Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T06:28:25.372Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  06 August 2009

Daphne J. Osborne
Affiliation:
The Open University, Milton Keynes
Michael T. McManus
Affiliation:
Massey University, Auckland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, S. and Theologis, A. (1996) Early genes and auxin action. Plant Physiology 111, 9–17CrossRefGoogle ScholarPubMed
Abel, S., Oeller, P. W. and Theologis, A. (1994) Early auxin-induced genes encode short-lived nuclear proteins. Proceedings of the National Academy of Sciences, USA 91, 326–330CrossRefGoogle ScholarPubMed
Abernethy, G. A., Fountain, D. W. and McManus, M. T. (1998) Observations of the leaf anatomy of Festuca novae-zelandiae (Hack.) Cockayne and biochemical responses to a water deficit. New Zealand Journal of Botany 36, 113–123CrossRefGoogle Scholar
Achard, P., Vriezen, W. H., Straeten, D. and Harberd, N. (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15, 2816–2825CrossRefGoogle ScholarPubMed
Adams, D. O. and Yang, S. F. (1977) Methionine metabolism in apple tissue: Implication of S- adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiology 60, 892–896CrossRefGoogle Scholar
Adams, D. O. and Yang, S. F. (1979) Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences, USA 76, 170–174CrossRefGoogle Scholar
Addicott, F. T., Cairns, H. R., Cornforth, J. W., Lyon, J. L., Milborrow, B. V., Ohkuma, K., Ryback, G., Smith, G., Thiessen, W. E. and Wareing, P. F. (1968) Abscisic acid: A proposal for the redesignation of abscisin II (dormin). In: Biochemistry and Physiology of Plant Growth Substances, Wightman, F. and Setterfield, G. (eds). Runge Press, Ottawa, pp. 1527–1529
Ainley, W. M., Walker, J. C., Nagao, R. T. and Key, J. L. (1988) Sequencing and characterization of two auxin-regulated genes from soybean. Journal of Biological Chemistry 263, 10658–10666Google Scholar
Akiyoshi, D. E., Klee, H., Amasino, R. M., Nester, E. W. and Gordon, P. M. (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proceedings of the National Academy of Sciences, USA 81, 5994–5998CrossRefGoogle ScholarPubMed
Albersheim, P. and Valent, B. S. (1978) Host–pathogen interactions in plants. Plants when exposed to oligosaccharins of fungal origin defend themselves by accumulating antibiotics. Journal of Cell Biology 78, 627–643CrossRefGoogle Scholar
Aldington, S. and Fry, S. C. (1993) Oligosaccharins. Advances in Botanical Research 19, 2–101Google Scholar
Aldridge, D. C., Galt, S., Giles, D. and Turner, W. B. (1971) Metabolites of Lasiodiplodia theobromae. Journal of the Chemical Society. (C), Organic Chemistry 1623–1627CrossRef
Allan, A. C., Fricker, M. D., Ward, J. L., Beale, M. H. and Trewavas, A. J. (1994) Two transduction pathways mediate rapid effects of abscisic acid in Commelina commonis guard cells. Plant Cell 6, 1319–1328CrossRefGoogle ScholarPubMed
Allen, G. J., Kuchitsu, K., Chu, S. P., Murata, Y., and Schroeder, J. L. (1999) Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid induced cytosolic calcium rises in guard cells. Plant Cell 11, 1785–1798Google Scholar
Allen, G. J., Chu, S. P., Schumacher, K., Shimazaki, C., Vafeados, D., Kemper, A., Hawke, S. D., Tallman, G., Tsien, R. Y., Harper, J. F., Chory, J. and Schroeder, J. I. (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289, 2338–2342CrossRefGoogle ScholarPubMed
Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S. and Ecker, J. R. (1999) EIN2, a bifunctional transducer of ethylene and stress response inArabidopsis. Science 284, 2148–2152Google Scholar
Altamura, M. M., Zagli, D., Salvi, G., Lorenzo, G. and Bellincampi, D. (1998) Oligogalacturonides stimulate pericycle cell wall thickening and cell divisions leading to stoma formation in tobacco leaf explants. Planta 204, 429–436CrossRefGoogle Scholar
Anderson, B. E., Ward, J. M. and Schroeder, J. I. (1994) Evidence for an extracellular reception site for abscisic acid in Commelina guard cells. Plant Physiology 104, 1177–1183CrossRefGoogle ScholarPubMed
Aoyagi, S., Sugiyama, M. and Fukuda, H. (1998) BEN1 and ZEN1 cDNAs encoding S1-type DNases that are associated with programmed cell death in plants. FEBS Letters 429, 134–138CrossRefGoogle ScholarPubMed
Arimura, G., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W. and Takabayashi, J. (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406, 512–514Google ScholarPubMed
Ashikari, M., Wu, J., Yano, M., Sasaki, T. and Yoshimura, A. (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit GTP-binding protein. Proceedings of the National Academy of Sciences, USA 96, 10284–10289CrossRefGoogle ScholarPubMed
Assman, S. M. (1994) Ins and outs of guard cell ABA receptors. Plant Cell 6, 1187–1190CrossRefGoogle Scholar
Augur, C., Yu, L., Sakai, K., Ogawa, T., Sinai, P., Darvill, A. and Albersheim, P. (1992) Further studies on the ability of xyloglucan oligosaccharides to inhibit auxin-stimulated growth. Plant Physiology 99, 180–185CrossRefGoogle ScholarPubMed
Augur, C., Benhamou, N., Darvill, A. and Albersheim, P. (1993) Purification, characterization and cell wall localization of an α-fucosidase that inactivates a xyloglucan oligosaccharin. Plant Journal 3, 415–426CrossRefGoogle ScholarPubMed
Avers, C. J. (1963) Fine structure studies of Phleum root meristem cells. 11. Mitotic asymmetry and cellular differentiation. American Journal of Botany 50, 140–148CrossRefGoogle Scholar
Ballas, N., Wong, L.-M. and Theologis, A. (1993) Identification of the auxin-responsive element, AuxRE, in the primary indoleacetic acid-inducible gene, PS-IAA4/5, of pea (Pisum sativum). Journal of Molecular Biology 233, 580–596CrossRefGoogle Scholar
Barbier-Brygoo, H., Ephritikhine, G., Klambt, D., Ghislain, M. and Guern, J. (1989) Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proceedings of the National Academy of Sciences, USA 86, 891–895CrossRefGoogle ScholarPubMed
Barbier-Brygoo, H., Ephritikhine, G., Klämbt, D., Maurel, C., Palme, K., Schell, J. and Geurn, J. (1991) Perception of the auxin signal at the plasma membrane of tobacco mesophyll protoplasts. Plant Journal. 1, 83–94CrossRefGoogle Scholar
Barker, C. (2000) Systemic acquired resistance. In: Molecular Plant Pathology, Dickinson, M. and Benyon, J. (eds.), Annual Plant Reviews, Vol 4. Academic Press, Sheffield, pp. 198–217
Barlow, P. W. (1995) Gravity perception in plants: A multiplicity of systems derived by evolution?Plant Cell and Environment 18, 951–962CrossRefGoogle ScholarPubMed
Barry, G. F., Rogers, S. G., Fraley, R. T. and Brand, L. (1984) Identification of a cloned cytokinin biosynthetic gene. Proceedings of the National Academy of Sciences, USA 97, 14778–14783Google Scholar
Bartel, B. (1997) Auxin Biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 48, 51–66CrossRefGoogle ScholarPubMed
Bartel, B. and Fink, G. R. (1995) ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268, 1745–1748CrossRefGoogle ScholarPubMed
Bartel, B., LeClere, S., Magidin, M. and Zolman, B. K. (2001) Inputs to the active indole-3-acetic acid pool: De novo synthesis, conjugate hydrolysis and indole-3-butyric acid B-oxidation. Journal of Plant Growth Regulation 20, 198–216CrossRefGoogle Scholar
Bartels, D. and Salamini, F. (2001) Desiccation tolerance in the resurrection plant Craterostigma plantgineum. A contribution to the study of drought tolerance at a molecular level. Plant Physiology 127, 1346–1353CrossRefGoogle Scholar
Bartling, D., Seedorf, M., Mithofer, A. and Weiler, E. W. (1992) Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid. European Journal of Biochemistry 205, 417–424CrossRefGoogle ScholarPubMed
Barton, M. K. and Poethig, S. (1993) Formation of the shoot apical mersitem in Arabidopsis thaliana: An analysis of development in the wild-type and in the shoot meristemless mutant. Development 119, 823–831Google Scholar
Bassett, C. L., Artlip, T. S. and Callahan, A. M. (2002) Characterization of the peach homologue of the ethylene receptor, PpETR1, reveals some unusual features regarding transcript processing. Planta 215, 679–688CrossRefGoogle ScholarPubMed
Bauly, J. M., Sealy, I. M., Macdonald, H., Brearley, J., Dröge, S., Hillmer, S., Robinson, D. G., Venis, M. A., Blatt, M. R., Lazarus, C. M. and Napier, R. M. (2000) Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin. Plant Physiology 124, 1229–1238CrossRefGoogle Scholar
Baydoun, E. A-H. and Fry, S. C. (1985) The immobility of pectic substances in injured tomato leaves and its bearing on the identity of the wound hormones. Planta 165, 269–276CrossRefGoogle Scholar
Beaudoin, N., Serizet, C., Gosti, F. and Giraudat, J. (2000) Interactions between abscisic acid and ethylene signalling cascades. The Plant Cell 12, 1103–1116CrossRefGoogle Scholar
Beeckman, T., Burssens, S. and Inze, D. (2001) The peri-cell-cycle inArabidopsis. Journal of Experimental Botany 52, 403–411Google Scholar
Belanger, K. D., Wyman, A. J., Sudol, M. N., Singla-Pareek, S. L. and Quatrano, R. S. (2003) A signal peptide secretion screen in Fucus distichus embryos reveals expression of glucanase, EGF domain-containing, and LRR receptor kinase-like polypeptides during asymmetric growth. Planta 217, 931–950CrossRefGoogle Scholar
Bellincampi, D., Cardarelli, M., Zaghi, D., Serino, G., Salvi, G., Gatz, C., Cervone, F., Altamura, M. M., Costantino, P. and Lorenzo, G. D. (1996) Oligogalacturonides prevent rhizogenesis in rolB-transformed tobacco explants by inhibiting auxin-induced expression of the rolB gene. Plant Cell 8, 477–487CrossRefGoogle ScholarPubMed
Bellincampi, D., Salvi, S., Lorenzo, G., Cervone, F., Marfa, V., Eberhard, S., Darvill, A. and Albersheim, P. (1993) Oligogalacturonides inhibit the formation of roots on tobacco explants. Plant Journal 4, 207–213CrossRefGoogle Scholar
Bengochea, T., Acaster, M. A., Dodds, J. H., Evans, D. E., Jerie, P. H. and Hall, M. A. (1980) Studies on ethylene binding by cell-free preparations from cotyledons of Phaseolus vulgaris. II. Effects of structural analogues of ethylene and of inhibitors. Planta 148, 407–411CrossRefGoogle ScholarPubMed
Benjamins, R., Quint, A., Weijers, D., Hooykaas, P. and Offringa, R. (2001) The pinoid protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128, 4057–4067Google ScholarPubMed
Bennett, M. J., Marchant, A., Green, H. G., May, S. T., Ward, S. P., Millner, P. A., Walker, A. R., Schulz, B. and Feldman, K. A. (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273, 948–950CrossRefGoogle ScholarPubMed
