topological manifolds to analysis. J. Topol. Anal., 9(2):329361, 2017.Google Scholar
Zhang, W.. Positive scalar curvature on foliations. Ann. Math., 185:10351068, 2017.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×