Published online by Cambridge University Press: 19 January 2023
The chapter introduces the basic elements of the homological language and translates the statements about complemented and uncomplemented subspaces presented in Chapter 1 into this language. The reader will find everything they need to know at this stage about exact sequences, categorical and homological constructions for absolute beginners and injective and projective Banach and quasi-Banach spaces. The chapter describes the basic homological constructions appearing in nature: complex interpolation, the Nakamura-Kakutani, Foia\c{s}-Singer, Pe\l czy\’nski-Lusky and Bourgain’s $\ell_1$ sequences, the Ciesielski-Pol, Bell-Marciszewski and Bourgain-Pisier constructions, the Johnson-Lindenstrauss spaces and so on. A good number of advanced topics are included: diagonal and parallel principles for exact sequences, the Device, 3-space results, extension and lifting of operators, $M$-ideals and vector-valued Sobczyk’s theorems
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.