Berger, F., Taylor, A. and Brownlee, C. (1994) Cell fate determination by the cell wall in early Fucus development. Science 263, 1421–1423CrossRefGoogle ScholarPubMed
Berger, S., Menudier, A., Julien, R. and Karamanos, Y. (1996) Regulation of de-N-glycosylation enzymes in germinating radish seeds. Plant Physiology 112, 259–264CrossRefGoogle ScholarPubMed
Bernier, G. (1988) The control of floral evocation and morphogenesis. Annual Review of Plant Physiology and Plant Molecular Biology 39, 175–219CrossRefGoogle Scholar
Bethke, P. C., Badger, M. R. and Jones, R. L. (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16, 332–341CrossRefGoogle ScholarPubMed
Bethke, P. C., Lonsdale, J. E., Fath, A. and Jones, R. L. (1999) Hormonally regulated programmed cell death in barley aleurone cells. Plant Cell 11, 1033–1046CrossRefGoogle ScholarPubMed
Beven, A., Guan, Y., Peart, J., Cooper, C. and Shaw, P. (1991) Monoclonal antibodies to plant nuclear matrix reveal intermediate filament related components within the nucleus. Journal of Cell Science 98, 293–302Google Scholar
Beveridge, C. A. (2000) The ups and downs of signalling between root and shoot. New Phytologist 147, 413–416CrossRefGoogle Scholar
Beveridge, C. A., Murfet, I. C., Kerhoas, L., Sotta, B., Miginiac, E. and Rameau, C. (1997a) The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutantrms4. Plant Journal 11, 339–345CrossRefGoogle Scholar
Beveridge, C. A., Symons, G. M., Murfet, I. C., Ross, J. J. and Rameau, C. (1997b) The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root sap zeatin riboside content but increased branching controlled by graft transmissible signal(s). Plant Physiology 115, 1251–1258CrossRefGoogle Scholar
Biale, J. B., Young, R. E. and Olmstead, A. J. (1954) Fruit respiration and ethylene production. Plant Physiology 29, 168–174CrossRefGoogle ScholarPubMed
Bierhorst, D. W. (1977) On the stem apex, leaf initiation and early leaf ontogeny in filicalean ferns. Amercian Journal of Botany 64, 125–152CrossRefGoogle Scholar
Binns, A. N. (1994) Cytokinin accumulation and action: Biochemical, genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology 45, 173–196CrossRefGoogle Scholar
Bleecker, A. B., Estelle, M. A., Somerville, C. and Kende, H. (1988) Insensitivity to ethylene conferred by a dominant mutant inArabidopsis thaliana. Science 241, 1086–1089Google Scholar
Bonfante, P., Genre, A., Faccio, A., Martini, I., Schauser, L., Stougaard, J., Webb, J. and Parniske, M. (2000) The Lotus japonicus Lj Sym-4 gene is required for the successful symbiotic infection of root epidermal cells. Molecular Plant-Microbe Interactions 13, 1109–1120CrossRefGoogle Scholar
Bonghi, C., Rascio, N., Ramina, A. and Casadoro, G. (1992) Cellulase and polygalacturonase involvement in the abscission of leaf and fruit explants of peach. Plant Molecular Biology 20, 839–848CrossRefGoogle ScholarPubMed
Boss, P. K. and Thomas, M. R. (2002) Association of dwarfism and floral induction with a grape “green revolution” mutation. Nature 416, 847–850CrossRefGoogle Scholar
Boubriak, I., Naumenko, N., Lyne, L. and Osborne, D. J. (2000) Loss of viability in rye embryos at different levels of hydration: senescence with apoptopic nucleosome cleavage or death with random DNA fragmentation. In: Seed Biology: Advances and Applications, Black, M. J., Bradford, K. J. and Vazquez-Ramos. J. (eds). CAB International, Oxford, pp. 205–214CrossRef
Bradford, K. J. and Yang, S. F. (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic cid, an ethylene precursor, in waterlogged tomato plants. Plant Physiology 65, 322–326CrossRefGoogle Scholar
Branca, C., Lorenzo, G. and Cervone, F. (1988) Competitive inhibition of the auxin-induced elongation by α-D-oligogalacturonides in pea stem segments. Physiologia Plantarum 72, 499–504CrossRefGoogle Scholar
Brandstatter, I. and Kieber, J. J. (1998) Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin inArabidopsis. Plant Cell 10, 1009–1020CrossRefGoogle Scholar
Brault, M., Caiveau, O., Pédron, J., Maldiney, R., Sotta, B. and Miginiac, E. (1999) Detection of membrane-bound cytokinin-binding proteins in Arabidopsis thaliana cells. European Journal Biochemistry 260, 512–519CrossRefGoogle ScholarPubMed
Brinegar, A. C. and Fox, J. E. (1985) Resolution of the subunit composition of a cytokinin-binding protein from wheat embryos. Biological Plantarum 27, 100–104CrossRefGoogle Scholar
Brinegar, A. C., Stevens, A. and Fox, J. E. (1985) Biosynthesis and degradation of a wheat triticum-durum embryo cytokinin-binding protein during embryogenesis and germination. Plant Physiology 79, 706–710CrossRefGoogle ScholarPubMed
Brown, J. C. and Jones, A. M. (1994) Mapping the auxin-binding site of auxin-binding protein 1. Journal of Biological Chemistry 269, 21136–21140Google ScholarPubMed
Brownlee, C. and Wood, J. W. (1986) A gradient of cytoplasmic free calcium in growing rhizoid cells ofFucus serratus. Nature 320, 624–626CrossRefGoogle Scholar
Brugiere, N., Rothstein, S. J. and Cui, Y. (2000) Molecular mechanisms of self-recognition in Brassica self-incompatability. Trends in Plant Science 5, 432–438CrossRefGoogle Scholar
Bui, A. Q. and O'Neill, S. D. (1998) Three 1-aminocyclopropane-1-carboxylate synthase genes regulated by primary and secondary pollination signals in orchid flowers. Plant Physiology 116, 419–428CrossRefGoogle ScholarPubMed
Buitink, J., Vu, B. L., Satour, P. and Leprince, O. (2003) The re-establishment of desiccation tolerance in germinated radicles of Medicago truncatula Geertn. seeds. Seed Science Research 13, 273–286Google Scholar
Burg, S. P. and Burg, E. A. (1962a) Role of ethylene in fruit ripening. Plant Physiology 37, 179–189CrossRefGoogle Scholar
Burg, S. P. and Burg, E. A. (1962b) Post-harvest ripening of avocados. Nature 194, 398–399CrossRefGoogle Scholar
Burlat, V., Kwon, M., Davin, L. B. and Lewis, N. G. (2001) Dirigent protein and dirigent sites in lignifying tissues. Phytochemistry 57, 883–897CrossRefGoogle ScholarPubMed
Burnett, E. C., Desikan, R., Moser, R. C. and Neill, S. J. (2000) ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. Journal of Experimental Botany 51, 197–205CrossRefGoogle ScholarPubMed
Burroughs, L. F. (1957) 1-Aminocyclopropane-1-carboxylic acid: A new amino acid in perry pears and cider apples. Nature 179, 360–361CrossRefGoogle ScholarPubMed
Bush, D. S. (1996) Effects of gibberellic acid and environmental factors on cytosolic calcium in wheat aleurone cells. Planta 199, 89–99CrossRefGoogle Scholar
Bush, M. S. and McCann, M. C. (1999) Pectic epitopes are differently distributed on the cell walls of potato (Solanum tuberosum) tubers. Physiologia Plantarum 107, 201–213CrossRefGoogle Scholar
Bush, M. S., Marry, M., Huxham, M. I., Jarvis, M. C. and McCann, M. C. (2001) Developmental regulation of pectic epitopes during potato tuberization. Planta 213, 869–880CrossRefGoogle Scholar
Byard, E. H. and Lange, B. M. H. (1991) Tubulin and microtubules. Essays in Biochemistry 26, 13–25Google ScholarPubMed
Campbell, A. D. and Labavitch, J. M. (1991a) Induction and regulation of ethylene biosynthesis by pectic oligomers in cultured pear cells. Plant Physiology 97, 699–705CrossRefGoogle Scholar
Campbell, A. D. and Labavitch, J. M. (1991b) Induction and regulation of ethylene biosynthesis and ripening by pectic oligomers in tomato pericarp discs. Plant Physiology 97, 706–713CrossRefGoogle Scholar
Cancel, J. D. and Larsen, P. B. (2002) Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiology 129, 1557–1567CrossRefGoogle ScholarPubMed
Carle, S.A, Bates, G. W. and Shannon, T. A. (1998) Hormonal control of gene expression during reactivation of the cell cycle in tobacco mesophyll protoplasts. Journal of Plant Growth Regulation 17, 221–230CrossRefGoogle ScholarPubMed
Casimiro, I., Beeckman, T., Graham, N., Bhalerao, R., Zhang, H., Caseros, P., Sandberg, G. and Bennett, M. J. (2003) Dissecting Arabidopsis lateral root development. Trends in Plant Science 8, 165–171CrossRefGoogle ScholarPubMed
Cassab, G. I., Lin, J.-J., Lin, L. S. and Varner, J. E. (1988) Ethylene effect on extension and peroxidase distribution in the subapical region of pea epicotyls. Plant Physiology. 88, 522–524CrossRefGoogle Scholar
Chailakhyan, M. H. (1936) On the mechanism of photoperiodic interaction. Comptes Rendus (Doklady) Academie des Sciences, USSR 10, 89–93Google Scholar
Chang, C., Kwok, S. F., Bleecker, A. B. and Meyerowitz, E. B. (1993) Arabidopsis ethylene response gene ETR1-similarity of product to two-component regulators. Science 262, 539–544CrossRefGoogle ScholarPubMed
Chang, C. and Meyerowitz, E. M. (1995) The ethylene hormone response in Arabidopsis – An eukaryotic two-component signaling system. Proceedings of the National Academy of Sciences, USA 92, 4129–4133CrossRefGoogle ScholarPubMed
Cheah, K. S. E. and Osborne, D. J. (1978) DNA lesions occur with loss of viability in embryos of ageing rye seed. Nature 272, 593–599CrossRefGoogle ScholarPubMed
Chen, J.-G., Shimomura, S., Sitbon, F., Sandberg, G. and Jones, A. M. (2001a) The role of auxin-binding protein 1 in the expansion of tobacco leaf cells. Plant Journal 28, 607–617CrossRefGoogle Scholar
Chen, J. G., Ullah, H., Young, J. C., Sussman, M. R. and Jones, A. M. (2001b) ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes and Development 15, 902–911CrossRefGoogle Scholar
Chen, R., Hilson, P., Sedbrook, J., Rosen, E., Casper, T. and Masson, P. H. (1998) The Arabidopsis thaliana AGRAVITROPIC1 gene encodes a component of the polar-auxin-transport efflux carrier. Proceedings of the National Academy of Sciences, USA 95, 15112–15117CrossRefGoogle ScholarPubMed
Chen, Y. F., Randlett, M. D., Findell, J. L. and Schaller, G. E. (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. Journal of Biological Chemistry, 277, 19861–19866CrossRefGoogle ScholarPubMed
Cheng, H., Qin, L., Lee, S., Fu, X., Richards, D. E., Cao, D., Luo, D., Harberd, N. P. and Peng, J. (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131, 1055–1064CrossRefGoogle ScholarPubMed
Cheung, A. Y. and Wu, H. M. (1999) Arabinogalactan proteins in plant sexual reproduction. Protoplasma 208, 87–98CrossRefGoogle Scholar
Chibnall, A. C. (1939) Protein Metabolism in the Plant. Yale University Press, New Haven; H. Milford, Oxford University Press, U.K.
Chlyah, H. (1974a) Inter-tissue correlations in organ fragments: Organogenetic capacity of tissues excised from stem segments of Torania fournieri Lind. cultured separately in vitro. Plant Physiology 54, 341–348CrossRefGoogle Scholar
Chlyah, H. (1974b) Formation and propagation of cell division-centers in the epidermal layer of internodal segments of Torrenia fournier grown in vitro. Simultaneous surface observations of all epidermal cells. Canadian Journal of Botany 52, 867–872CrossRefGoogle Scholar
Chlyah, H. (1978) Intercellular correlations: Relation between DNA synthesis and cell division in early stages of in vitro bud neoformation. Plant Physiology. 62, 482–485CrossRefGoogle ScholarPubMed
Cho, H.-T. and Cosgrove, D. J. (2000) Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 97, 9783–9788CrossRefGoogle ScholarPubMed
Choe, S., Dilkes, B. P., Fujioka, S., Takasuto, S., Sakurai, A. and Feldmann, K. A. (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10, 231–244Google ScholarPubMed
Choe, S., Tanaka, A., Noguchi, T., Fujioka, S., Takatsuto, S., Ross, A. S., Tax, F. E., Yoshida, S. and Feldmann, K. A. (2000) Lesions in the sterol Δ7 reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant Journal 21, 431–443CrossRefGoogle ScholarPubMed
Christensen, S. K., Dagenais, N., Chory, J. and Weigel, D. (2000) Regulation of auxin response by the protein kinase PINIOD. Cell 100, 469–478CrossRefGoogle Scholar
Ciardi, J. A., Tieman, D. M., Lund, S. T., Jones, J. B., Stall, R. E. and Klee, H. J. (2000) Response to Xanthomoanas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiology 123, 81–92CrossRefGoogle ScholarPubMed
Clark, A. M., Verbeke, J. A. and Bohnert, H. J. (1992) Epidermis-specific gene expression in Pachyphytum. Plant Cell 4, 1189–1198CrossRefGoogle ScholarPubMed
Clark, K. L., Larsen, P. B., Wang, X. and Chang, C. (1998) Association of the Arabidopsis CTR1 raf-like kinase with the ETR and ERS ethylene receptors. Proceedings of the National Academy of Sciences, USA 95, 5401–5406CrossRefGoogle Scholar
Clark, S. E., Running, M. P. and Meyerowitz, E. M. (1993) CLAVATA1, a regulator of meristem and flower development inArabidopsis. Development 119, 397–418Google ScholarPubMed
Clark, S. E., Running, M. P., and Meyerowitz, E. M. (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121, 2057–2067Google Scholar
Clark, S. E., Williams, R. W. and Meyerowitz, E. M. (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size inArabidopsis. Cell 89, 575–585Google ScholarPubMed
Clements, J. C. and Atkins, C. A. (2001) Characterization of a non-abscission mutant in Lupinus angustifolius L.: Physiological aspects. Annals of Botany 88, 629–635CrossRefGoogle Scholar
Close, T. J. (1996) Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiologia Plantarum 97, 795–803CrossRefGoogle Scholar
Clouse, S. D., Zurek, D. M., McMorris, T. C. and Baker, M. E. (1992) Effect of brassinolide on gene expression in elongating soybean epicotyls. Plant Physiology 100, 1377–1383CrossRefGoogle ScholarPubMed
Clouse, S. D., Hall, A. F., Langford, M., McMorris, T. C. and Baker, M. E. (1993) Physiological and molecular effects of brassinosteroids onArabidopsis thaliana. Journal of Plant Growth Regulation 12, 61–66CrossRefGoogle Scholar
Clouse, S. D., Langford, M. and McMorris, T. C. (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology 111, 671–678CrossRefGoogle ScholarPubMed
Clowes, F. A. L. (1978) Origin of the quiescent centre in Zea mays. New Phytologist. 80, 409–419CrossRefGoogle Scholar
Cohen, J. D. and Bandurski, R. S. (1982) Chemistry and physiology of the bound auxins. Annual Review of Plant Physiology 33, 403–430CrossRefGoogle Scholar
Compaan, B., Tang, W. C., Bisseling, T. and Franssen, H. (2001) ENOD40 expression in the pericycle precedes cortical cell division in Rhizobium-legume interaction and the highly conserved internal region of the gene does not encode a peptide. Plant and Soil 230, 1–8CrossRefGoogle Scholar
Cooper, W. C. and Henry, W. H. (1971) Abscission chemicals in relation to citrus fruit harvest. Journal of Agricultural and Food Chemistry 19, 559–563CrossRefGoogle Scholar
Cornford, C. A., Black, M., Chapman, J. M. and Baulcombe, D. C. (1986) Expression of α-amylase and other gibberellin-regulated genes in aleurone tissue of developing wheat grains. Planta 169, 420–428CrossRefGoogle ScholarPubMed
Cornforth, J. W., Milborrow, B. V., Ryback, G. and Wareing, P. F. (1965) Chemistry and physiology of ‘dormins’ in sycamore. Identity of sycamore ‘dormin’ with abscisin II. Nature 205, 1269–1270CrossRefGoogle Scholar
Coursol, S., Fan, L.-M., Stunff, H., Spiegel, S., Gilroy, S. and Assmann, S. M. (2003) Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423, 651–654CrossRefGoogle ScholarPubMed
Cousson, A. and Vavasseur, A. (1998) Putative involvement of cytosolic Ca2+ and GTP-binding proteins in cyclic-GMP-mediated induction of stomatal opening by auxin in Commelina communis L. Planta 206, 308–314CrossRefGoogle Scholar
Crabalona, L. (1967) Sur la présence de jasmonate de méthyle lévogyre [(pentène-2yl)-2 oxo-3 cyclopentylacétate de méthyle, cis] dans l'huile essentielle de romarin de Tunisie. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences. Serie C. 264, 2074–2076Google Scholar
Creelman, R. A. and Mullet, J. E. (1995) Jasmonic acid distribution and action in plants: Regulation during development and response to biotic and abiotic stress. Proceedings of the National Academy of Sciences, USA 92, 4114–4119CrossRefGoogle ScholarPubMed
Crick, F. (1970) Diffusion in embryogenesis. Nature 225, 420–422CrossRefGoogle ScholarPubMed
Cusick, F. (1966) On phylogenetic and ontogenetic fusion. In. Trends in Plant Morphogenesis, Cutter, E. G. (ed.), Longmans, Green and Co. Ltd. London, pp. 170–183
D'Agostino, I. B., Deruère, J. and Kieber, J. J. (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiology 124, 1706–1717CrossRefGoogle ScholarPubMed
Dan, H., Imaseki, H., Wasteneys, G. O. and Kazama, H. (2003) Ethylene stimulates endoreduplication but inhibits cytokinesis in cucumber hypocotyls epidermis. Plant Physiology 133, 1726–1731CrossRefGoogle ScholarPubMed
Darvill, A., Augur, C., Bergmann, C., Carlson, R. W., Cheong, J.-J., Eberhard, S., Hahn, M. G., , V.-M., Marfa, V., Meyer, B., Mohnen, D., O'Neill, M. A., Spiro, M. D., Halbeek, H., York, W. S. and Albersheim, P. (1992) Oligosaccharins – oligosaccharides that regulate growth, development and defence responses in plants. Glycobiology 2, 181–198CrossRefGoogle ScholarPubMed
Darwin, F. and Pertz, D. F. M. (1911) On a new method of estimating the aperture of stomata. Philosophical Transactions of the Royal Society (London) B84, 136–154Google Scholar
Davies, R. T., Goetz, D. H., Lasswell, J., Anderson, M. N. and Bartel, B. (1999) IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell 11, 365–376CrossRefGoogle ScholarPubMed
Day, C. D., Galgoci, B. F. C. and Irish, V. P. (1995) Genetic ablation of petal and stamen primordia to elucidate cell interactions during floral development. Development 121, 2887–2895Google ScholarPubMed
Del Campillo, E. and Bennett, A. B. (1996) Pedical breakstrength and cellulase gene expression during tomato flower abscission. Plant Physiology 111, 813–820CrossRefGoogle Scholar
Del Pozo, J. C., Timpte, C., Tan, S., Callis, J. and Estelle, M. (1998) The ubiquitin-related protein RUB1 and auxin responses inArabidopsis. Science 280, 1760–1763Google Scholar
Del Pozo, J. C., Dharmasiri, S., Hellmann, H., Walker, L., Gray, W. M. and Estelle, M. (2002) AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis cullin AtCUL1 is required for auxin responses. Plant Cell 14, 421–433CrossRefGoogle Scholar
Delledonne, M., Xia, Y., Dixon, R. A. and Lamb, C. (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394, 585–588CrossRefGoogle ScholarPubMed
Demole, E., Lederer, E. and Mercier, D. (1962) Isolement et détermination de la structure du jasmonate de méthyle constituant odorant caractéristique de l'essence de jasmin. Helvetica Chimica Acta 45, 675–685CrossRefGoogle Scholar
Demura, T. and Fukuda, H. (1994) Novel vascular cell-specific genes whose expression is regulated temporally and spatially during vascular system development. Plant Cell 6, 967–981Google ScholarPubMed
Devoto, A. and Turner, J. G. (2003) Regulation of jasmonate-mediated plant responses inArabidopsis. Annals of Botany 92, 329–337CrossRefGoogle ScholarPubMed
Diekmann, W., Venis, M. A. and Robinson, D. G. (1995) Auxins induce clustering of the auxin binding protein at the surface of maize coleoptile protoplasts. Proceedings of the National Academy of Sciences, USA 92, 3425–3429CrossRefGoogle ScholarPubMed
Dill, A., Jung, H.-S. and Sun, T.-P. (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proceedings of the National Academy of Sciences, USA 98, 14162–14167CrossRefGoogle ScholarPubMed
Ding, C.-K. and Wang, C. Y. (2003) The dual effects of methyl salicylate on ripening and expression of ethylene biosynthetic genes in tomato fruit. Plant Science 164, 589–596CrossRefGoogle Scholar
Dingwall, C. (1991) Transport across the nuclear envelope: Enigmas and explanations. BioEssays 13, 213–218CrossRefGoogle ScholarPubMed
Dixit, R. and Nasrallah, J. B. (2001) Recognizing self in the self-incompatability response. Plant Physiology 125, 105–108CrossRefGoogle Scholar
Doan, D. N. P., Linnestad, C. and Olsen, O.-A. (1996) Isolation of molecular markers from the barley endosperm coenocyte and the surrounding nucellus cell layers. Plant Molecular Biology 31, 877–886CrossRefGoogle ScholarPubMed
Doares, S. H., Syrovets, T., Weiler, E. W. and Ryan, C. A. (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proceedings of the National Academy of Sciences, USA 92, 4095–4098CrossRefGoogle ScholarPubMed
Dolan, L. (1996) Pattern in root epidermis: An interplay of diffusible signals and cellular geometry. Annals of Botany 77, 547–553CrossRefGoogle Scholar
Dolan, L., Linstead, P. and Roberts, K. (1997) Developmental regulation of pectic polysaccharides in the root meristem ofArabidopsis. Journal of Experimental Botany 48, 713–720CrossRefGoogle Scholar
Dolmetsch, R. E., Xu, K. and Lewis, R. S. (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392, 933–936CrossRefGoogle ScholarPubMed
Donovan, N., Peart, J., Roberts, K., Knox, J. P., Wang, M. and Neill, S. J. (1993) Production and characterisation of monoclonal antibodies against guard cell protoplasts of Pisum sativum. Journal of Experimental Botany 44, Supplement, P1.16Google Scholar
Draper, J. (1997) Salicylate, superoxide synthesis and cell suicide in plant defence. Trends in Plant Science 2, 162–165CrossRefGoogle Scholar
Dubrovsky, J. G., Doerner, P. W., Colon-Carmona, A. and Rost, T. L. (2000) Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiology 124, 1648–1654CrossRefGoogle ScholarPubMed
Durner, J. and Klessig, D. F. (1999) Nitric oxide as a signal in plants. Current Opinion in Plant Biology 2, 369–374CrossRefGoogle ScholarPubMed
Durner, J., Wendehenne, D. and Klessig, D. F. (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proceedings of the National Academy of Sciences, USA 95, 10328–10333CrossRefGoogle ScholarPubMed
Dwek, R. A. (1995) Glycobiology: More functions for oligosaccharides. Science 269, 1234–1235CrossRefGoogle ScholarPubMed
Eagles, C. F. and Wareing, P. F. (1963) Dormancy regulation in woody plants. Experimental induction of dormancy inBetula pubescens. Nature 199, 874–875CrossRefGoogle Scholar
Eberhard, S., Doubrava, N., Marfa, V., Mohnen, D., Southwick, A., Darvill, A. and Albersheim, P. (1989) Pectic cell wall fragments regulate tobacco thin-cell-layer explant morphogenesis. Plant Cell 1, 747–755CrossRefGoogle ScholarPubMed
Elder, R. H. and Osborne, D. J. (1993) Function of DNA synthesis and DNA repair in the survival of embryos during early germination and in dormancy. Seed Science Research 3, 43–53CrossRefGoogle Scholar
Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. and Nagata, S. (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50CrossRefGoogle ScholarPubMed
Engelmann, W., Sommerkamp, A., Veit, S. and Hans, J. (1997) Methyl jasmonate affects the circadian petal movement of Kalanchloe flowers. Biological Rhythms Research 28, 377–390CrossRefGoogle Scholar
English, P. J., Lycett, G. W., Roberts, J. A. and Jackson, M. B. (1995) Increased 1-aminocyclopropane-1-carboxylic acid oxidase activity in shoots of flooded tomato plants raises ethylene production to physiologically active levels. Plant Physiology 109, 1435–1440CrossRefGoogle ScholarPubMed
Ephritikhine, G., Barbier-Brygoo, H., Muller, J. F. and Guern, J. (1987) Auxin effect on the transmembranes potential difference of wild-type and mutant tobacco protoplasts exhibiting a differential sensitivity to auxin. Plant Physiology 83, 801–804CrossRefGoogle Scholar
Esau, K. (1965) Plant Anatomy, 2nd Edition. John Wiley & Sons Inc., New York
Evans, D. E., Dodds, J. H., Lloyd, P. C., ap Gwynn, I. and Hall, M. A. (1982) A study of the subcellular localisation of an ethylene binding site in developing cotyledons of Phaseolus vulgaris by high resolution autoradiography. Planta 154, 48–52CrossRefGoogle ScholarPubMed
Evans, M., Black, M. and Chapman, J. (1975) Induction of hormone sensitivity by dehydration is one possible role for drying in cereal seeds. Nature 258, 144–145CrossRefGoogle Scholar
Fahn, A. (1990) Plant Anatomy, 4th Edition, Pergamon Press, Ellmsford, NY
Fan, D. F. and Maclachlan, G. A. (1967) Studies on the regulation of cellulase activity and growth in excised pea epicotyl sections. Canadian Journal of Botany 45, 1837–1844CrossRefGoogle Scholar
Farkas, V. and Maclachlan, G. (1988) Stimulation of pea 1,4-β-glucanase activity by oligosaccharides derived from xyloglucan. Carbohydrate Research 184, 213–220CrossRefGoogle Scholar
Farmer, E. E. and Ryan, C. A. (1990) Inter-plant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences, USA 87, 7713–7716CrossRefGoogle Scholar
Farmer, E. E., Pearce, G. and Ryan, C. A. (1989) In vitro phosphorylation of plant plasma membrane proteins in response to the proteinase inhibitor inducing factor. Proceedings of the National Academy of Sciences, USA 86, 1539–1542CrossRefGoogle ScholarPubMed
Farmer, E. E., Moloshok, T. D., Saxton, M. J. and Ryan, C. A. (1991) Oligosaccharide signalling in plants – specificity of oligouronide-enhanced plasma-membrane protein phosphorylation. Journal of Biological Chemistry 266, 3140–3145Google Scholar
Fath, A., Bethke, P. C. and Jones, R. L. (1999) Barley aleurone cell death is not apoptotic: Characterization of nuclease activities and DNA degradation. Plant Journal 20, 305–315CrossRefGoogle Scholar
Feldman, K. A. and Marks, M. D. (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: A non-tissue culture approach. Molecular and General Genetics 208, 1–9CrossRefGoogle Scholar
Feldman, L. J. (1976) Th. de novo origin of the quiescent center in regenerating root apices o. Zea mays. Planta 128, 207–212CrossRefGoogle Scholar
Feldman, L. J. and Torrey, J. G. (1976) The isolation and culture in vitro of the quiescent centre of Zea mays. American Journal of Botany 63, 345–355CrossRefGoogle Scholar
Fernandez, D. E., Heck, G. R., Perry, S. E., Patterson, S.E, Bleeker, A. B. and Fang, S.-C. (2000) The embryo MADS domain factor AGL 15 acts postembryonically: Inhibition of perianth senescence and abscission via constitutive expression. Plant Cell 12, 183–198CrossRefGoogle Scholar
Feys, B. J., Benedetti, C. E., Penfold, C. N. and Turner, J. G. (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751–759CrossRefGoogle ScholarPubMed
Finkelstein, R. R., Gampala, S. S. L. and Rock, C. D. (2002) Abscisic acid signalling in seeds and seedlings. Plant Cell, 14, Supplement, S15–S45CrossRefGoogle Scholar
Fletcher, J. C. 2002. Shoot and floral meristem maintenance in Arabidopsis. Annual Review of Plant Physiology and Plant Molecular Biology 53, 45–66CrossRefGoogle ScholarPubMed
Fletcher, J. C., Brand, U., Running, M. P., Simon, R. and Meyerowitz, E. M. (1999) Signalling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911–1914CrossRefGoogle Scholar
Forde, B. G. (2000) Nitrate transporters in plants: Structure, function and regulation. Biochemica et Biophysica Acta 1465, 219–235CrossRefGoogle ScholarPubMed
Forde, B. G. (2002) The role of long-distance signalling in plant responses to nitrate and other nutrients. Journal of Experimental Botany 53, 39–43Google ScholarPubMed
Friedrichsen, D. M., Joazeiro, C. A. P., Li, J., Hunter, T. and Chory, J. (2000) Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiology 123, 1247–1256CrossRefGoogle ScholarPubMed
Friml, J. and Palme, K. (2002) Polar auxin transport – old questions and new concepts?Plant Molecular Biology 49, 273–284CrossRefGoogle ScholarPubMed
Friml, J., Wisniewska, J., Benkova, E., Mendgen, K. and Palme, K. (2002a) Lateral relocation of auxin efflux regulator PIN3 mediates tropism inArabidopsis. Nature 415, 806–809CrossRefGoogle Scholar
Friml, J., Benkova, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Jürgens, G. and Palme, K. (2002b) AtPIN4 mediates sink-driven auxin gradients and root patterning inArabidopsis. Cell 108, 661–673Google Scholar
Friml, J., Vietin, A., Sauer, M., Weijers, D., Schwartz, H., Hamann, T., Offringa, R. and Jürgens, G. (2003) Efflux-dependent auxin gradients establish the apical-basal axis ofArabidopsis. Nature 426, 147–153CrossRefGoogle ScholarPubMed
Fry, S. C., Aldington, S., Hetherington, P. R. and Aitken, J. (1993) Oligosaccharides as signals and substrates in the plant cell wall. Plant Physiology 103, 1–5CrossRefGoogle ScholarPubMed
Fu, X. and Harberd, N. (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740–743CrossRefGoogle ScholarPubMed
Fu, X., Sudhakar, D., Peng, J., Richards, D. E., Christou, P. and Harberd, P. (2001) Expression of Arabidopsis GAI in transgenic rice represses multiple gibberellin responses. Plant Cell 13, 1791–1802CrossRefGoogle ScholarPubMed
Fu, X., Richards, D. E., Ait-ali, T., Hynes, L. W., Ougham, H., Peng, J. and Harberd, N. P. (2002) Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell 14, 3191–3200CrossRefGoogle ScholarPubMed
Fujioka, S. and Yokota, T. (2003) Biosynthesis and metabolism of brassinosteroids. Annual Review of Plant Biology 54, 137–164CrossRefGoogle ScholarPubMed
Fujita, H. and Syono, K. (1996) Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabidopsis thaliana. Plant and Cell Physiology 37, 1094–1101CrossRefGoogle ScholarPubMed
Fukaki, H., Wysocka-Diller, J., Kato, T., Fujisawa, H., Benfey, P. N. and Tasaka, M. (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant Journal 14, 425–430CrossRefGoogle ScholarPubMed
Fukuda, H. (1994) Redifferentiation of single mesophyll cells into tracheary elements. International Journal of Plant Science 155, 262–271CrossRefGoogle Scholar
Fukuda, H. (1996) Xylogenesis: Initiation, progression, and cell death. Annual Review of Plant Physiology and Plant Molecular Biology 47, 299–325CrossRefGoogle Scholar
Fukuda, H. (1997) Tracheary element differentiation. Plant Cell 9, 1147–1156CrossRefGoogle ScholarPubMed
Fukuda, H. and Komamine, A. (1980) Direct evidence for cytodifferentiation to tracheary elements without intervening mitosis in a culture of single cells isolated from the mesophyll of Zinnia elegans. Plant Physiology 65, 61–64CrossRefGoogle Scholar
Gaff, D. F. and Ellis, R. P. (1974) Southern African grasses with foliage that revives after dehydration. Bothalia 11, 305–308CrossRefGoogle Scholar
Gaffney, T., Freidrich, L., Vernooji, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H. and Ryals, J. (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754–756CrossRefGoogle ScholarPubMed
Galway, M. E., Marucci, J. D., Lloyd, A. M., Walbot, V., Davis, R. W. and Schiefelbein, J. W. (1994) The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Developmental Biology 166, 740–754CrossRefGoogle ScholarPubMed
Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A. and Palme, K. (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226–2230CrossRefGoogle ScholarPubMed
Gamble, R., Coonfield, M. and Schaller, G. E. (1998) Histidine kinase activity of the ETR1 ethylene receptor fromArabidopsis. Proceedings of the National Academy of Sciences, USA 95, 7825–7829CrossRefGoogle Scholar
Gamble, R. L., Qu, X. and Schaller, G. E. (2002) Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiology 128, 1428–1438CrossRefGoogle ScholarPubMed
Gan, S. and Amasino, R. M. (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270, 1986–1988CrossRefGoogle ScholarPubMed
Gane, R. (1934) Production of ethylene by some ripening fruit. Nature 134, 1008CrossRefGoogle Scholar
Gao, D., Knight, M. R., Trewavas, A. J., Sattelmacher, B. and Plieth, C. (2004) Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiology 134, 898–908CrossRefGoogle ScholarPubMed
Gao, Z., Chen, Y.-F., Randlett, M. D., Zhao, X.-C., Findell, J. L., Kieber, J. J. and Schaller, G. E. (2003) Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signalling complexes. Journal of Biological Chemistry, 278, 34725–34732CrossRefGoogle Scholar
Geldner, M., Friml, J., York-Dieter, S., Jurgens, G. and Palme, K. (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428CrossRefGoogle ScholarPubMed
Ghoshroy, S., Lartey, R., Sheng, J. and Citousky, V. (1997) Transport of proteins and nucleic acids through plasmodesmata. Annual Review of Plant Physiology and Plant Molecular Biology 48, 27–50CrossRefGoogle ScholarPubMed
Gilroy, S. and Jones, R. L. (1994) Perception of gibberellin and abscisic acid at the external face of plasma membrane of the barley (Hordeum vulgare L) aleurone protoplasts. Plant Physiology 104, 1185–1192CrossRefGoogle ScholarPubMed
Girardin, J. P. L. (1864) Einfluss des Leuchtgases auf die Promenaden und Strassen Baume. Jahresber Agrikulturchem, Versuchssta, Berlin, 7, 199–200Google Scholar
Goffreda, J. C., Szymkowiak, E. J., Sussex, I. M. and Mutschler, M. A. (1990) Chimeric tomato plants show that aphid resistance and triacylglucose production are epidermal autonomous characters. Plant Cell 2, 643–649CrossRefGoogle ScholarPubMed
Goldsmith, M. H. M. (1977) The polar transport of auxin. Annual Reviews of Plant Physiology 28, 439–478CrossRefGoogle Scholar
Goldsworthy, A. and Mina, M. G. (1991) Electrical patterns of tobacco cells in media containing indole-3-acetic acid or 2,4-dichlorophenoxyacetic acid, their relation to organogenesis and herbicide action. Planta 183, 368–373CrossRefGoogle ScholarPubMed
Gollin, D. J., Darvill, A. G. and Albersheim, P. (1984) Plant cell wall fragments inhibit flowering and promote vegetative growth inLemna minor. Biology of the Cell 51, 275–280Google Scholar
Golub, S. J. and Wetmore, R. H. (1948) Studies of development in the vegetative shoot of Equisetum arvense L. I. The shoot apex. American Journal of Botany 35, 755–762CrossRefGoogle Scholar
Gomez-Cadenas, A., Zentella, R., Walker-Simmons, M. K. and Ho, T.-H. D. (2001) Gibberellin/abscisic acid antagonism in barley aleurone cells: Site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell 13, 667–679CrossRefGoogle ScholarPubMed
Goring, D. R. and Rothstein, S. J. (1992) The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase. Plant Cell 4, 1273–1281CrossRefGoogle Scholar
Gorst, J., Overall, R. L., and Wernicke, W. (1987) Ionic currents traversing cell clusters from carrot suspension cultures reveal perpetuation of morphogenetic potential as distinct from induction to embryogenesis. Cell Differentiation 21, 101–110CrossRefGoogle ScholarPubMed
Goto, N., Starke, M. and Kranz, A. R. (1987) Effect of gibberellins on flower development of the pin-formed mutant ofArabidopsis thaliana. Arabidopsis Information Services 23, 66–71Google Scholar
Grabov, A. and Blatt, M. R. (1999) A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiology 119, 277–287CrossRefGoogle ScholarPubMed
Granell, A., Cercos, M. and Carbonell, J. (1998) Plant cysteine proteinases in germination and senescence. In: Handbook of Proteolytic Enzymes, Barret A. J., Rawlings, N. D. and Woessner, J. F. (eds.). Academic Press, San Diego, London, pp. 578–583
Gray, W. M., del Pozo, J. C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W. L., Yang, M., Hong, M. and Estelle, M. (1999) Identification of an SCF-ligase complex required for auxin response inArabidopsis thaliana. Genes and Development 13, 1678–1691CrossRefGoogle Scholar
Gray, W. M., Kepinski, S., Rouse, D., Leyser, O. and Estelle, M. (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414, 271–276CrossRefGoogle ScholarPubMed
Grbic, V. and Bleecker, A. B. (1995) Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant Journal 8, 595–602CrossRefGoogle Scholar
Green, P. B. (1999) Expression of pattern in plants: Combining molecules and calculus-based biophysical paradigms. American Journal of Botany 86, 1059–1076CrossRefGoogle Scholar
Green, T. R. and Ryan, C. A. (1972) Wound-induced proteinase inhibitor in plant leaves: A possible defense mechanism against insects. Science 175, 776–777CrossRefGoogle ScholarPubMed
Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D., Steffens, G. L., Flippen-Anderson, J. L. and Cook, J. C. (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281, 216–217CrossRefGoogle Scholar
Gubler, F., Falla, R., Roberts, J. K. and Jacobsen, J. V. (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: Evidence for myb transactivation of a high-p1 α-amylase gene promoter. Plant Cell 7, 1879–1891Google ScholarPubMed
Gubler, F., Chandler, P. M., White, R. G., Llewellyn, D. J. and Jacobsen, J. V. (2002) Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physiology 129, 191–200CrossRefGoogle ScholarPubMed
Guilfoyle, T. J. and Hagan, G. (2001) Auxin response factors. Journal of Plant Growth Regulation 20, 281–291CrossRefGoogle Scholar
Guinel, F. C. and Geil, R. D. (2002) A model for the development of the rhizobial and arbuscular mycorrhizal symbiosis in legumes and its use to understand the roles of ethylene in the establishment of these two symbiosis. Canadian Journal of Botany 80, 695–720CrossRefGoogle Scholar
Gunawardena, A. H. L. A. N., Pearce, D. M., Jackson, M. B., Hawes, C. R. and Evans, D. E. (2001a) Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.)Planta 212, 205–214CrossRefGoogle Scholar
Gunawardena, A. H. L. A. N., Pearce, D. M. E., Jackson, M. B., Hawes, C. R. and Evans, D. E. (2001b) Rapid changes in cell wall pectic polysaccharides are closely associated with early stages of aerenchyma formation, a spatially localized form of programmed cell death in roots of maize (Zea mays L.) promoted by ethylene. Plant, Cell and Environment 24, 1369–1375CrossRefGoogle Scholar
Guo, H. and Ecker, J. R. (2003) Plant responses to ethylene gas are mediated by SCFEBP1/EBP2-dependent proteolysis of EIN3 transcription factor. Cell 115, 667–677CrossRefGoogle ScholarPubMed
Guzman, P. and Ecker, J. R. (1990) Exploring the triple response Arabidopsis to identify ethylene-related mutants. Plant Cell 2, 513–523CrossRefGoogle Scholar
Haberer, G. and Kieber, J. J. (2002) Cytokinins: New insights into a classic phytohormone. Plant Physiology 128, 354–362CrossRefGoogle ScholarPubMed
Hackett, R. M., Ho, C., Lin, Z., Foote, H. C. C., Fray, R. G. and Grierson, D. (2000) Anti-sense inhibition of the Nr gene restores normal ripening to the tomato Never ripe mutant, consistent with the ethylene receptor-inhibition model. Plant Physiology 124, 1079–1086CrossRefGoogle Scholar
Hadfield, K. A. and Bennett, A. B. (1998) Polygalacturonases: Many genes in search of a function. Plant Physiology 117, 337–343CrossRefGoogle ScholarPubMed
Hake, S. and Freeling, M. (1986) Analysis of genetic mosaics shows that extra epidermal cell divisions in Knotted mutant maize plants are induced by adjacent microphyll cells. Nature 320, 621–623CrossRefGoogle Scholar
Hall, A. E., Findell, J. l., Schaller, G. E., Sisler, E. C. and Bleecker, A. B. (2000) Ethylene perception by the ERS1 protein inArabidopsis. Plant Physiology 123, 1449–1458CrossRefGoogle ScholarPubMed
Hamann, T., Benkova, E., Bäurle, I., Kientz, M. and Jürgens, G. (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes and Development 16, 1610–1615CrossRefGoogle ScholarPubMed
Han, B., Berjak, P., Pammenter, N., Farrant, J., and Kermode, A. R. (1997) The recalcitrant plant species, Castanospermum australe and Trichilia dregeana, differ in their ability to produce dehydrin-related polypeptides during seed maturation and in response to ABA or water-deficit-related stresses. Journal of Experimental Botany 48, 1717–1726CrossRefGoogle Scholar
Hanada, K., Nishiuchi, Y. and Hirano, H. (2003) Amino acid residues on the surface of the soybean 4-kDa peptide involved in the interaction with its binding protein. European Journal of Biochemistry 270, 2583–2592CrossRefGoogle ScholarPubMed
Hangarter, R. P. and Good, N. E. (1981) Evidence that IAA conjugates are slow-release sources of free IAA in plant tissues. Plant Physiology 68, 1424–1427CrossRefGoogle ScholarPubMed
Hardtke, C. and Berleth, T. (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO Journal 17, 1405–1411CrossRefGoogle ScholarPubMed
Harper, J. R. and Balke, N. E. (1981) Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiology 68, 1349–1353CrossRefGoogle ScholarPubMed
Hartung, W. (1983) The site of action of abscisic acid at the guard cell plasmalemma of Valerianella locusta. Plant Cell and Environment 6, 427–428CrossRefGoogle Scholar
Hartung, W., Sauter, A. and Hose, E. (2002) Abscisic acid in the xylem: Where does it come from, where does it go?Journal of Experimental Botany 53, 27–32CrossRefGoogle Scholar
Haughn, G. W. and Somerville, C. R. (1986) Sulfonylurea-resistant mutants ofArabidopsis thaliana. Molecular and General Genetics 204, 430–434CrossRefGoogle Scholar
He, J.-X., Gendron, J. M., Yang, Y., Li, J. and Wang, Z.-Y. (2002) The GKS3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signalling pathway inArabidopsis. Proceedings of the National Academy of Sciences, USA 99, 10185–10190CrossRefGoogle Scholar
He, Z., Wang, Z.-Y., Li, J., Zhu, Q., Lamb, C., Ronald, P. and Chory, J. (2000) Perception of brassinosteroidsby the extracellular domain of the receptor kinase BRI1. Science 288, 2360–2363CrossRefGoogle ScholarPubMed
Hecht, K. (1912) Studien über den Vorgang der Plasmolyse. Beitrage zür Biologie der Pflanzen 11, 133–189Google Scholar
Hedden, P. and Phillips, A. L. (2000) Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Sciences 5, 523–530CrossRefGoogle ScholarPubMed
Heidstra, R., Yang, W. C., Yalcin, T., Peck, S., Emons, A.-M., Kammen, A. and Biseling, T. (1997) Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development 124, 1781–1787Google Scholar
Henderson, J., Bauly, J. M., Ashford, D. A., Oliver, S. C., Hawes, C. R., Lazarus, C. M. and Venis, M. A. (1997) Retention of maize auxin-binding protein in the endoplasmic reticulum: Quantifying escape and the role of auxin. Planta 202, 313–323CrossRefGoogle ScholarPubMed
Henderson, J., Lyne, L. and Osborne, D. J. (2001a) Failed expression of an endo-β-1,4-glucan-hydrolase (cellulase) in a non-abscinding mutant of Lupinus angustifolius cv. Danja. Phytochemistry 58, 1025–1034CrossRefGoogle Scholar
Henderson, J., Davies, H. A., Heyes, S. J. and Osborne, D. J. (2001b) The study of a monocotyledon abscission zone using microscopic, chemical, enzymatic and solid state 13CCP/MAS NMR analyses. Phytochemistry 56, 131–139CrossRefGoogle Scholar
Hensel, L. L., Grbic, V., Baumgerten, D. A. and Bleecker, A. B. (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5, 553–564CrossRefGoogle ScholarPubMed
Herschbach, C., Zalm, E., Schneider, A., Jouanin, L., Kok, L. J. and Rennenberg, H. (2000) Regulation of sulfur nutrition in wild-type and transgenic poplar over-expressing 8-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S. Plant Physiology 124, 461–474CrossRefGoogle ScholarPubMed
Hertel, R., Thomson, K.-St. and Russo, V. E. A. (1972) In vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107, 325–340CrossRefGoogle ScholarPubMed
Hesse, T., Feldwisch, J., Balschusemann, D., Bauw, G., Puype, M., Vandekeckhove, J., Löbler, M., Klämbt, D., Schell, J. and Palme, K. (1989) Molecular cloning and structural anlysis of a gene from Zea mays (L.) coding for the plant hormone auxin. EMBO Journal 8, 2453–2461Google Scholar
Heuros, G., Varotto, S., Salamini, F. and Thompson, R. D. (1995) Molecular characterization of BET1, a gene expressed in the endosperm transfer cells of maize. Plant Cell 7, 747–757CrossRefGoogle Scholar
Hey, S. J., Bacon, A., Burnett, E. and Neill, S. J. (1997) Abscisic acid signal transduction in epidermal cells of Pisum sativum L. Argenteum: Both dehydrin mRNA accumulation and stomatal response require protein phosphorylation and de-phosphorylation. Planta 202, 85–92CrossRefGoogle Scholar
Himanen, K., Boucheron, E., Vanneste, S., Engler, J. de A., Inze, D. and Beeckman, T. (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14, 2339–2351CrossRefGoogle ScholarPubMed
Holroyd, G. H., Hetherington, A. M. and Gray, J. E. (2002) A role for the cuticular waxes in the environmental control of stomatal development. New Phytologist 153, 433–439CrossRefGoogle Scholar
Hooley, R., Beale, M. H. and Smith, S. J. (1991) Gibberellin perception at the plasma membrane of Avena fatua aleurone protoplasts. Planta 183, 274–280CrossRefGoogle ScholarPubMed
Hooley, R., Beale, M. H., Smith, S. J., Walker, R. P., Rushton, P. J., Whitford, P. N. and Lazarus, C. M. (1992) Gibberellin perception and the Avena fatua aleurone: Do our molecular keys fit the correct locks. Biochemical Society Transcations 20, 85–89CrossRefGoogle ScholarPubMed
Hooley, R., Smith, S. J., Beale, M. H. and Walker, R. P. (1993) In vivo photoaffinity labelling of gibberellin-binding proteins in Avena fatua aleurone. Australian Journal of Plant Physiology 20, 573–584CrossRefGoogle Scholar
Hornberg, C. and Weiler, E. W. (1984) High affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature 310, 321–324CrossRefGoogle Scholar
Horton, R. F. and Osborne, D. J. (1967) Senescence, abscission and cellulase activity inPhaseolus vulgaris. Nature 214, 1086–1088CrossRefGoogle Scholar
Howe, G. A. and Ryan, C. A. (1999) Suppressors of systemin signalling identify genes in the tomato wound response pathway. Genetics 153, 1411–1421Google Scholar
Hua, J. and Meyerowitz, E. M. (1998) Ethylene responses are negatively regulated by a receptor gene family inArabidopsis thaliana. Cell 94, 261–271Google ScholarPubMed
Hua, J., Chang, C., Sun, Q. and Meyerowitz, E. M. (1995) Ethylene insensitivity conferred Arabidopsis ERS gene. Science 269, 1712–1714CrossRefGoogle ScholarPubMed
Hua, J., Sakai, S., Nourizadeh, S., Chen, Q. C., Bleecker, A. B., Ecker, J. R. and Meyerowitz, E. M. (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10, 1321–1332CrossRefGoogle ScholarPubMed
Huh, W.-K. I., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. and O'Shea, E. K. (2003) Global analysis of protein localization in budding yeast. Nature 425, 686–691CrossRefGoogle ScholarPubMed
Hull, A. K., Vij, R. and Celenza, J. L. (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proceedings of the National Academy of Sciences USA 97, 2379–2384CrossRefGoogle ScholarPubMed
Hülskamp, M., Miséra, S. and Jürgens, G. (1994) Genetic dissection of trichome cell development in Arabidopsis. Cell 76, 555–566CrossRefGoogle ScholarPubMed
Hwang, I. and Sheen, J. (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413, 383–389CrossRefGoogle ScholarPubMed
Hwang, I., Chen, H.-C. and Sheen, J. (2002) Two-component signal transduction pathways inArabidopsis. Plant Physiology 129, 500–515CrossRefGoogle Scholar
Ikeda, A., Ueguchi-Tanaka, M., Sonoda, Y., Kitano, H., Koshioka, M., Futsuhara, Y., Matsuoka, M. and Yamaguchi, J. (2001) Slender rice, a constitutive gibberellin response mutant is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13, 999–1010CrossRefGoogle ScholarPubMed
Imamura, A., Hanaki, N., Umeda, H., Nakamura, A., Suzuki, T., Ueguchi, C. and Mizuno, T. (1998) Response regulators implicated in His-to-Asp phospho-transfer signalling inArabidopsis. Proceedings of the National Academy of Sciences, USA 95, 2691–2696CrossRefGoogle Scholar
Imamura, A., Hanaki, N., Nakamura, A., Suzuki, T., Taniguchi, M., Kiba, T., Ueguchi, C., Sugiyama, T. and Mizuno, T. (1999) Compilation and characterization of Arabidopsis thaliana response regulators implicated in His-Asp phospho-relay signal transduction. Plant and Cell Physiology 40, 733–742CrossRefGoogle Scholar
Imaseki, H., Pjon, C. J. and Furuya, M. (1971) Phytochrome action in Oryza sativa L. Plant Physiology 48, 241–244CrossRefGoogle ScholarPubMed
Imber, D. and Tal, M. (1970) Phenotypic reversion of flacca, a wilty mutant of tomato, by abscisic acid. Science 169, 592–593CrossRefGoogle ScholarPubMed
Ingold, E., Sugiyama, M., and Komamine, A. (1990) L-α-aminoxy-β-phenylpropionic acid inhibits lignification but not the differentiation to tracheary elements of isolated mesophyll cells of Zinnia elegans. Physiologia Plantarum 78, 67–74CrossRefGoogle Scholar
Inohara, N., Shimomura, S., Fukui, T. and Futai, M. (1989) Auxin-binding protein located in the endoplasmatic reticulum of maize shoots: Molecular cloning and complete primary structure. Proceedings of the National Academy of Sciences, USA 83, 3654–3568Google Scholar
Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayasjhi, M., Kato, T., Tabata, S., Shinozaki, K. and Katimoto, T. (2001) Identification of CRE1 as a cytokinin receptor fromArabidopsis. Nature 409, 1060–1063CrossRefGoogle Scholar
Irvine, R. F. and Osborne, D. J. (1973) The effect of ethylene on 1-14C glycerol incorporation into phospholipids of etiolated pea stems. Biochemical Journal 136, 1133–1135CrossRefGoogle ScholarPubMed
Itoh, H., Ueguchi-Tanaka, M., Sato, Y., Ashikari, M. and Matsuoka, M. (2002) The gibberellin signalling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14, 57–70CrossRefGoogle ScholarPubMed
Jacinto, T., McGurl, B., Franceschi, V., Delano-Freier, J. and Ryan, C. A. (1997) Tomato prosystemin promoter confers wound-inducible, vascular bundle-specific expression of the β-glucoronidase gene in transgenic tomato plants. Planta 203, 406–412CrossRefGoogle Scholar
Jackson, D., Veit, B. and Hake, S. (1994) Expression of maize KNOTTED1 relates homeo-box genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120, 405–413Google Scholar
Jackson, M. B. (1993) Are plant hormones involved in root to shoot communication?Advances in Botanical Research 19, 103–187CrossRefGoogle Scholar
Jackson, M. B. (2002) Long-distance signalling from roots to shoots assessed: The flooding story. Journal of Experimental Botany 53, 175–181CrossRefGoogle ScholarPubMed
Jackson, M. B. and Armstrong, W. (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology 1, 274–287CrossRefGoogle Scholar
Jackson, M. B., Summers, J. E. and Voesenek, L. A. C. J. (1997) Potamogeton pectinatus: A vascular plant that makes no ethylene. In. Biology and Biotechnology of the Plant Hormone Ethylene, Kanellis, A. K. et al. (eds.). Kluwer Academic Press, Dordrecht, pp. 229–237CrossRef
Jacobs, W. P., McCready, C. C. and Osborne, D. J. (1966) Transport of the auxin 2,4-dichlorophenoxyacetic acid through abscission zones, pulvini, and petioles of Phaseolus vulgaris. Plant Physiology 41, 725–730CrossRefGoogle ScholarPubMed
Jaffe, L. F. (1958) Tropistic responses of zygotes of the Fucaceae to polarized light. Experimental Cell Research 15, 282–299CrossRefGoogle ScholarPubMed
Jaffe, L. F. (1966) Electrical currents through the developing Fucus egg. Proceedings of the National Academy of Sciences, USA 56, 1102–1109CrossRefGoogle ScholarPubMed
Jaffe, M. J., Leopold, A. C. and Staples, R. C. (2002) Thigmo responses in plants and fungi. American Journal of Botany 89, 375–382CrossRefGoogle ScholarPubMed
Jeong, S., Trotochaud, A. E. and Clark, S. E. (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11, 1925–1934CrossRefGoogle ScholarPubMed
Jerie, P. H., Shaari, A. R. and Hall, M. A. (1979) The compartmentation of ethylene in developing cotyledons of Phaseolus vulgaris L. Planta 144, 503–507CrossRefGoogle ScholarPubMed
John, I., Drake, R., Farrell, A., Cooper, W., Lee, P., Horton, P. and Grierson, D. (1995) Delayed leaf senescence in ethylene-deficient ACC oxidase anti-sense tomato plants: Molecular and physiological analysis. Plant Journal 7, 483–490CrossRefGoogle Scholar
Johnson, M. A. and Preuss, D. (2003) On your mark, get set, grow! LePRK2-LAT52 interactions regulate pollen tube growth. Trends in Plant Science 8, 97–99CrossRefGoogle ScholarPubMed
Jones, A. M. and Herman, E. M. (1993) KDEL-containing auxin-binding protein is secreted to the plasma membrane and cell wall. Plant Physiology 101, 595–606CrossRefGoogle ScholarPubMed
Jones, A. M., Im, K.-H., Savka, M. A., Wu, M.-J., DeWitt, G., Shillito, R. and Binns, A. N. (1998a) Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282, 1114–1117CrossRefGoogle Scholar
Jones, H. D., Smith, S. J., Desikan, R., Plakidou-Dymock, S., Lovegrove, A. and Hooley, R. (1998b) Heterotrimeric G proteins are implicated in gibberellin induction of α-amylase gene expression in wild oat aleurone. Plant Cell 10, 245–253CrossRefGoogle Scholar
Kagan, M. L. and Sachs, T. (1991) Development of immature stomata: Evidence for epigenetic selection of a spacing pattern. Developmental Biology 146, 100–105CrossRefGoogle ScholarPubMed
Kagan, M. L., Novoplansky, N. and Sachs, T. (1992) Variable cell lineages from the functional pea epidermis. Annals of Botany 69, 303–312CrossRefGoogle Scholar
Kaihara, S., Watanabe, K. and Takimoto, A. (1981) Flower-inducing effect of benzoic and salicylic acids on various strains of Lemna paucicostata andL. minor. Plant Cell Physiology 22, 819–825Google Scholar
Kakimoto, T. (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274, 982–985CrossRefGoogle ScholarPubMed
Kakimoto, T. (1998) Cytokinin signalling. Current Opinions in Plant Biology 1, 399–403CrossRefGoogle Scholar
Kakimoto, T. (2001) Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant Cell Physiology 42, 677–685CrossRefGoogle ScholarPubMed
Kalla, R., Shimamoto, K., Potter, R., Nielsen, P. S., Linnestad, C. and Olsen, O.-A. (1994) The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone-specific gene expression in transgenic rice. Plant Journal 6, 849–860CrossRefGoogle ScholarPubMed
Kaminek, M., Dobrev, P., Gaudinová, A., Motyka, V., Malbeck, J., Trávièkova, A. and Trčková, M. (2000) Potential physiological function of cytokinin binding proteins in seeds of cereals. Plant Physiology and Biochemistry 38, Supplement, S79Google Scholar
Kaminek, M., Trčková, M., Fox, J. E. and Gaudinová, A. (2003) Comparison of cytokinin-binding proteins from wheat and oat grains. Physiologia Plantarum 117, 453–458CrossRefGoogle ScholarPubMed
Karlson, P. (1956) Biochemical studies on insect hormones. Vitamins and Hormones 14, 227–266CrossRefGoogle ScholarPubMed
Kawai, M., Samarajeewa, P. K., Barrero, R. A., Nishiguchi, M. and Uchimiya, H. (1998) Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots. Planta 204, 277–287CrossRefGoogle Scholar
Kayes, J. M. and Clark, S. E. (1998) CLAVATA2, a regulator of meristem and organ development inArabidopsis. Development 125, 3843–3851Google ScholarPubMed
Keefe, D., Hinz, U. and Meins, F. (1990) The effect of ethylene on the cell-type-specific and intracellular localization of β 1,3-glucanase and chitinase in tobacco leaves. Planta 182, 43–51CrossRefGoogle Scholar
Kende, H. (1993) Ethylene biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 44, 283–307CrossRefGoogle Scholar
Kepenski, S. and Leyser, O. (2002) Ubiquitination and auxin signalling: A degrading story. Plant Cell 14, Supplement, S81–95Google Scholar
Kermode, A. R. (1997) Approaches to elucidate the basis of desiccation-tolerance in seeds. Seed Science Research 7, 75–95CrossRefGoogle Scholar
Khurana, J. P. and Maheshwari, S. C. (1978) Induction of flowering in Lemna paucicostata by salicylic acid. Plant Science Letters 12, 127–131CrossRefGoogle Scholar
Kiba, A., Sugimoto, M., Toyoda, K., Ichinose, Y., Yamada, T. and Shiraishi, T. (1998) Interaction between cell wall and plasma membrane via RGD motif is implicated in plant defense responses. Plant and Cell Physiology 39, 1245–1249CrossRefGoogle Scholar
Kiba, T., Taniguchi, M., Imamura, A., Ueguchi, C., Mizuno, T. and Sugiyama, T. (1999) Differential expression of genes for response regulators in response to cytokinins and nitrate inArabidopsis thaliana. Plant and Cell Physiology 40, 767–771CrossRefGoogle Scholar
Kieber, J. J., Rothenberg, M., Roman, G., Feldmann, K. A. and Ecker, J. R. (1993) CTR1, a negative regulator of the ethylene response pathway i. Arabidopsis, encodes a member of the Raf family of protein kinases. Cell, 72, 427–441CrossRefGoogle ScholarPubMed
Kim, J., Harter, K. and Theologis, A. (1997) Protein-protein interactions among the Aux/IAA proteins. Proceedings of the National Academy of Sciences, USA 94, 11786–11791CrossRefGoogle ScholarPubMed
Kim, Y.-S., Kim, D. and Jung, J. (2000) Two isoforms of soluble auxin receptor in rice (Oryza sativa L.) plants: Binding property for auxin and interaction with plasma membrane H+-ATPase. Plant Growth Regulation 32, 143–150CrossRefGoogle Scholar
Kim, Y.-S., Min, J.-K., Kim, D. and Jung, J. (2001) A soluble auxin-binding protein, ABP57. Journal of Biological Chemistry 276, 10730–10736CrossRefGoogle ScholarPubMed
Kiss, J. Z. and Sack, F. D. (1989) Reduced gravitropic sensitivity in roots of a starch-deficient mutant of Nicotiana sylvestris. Planta 180, 123–130CrossRefGoogle ScholarPubMed
Kiss, J. Z., Guisinger, M. M., Miller, A. J. and Stackhouse, K. S. (1997) Reduced gravitropism in hypocotyls of a starch-deficient mutant of Arabidopsis. Plant Cell Physiology 38, 518–525CrossRefGoogle ScholarPubMed
Klee, H. J. (2002) Control of ethylene-mediated processes in tomato at the level of receptors. Journal of Experimental Botany 53, 2057–2063CrossRefGoogle ScholarPubMed
Klee, H. J. and Tieman, D. (2002) The tomato ethylene receptor gene family: Form and function. Physiologia Plantarum 115, 336–341CrossRefGoogle ScholarPubMed
Klemsdal, S. S., Hughes, W., L⊘nneborg, A., Allen, R. B. and Olsen, O.-A. (1991) Primary structure of a novel barley gene differentially expressed in immature aleurone layers. Molecular and General Genetics 228, 9–16CrossRefGoogle ScholarPubMed
Knox, J. P. (1995) Developmentally regulated proteoglycans and glycoproteins of the plant cell surface. FASEB Journal 9, 1004–1012CrossRefGoogle ScholarPubMed
Knox, J. P. (1997) The use of antibodies to study the architecture and developmental regulation of plant cell walls. International Review of Cytology 171, 79–120CrossRefGoogle Scholar
Knox, J. P., Day, S. and Roberts, K. (1989) A set of cell surface glycoproteins form an early marker of cell position, but not cell type in the root apical meristem of Daucus carota L. Development 106, 47–56Google Scholar
Knox, J. P., Linstead, P. J., King, J., Cooper, C. and Roberts, K. (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181, 512–521CrossRefGoogle ScholarPubMed
Knox, J. P., Linstead, P. J., Peart, J., Cooper, C. and Roberts, K. (1991) Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant Journal 1, 317–326CrossRefGoogle ScholarPubMed
Koka, C. V., Cerny, R. E., Gardner, R. G., Noguchi, T., Fujioka, S., Takatsuto, S., Yoshida, S. and Clouse, S. D. (2000) A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiology 122, 85–98CrossRefGoogle Scholar
Komalavilas, P., Zhu, J.-K. and Nothnagel, E. A. (1991) Arabinogalactan-proteins from the suspension culture medium and plasma membrane of rose cells. Journal of Biological Chemistry 266, 15956–15965Google ScholarPubMed
Koornneef, M. and Veen, J. H. (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.). Heynh. Theoretical and Applied Genetics 58, 257–263CrossRefGoogle Scholar
Koornneef, M., Eden, J., Hanhart, C. J., Stam, P., Braacksma, F. J. and Feenstra, W. J. (1983) Linkage map ofArabidopsis thaliana. Journal of Heredity 74, 265–272CrossRefGoogle Scholar
Kowalczyk, M. and Sandberg, G. (2001) Quantitative analysis of indole-3-acetic acid metabolites inArabidopsis. Plant Physiology 127, 1845–1853CrossRefGoogle Scholar
Kreuger, M. and Holst, G.-J. (1993) Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. Planta 189, 243–248CrossRefGoogle Scholar
Kreuger, M. and Holst, G.-J. (1995) Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota L. Planta 197, 135–141CrossRefGoogle Scholar
Kreuger, M. and Holst, G.-J. (1996) Arabinogalactan proteins and plant differentiation. Plant Molecular Biology 30, 1077–1086CrossRefGoogle ScholarPubMed
Ku, H. S., Suge, H., Rappaport, L. and Pratt, H. K. (1970) Stimulation of rice coleoptile growth by ethylene. Planta 90, 333–339CrossRefGoogle ScholarPubMed
Kumar, A., Altabella, T., Taylor, M. A. and Tiburcio, A. F. (1997) Recent advances in polyamine research. Trends in Plant Science 2, 124–130CrossRefGoogle Scholar
Kumar, D. and Klessig, D. F. (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academy of Sciences, USA 100, 16101–16106CrossRefGoogle ScholarPubMed
Kuo, A., Cappellutti, S., Cervantes-Cervantes, M., Rodriguez, M. and Bush, D. S. (1996) Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression and cell death induced by gibberellin in wheat aleurone cells. Plant Cell 8, 259–269CrossRefGoogle ScholarPubMed
Kurosawa, K. (1926) Experimental studies on the secretion of Fusarium heterosporum on rice plants. Transactions of the Natural History Society, Formosa 16, 213–227Google Scholar
Kutschera, U. and Bette, A. (1998) In growing epidermal cells of rye coleoptiles microtubules are associated with the nuclei. Journal Plant Physiology 152, 463–467CrossRefGoogle Scholar
Lang-Pauluzzi, I. and Gunning, B. E. S. (2000) A plasmolytic cycle: The fate of cytoskeletal elements. Protoplasma 212, 174–185CrossRefGoogle Scholar
Lappartient, A. G., Vidmar, J. J., Leustek, T., Glass, A. D. M. and Touraine, B. (1999) Inter-organ signalling in plants: Regulation of ATP sulfurylase and sulfate transporter gene expression in roots mediated by phloem-translocated compound. Plant Journal 18, 89–95CrossRefGoogle Scholar
Lashbrook, C. C., Tieman, D. M. and Klee, H. J. (1998) Differential regulation of the tomato ETR gene family throughout plant development. Plant Journal 15, 243–252CrossRefGoogle ScholarPubMed
Laval, V., Chabannes, M., Carrière, M., Canut, H., Barre, A., Rougé, P., Pont-Lezica, R. and Galaud, J., 1999. A family of Arabidopsis plasma membrane receptors presenting animal β-integrin domains. Biochimica and Biophysica Acta 1435, 61–70CrossRefGoogle ScholarPubMed
Leblanc, N., Perrot-Reichenmann, C. and Barbier-Brygoo, H. (1999a) The auxin-binding protein Nt-Erabp1 alone activates an auxin-like transduction pathway. FEBS Letters 449, 57–60CrossRefGoogle Scholar
Leblanc, N., David, K., Grosclaude, J., Pradier, J.-M., Barbier-Brygoo, H., Labiau, S. and Perrot-Rechenmann, C. (1999b) A novel immunological approach establishes that the auxin-binding protein, Nt-abp1, is an element involved on auxin signalling at the plasma membrane. Journal of Biological Chemistry 274, 28314–28320CrossRefGoogle Scholar
LeClere, S., Tellez, R., Rampey, R. A., Matsuda, S. P. T. and Bartel, B. (2002) Characterization of a family of IAA-amino acid conjugate hydrolases from ArabidopsisJournal of Biological Chemistry 277, 20446–20452CrossRefGoogle ScholarPubMed
Lee, G. I. and Howe, G. A. (2003) The tomato mutant spr1 is defective in systemin perception and the production of a systemic wound signal for defense gene expression. Plant Journal 33, 567–576CrossRefGoogle ScholarPubMed
Lee, M. M. and Schiefelbein, J. (2001) Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis. Development 128, 1539–1546Google ScholarPubMed
Leiberman, M., Kanisti, A. T., Mapson, L. W. and Wardale, A. (1966) Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiology 41, 376–382CrossRefGoogle Scholar
Lembi, C. A., Morré, D. J., St-Thompson, K. and Hertel, R. (1971) N-1-naphthylphthalamic acid-binding of a plasma membrane-rich fraction from maize coleoptiles. Planta 99, 37–45CrossRefGoogle Scholar
Lenhard, M. and Laux, T. (2003) Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 130, 3163–3173CrossRefGoogle ScholarPubMed
Leon, J., Lawton, M. A. and Raskin, I. (1995) Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiology 108, 1673–1678CrossRefGoogle ScholarPubMed
Leon, P. and Sheen, J. (2003) Sugar and hormone connections. Trends in Plant Science 8, 110–116CrossRefGoogle ScholarPubMed
Leopold, A. C. and Guernsey, F. S. (1953) Auxin polarity in the Coleus plant. Botanical Gazette 115, 147–154CrossRefGoogle Scholar
Leshem, Y. Y. and Haramaty, E. (1996) The characterisation and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. Journal of Plant Physiology 148, 258–263CrossRefGoogle Scholar
Leshem, Y. Y. and Pinchasov, Y. (2000) Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during ripening of strawberries, Fragaria anannasa (Duch.) and avocado Persea americana (Mill.). Journal of Experimental Botany 51, 1471–1473Google Scholar
Leslie, C. A. and Romani, R. J. (1986) Salicylic acid: A new inhibitor of ethylene biosynthesis. Plant Cell Reports 5, 144–146CrossRefGoogle ScholarPubMed
Leslie, C. A. and Romani, R. J. (1988) Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiology 88, 833–837CrossRefGoogle ScholarPubMed
Letham, D. S. (1963) Zeatin, a factor inducing cell division fromZea mays. Life Sciences 8, 569–573CrossRefGoogle Scholar
Lewis, N. G. and Yamamoto, E. (1990) Lignin: Occurrence, biogenesis and biodegradation. Annual Review of Plant Physiology and Plant Molecular Biology 41, 455–496CrossRefGoogle ScholarPubMed
Leyser, H. M. O. (2002) Molecular genetics of auxin signalling. Annual Reviews of Plant Biology 53, 377–398CrossRefGoogle Scholar
Leyser, H. M. O. and Furner, I. J. (1992) Characterisation of three shoot apical meristem mutants ofArabidopsis thaliana. Development 116, 397–403Google Scholar
Leyser, H. M. O., Lincoln, C., Timpte, C., Lammer, D., Turner, J. and Estelle, M. (1993) The auxin-resistance gene AXR1 of Arabidopsis encodes a protein related to ubiquitin-activase enzyme E1. Nature 304, 161–164CrossRefGoogle Scholar
Lhernould, S., Karamanos, Y., Priem, B. and Morvan, H. (1994) Carbon starvation increases endoglycosidase activities and production of “unconjugated N-glycans” in Silene alba cells. Plant Physiology 106, 776–784CrossRefGoogle Scholar
Li, J. and Chory, J., (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90, 929–938CrossRefGoogle ScholarPubMed
Li, J. and Chory, J. (1999) Brassinosteroid action in plants. Journal of Experimental Botany 50, 275–282Google Scholar
Li, J. and Nam, K. H. (2002) Regulation of brassinosteroid signalling by a GSK3/SHAGGY-like kinase. Science 295, 1299–1301Google Scholar
Li, J., Nagpal, P., Vitart, V., McMorris, T. C. and Chory, J. (1996) A role for brassinosteroids in light-dependent development ofArabidopsis. Science 272, 398–401Google ScholarPubMed
Li, J., Biswas, M. G., Chao, A., Russel, D. W. and Chory, J. (1997) Conservation of function between mammalian and plant steroid 5α-reductases. Proceedings of the National Academy of Sciences, USA 94, 3554–3559CrossRefGoogle ScholarPubMed
Li, J., Nam, K. H., Vafeados, D. and Chory, J. (2001) BIN2, A new brassinosteroid-insensitive locus inArabidopsis. Plant Physiology 127, 14–22CrossRefGoogle Scholar
Li, N., Parsons, B. L., Liu, D. and Mattoo, A. K. (1992) Accumulation of wound-inducible ACC synthase transcripts in tomato fruit is inhibited by salicylic acid and polyamines. Plant Molecular Biology 18, 477–487CrossRefGoogle Scholar
Lincoln, J. E., Cordes, S., Read, E. and Fischer, R. L. (1987) Regulation of expression by ethylene during Lycopersicon esculentum (tomato) fruit development. Proceedings of the National Academy of Sciences, USA 84, 2793–2797CrossRefGoogle ScholarPubMed
Lindsey, K., Casson, S. and Chilley, P. (2002) Peptides: New signalling molecules in plants. Trends in Plant Science, 7, 78–83CrossRefGoogle ScholarPubMed
Liu, D. H., Post-Beiltenmiller, D. (1995) Discovery of an epidermal stearoyl-acyl carrier protein thio esterase: Its potential role in wax biosynthesis. Journal of Biological Chemistry, 270, 16962–16969CrossRefGoogle Scholar
Ljung, K., Bhalerao, R. P. and Sandberg, G. (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant Journal. 28, 465–474CrossRefGoogle ScholarPubMed
Lobler, M. and Klambt, D. (1985) Auxin-binding protein from coleoptile membranes of corn (Zea mays L.) I. Purification by immunological methods and characterization. Journal of Biological Chemistry 260, 9848–9853Google ScholarPubMed
Lopes, M. A. and Larkins, B. A. (1993) Endosperm origin, development, and function. Plant Cell 5, 1383–1399CrossRefGoogle Scholar
López-Serrano, M., Fernández, M. D., Pomar, F., Pedreño, M. A. and Barceló, A. R. (2004) Zinnia elegans uses the same peroxidase isoenzyme complement for cell wall lignification in both single-cell tracheary elements and xylem vessels. Journal of Experimental Botany 55, 423–431CrossRefGoogle ScholarPubMed
Lovegrove, A. and Hooley, R. (2000) Gibberellin and abscisic acid signalling in aleurone. Trends in Plant Science 5, 102–110CrossRefGoogle ScholarPubMed
Lovegrove, A., Barratt, D. H. P., Beale, M. H. and Hooley, R. (1998) Gibberellin-photoaffinity labelling of two polypeptides in plant plasma membranes. Plant Journal 15, 311–320CrossRefGoogle ScholarPubMed
Lu, C. and Fedoroff, N. (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin and cytokinin. Plant Cell 12, 2351–2366CrossRefGoogle ScholarPubMed
Lucas, W. J., Bouche-Pillon, S., Jackson, D. P., Nguyen, L., Baker, L., Ding, B. and Hake, S. (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270, 1980–1983CrossRefGoogle ScholarPubMed
Ludwig-M¨ller, J., Epstein, E. and Hilgenberg, W. (1996) Auxin-conjugate hydrolysis in Chinese cabbage: Characterization of an amidohydrolase and its role during infection with clubroot disease. Physiologia Plantarum 97, 627–634CrossRefGoogle Scholar
Macdonald, H., Henderson, J., Napier, R. M., Venis, M. A., Hawes, C. and Lazarus, C. M. (1994) Authentic processing and targeting of active maize auxin-binding protein in the baculovirus expression system. Plant Physiology 105, 1049–1057CrossRefGoogle ScholarPubMed
Macdonald, M. M. (1984) Dormancy, growth and differentiation of tuber buds of Solanum tuberosum. D. Phil Thesis, Oxford University, U.K., 171 pp
MacMillan, J. (1997) Biosynthesis of the gibberellin plant hormones. Natural Product Reports 14, 221–244CrossRefGoogle Scholar
MacRobbie, E. A. C. (2000) ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+ (Rb+) release. Proceedings of the National Academy of Sciences, USA 97, 12361–12368CrossRefGoogle Scholar
Mahonen, A. P., Bonke, M., Kauppinen, L., Riikone, M., Benfey, P. N. and Helariutta, Y. (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes and Development 14, 2938–2943CrossRefGoogle ScholarPubMed
Majewska-Sawka, A. and Nothnagel, E. A. (2000) The multiple roles of arabinogalactan proteins in plant development. Plant Physiology 122, 3–10CrossRefGoogle ScholarPubMed
Malone, M. (1993) Hydraulic signals. Philosophical Transactions of the Royal Society (London) B341, 33–39CrossRefGoogle Scholar
Malone, M. (1994) Wound-induced hydraulic signals and stimulus transmission in Mimosa pudica L. New Phytologist 128, 49–56CrossRefGoogle Scholar
Mandava, N. B. (1988) Plant growth-promoting brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology 39, 23–52CrossRefGoogle Scholar
Marfa, V., Gollin, D. J., Eberhard, S., Mohnen, D., Darvill, A. and Albersheim, P. (1991) Oligogalacturonides are able to induce flowers to form on tobacco explants. Plant Journal 1, 217–225CrossRefGoogle Scholar
Martin, A. C., del Pozo, J. C., Iglesias, J., Rubio, V., Solano, R., Pena, A., Leyva, A. and Paz-Ares, J. (2000) Influence of cytokinins on the expression of phosphate starvation responsive genes inArabidopsis. Plant Journal 24, 559–567Google ScholarPubMed
Martin, C. and Thimann, K. V. (1972) The role of protein synthesis in the senescence of leaves. Plant Physiology 49, 64–71CrossRefGoogle ScholarPubMed
Martin, J. P. and Juniper, B. E. (1970) The Cuticles of Plants. Edward Arnold Ltd., Sevenoaks, U.K.
Martinez, P. G., Gomez, R. L. and Gomez-Lim, L. A. (2001) Identification of an ETR1-homologue from mango fruit expressing during fruit ripening and wounding. Journal of Plant Physiology 158, 101–108CrossRefGoogle Scholar
Masuda, Y. and Yamamoto, R. (1972) Control of auxin-induced stem elongation by the epidermis. Physiologia Plantarum 27, 109–115CrossRefGoogle Scholar
Mathesius, U., Charon, C., Rolfe, B. G., Kondorosoi, A. and Crespi, M. (2000) Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized cytokinin addition. Molecular Plant-Microbe Interactions 13, 617–628CrossRefGoogle ScholarPubMed
Mathieu, Y., Kurkdjian, A., Xia, H., Guern, J., Koller, A., Spiro, M. D., O'Neill, M. A., Albersheim, P. A. and Darvill, A. (1991) Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. Plant Journal 1, 333–343Google ScholarPubMed
Matsubayashi, Y. and Sakagami, Y. (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proceedings of the National Academy of Sciences, USA 93, 7623–7627CrossRefGoogle ScholarPubMed
Matsubayashi, Y. and Sakagami, Y. (2000) 120- and 160-kDa receptors from endogenous mitogenic peptide, phytosulfokine-α in rice plasma membranes. Journal of Biological Chemistry 275, 15520–15525CrossRefGoogle ScholarPubMed
Matsubayashi, Y., Omura, N., Morita, A. and Sakagami, Y. (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296, 1470–1472CrossRefGoogle ScholarPubMed
Matsubayashi, Y., Takagi, L., Omura, N., Morita, A. and Sakagami, Y. (1999) The endogenous sulfated pentapeptide phytosulfokine-α stimulates tracheary element differentiation of isolated mesophyll cells of Zinnia. Plant Physiology 120, 1043–1048CrossRefGoogle ScholarPubMed
Mauro, M. L., Lorenzo, G., Costantino, P. and Bellincampi, D. (2002) Oligogalacturonides inhibit the induction of late but not early auxin-responsive genes in tobacco. Planta 215, 494–501CrossRefGoogle Scholar
McAinsh, M. R., Brownlee, C. and Hetherington, A. M. (1997) Calcium ions as second messengers in guard cell signal transduction. Physiologia Plantarum 100, 16–29CrossRefGoogle Scholar
McCabe, P. F., Valentine, T. A., Forsberg, L. S. and Pennell, R. I. (1997) Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9, 2225–2241CrossRefGoogle ScholarPubMed
McDougall, G. J. and Fry, S. C. (1989) Structure-activity relationships for xyloglucan oligosaccharides with antiauxin activity. Plant Physiology 89, 883–887CrossRefGoogle ScholarPubMed
McDougall, G. J. and Fry, S. C. (1990) Xyloglucan oligosaccharides promote growth and activate cellulase: Evidence for a role of cellulase in cell growth. Plant Physiology 93, 1042–1048CrossRefGoogle Scholar
McDougall, G. J. and Fry, S. C. (1991) Xyloglucan nonasaccharide, a naturally-occurring oligosaccharin, arises in vivo by polysaccharide breakdown. Journal of Plant Physiology 137, 332–336CrossRefGoogle Scholar
McGaw, B. A. and Burch, C. A. (1995) Cytokinin biosynthesis and metabolism. In. Plant Hormones: Physiology, Biochemistry and Molecular Biology, Davies, P. J. (ed.), 2nd Edition. Kluwer Academic Publishers, Dordrecht, pp. 98–117CrossRef
McGurl, B., Pearce, G., Orozco-Cardenas, M. and Ryan, C. A. (1992) Structure, expression and anti-sense inhibition of the systemin precursor gene. Science 255, 1570–1573CrossRefGoogle Scholar
McManus, M. T. (1983) Identification studies of the ethylene responsive target cells in leaf abscission zones. D.Phil Thesis, University of Oxford, U.K., 185 pp
McManus, M. T. (1994) Peroxidases in the separation zone during ethylene-induced bean leaf abscission. Phytochemistry 35, 567–572CrossRefGoogle Scholar
McManus, M. T. and Osborne, D. J. (1989) Identification and characterisation of a specific class of target cells for ethylene. In. Cell Separation in Plants, NATO ASF Series, Vol. H35. Springer Verlag, Berlin, Heidelberg, pp. 201–210
McManus, M.T and Osborne, D. J. (1990a) Evidence for the preferential expression of particular polypeptides in leaf abscission zones of the bean, Phaseolus vulgaris L. Journal of Plant Physiology 136, 391–397CrossRefGoogle Scholar
McManus, M. T. and Osborne, D. J. (1990b) Identification of polypeptides specific to rachis abscission zone cells of Sambucus nigra. Physiologia Plantarum 79, 471–478CrossRefGoogle Scholar
McManus, M. T. and Osborne, D. J. (1991) Identification and characterisation of ionically-bound cell wall glycoprotein expressed preferentially in the leaf rachis abscission zone of Sambucus nigra L. Journal of Plant Physiology 137, 251–255Google Scholar
McManus, M. T., Thompson, D. S., Merriman, C., Lyne, L. and Osborne, D. J. (1998) Transdifferentiation of mature cortical cells to functional abscission cells in bean. Plant Physiology 116, 891–899CrossRefGoogle Scholar
McManus, M. T., McKeating, J., Secher, D. S., Osborne, D. J., Ashford, D. A., Dwek, R. A. and Rademacher, T. W. (1988) Identification of a monoclonal antibody to abscission tissue that recognises xylose/fucose-containing N-linked oligosaccharides from higher plants. Planta 175, 506–512CrossRefGoogle ScholarPubMed
Mergemann, H. and Sauter, M. (2000) Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiology 124, 609–614CrossRefGoogle Scholar
Milborrow, B. V. (2001) The pathway of biosynthesis of abscisic acid in vascular plants: A review of the present state of knowledge of ABA biosynthesis. Journal of Experimental Botany 52, 1145–1164CrossRefGoogle ScholarPubMed
Mita, S., Kawamura, S. and Asai, T. (2002) Regulation of the expression of a putative ethylene receptor, PePRS2, during the development of passion fruit (Passiflora edulis). Physiologia Plantarum 114, 271–280CrossRefGoogle Scholar
Miyawaki, K., Matsumoto-Kitano, M. and Kakimoto, T. (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: Tissue specificity and regulation by auxin, cytokinin and nitrate. Plant Journal 37, 128–138CrossRefGoogle ScholarPubMed
Miyazawa, Y., Nakajima, N., Abe, T., Sakai, A., Fujioka, S., Kawano, S., Kuroiwa, T. and Yoshida, S. (2003) Activation of cell proliferation by brassinolide application in tobacco BY-2 cells: Effects of brassinolide on cell multiplication, cell-cycle-related gene expression, and organellar DNA contents. Journal of Experimental Botany 54, 2669–2678CrossRefGoogle ScholarPubMed
Mockaitis, K. and Howell, S. H. (2000) Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant Journal 24, 785–796CrossRefGoogle ScholarPubMed
Mohnen, D., Eberhard, S., Marfa, V., Doubrava, N., Toubart, P., Gollin, D. J., Gruber, T. A., Nuri, W., Albersheim, P. and Darvill, A. (1990) The control of root, vegetative shoot and flower morphogenesis in tobacco thin cell-layer explants (TLCs). Development 108, 191–201Google Scholar
Molisch, H. (1938) The Longevity of Plants, Fullington, H. (transl.). Science Press, Lancaster, PA
Mollet, J.-C., Park, S.-Y., Nothnagel, E. A. and Lord, E. M. (2000) A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12, 1737–1750CrossRefGoogle Scholar
Monteiro, A. M., Crozier, A. and Sandberg, G. (1988) The biosynthesis and conjugation of indole-3-acetic acid in germinating seed and seedlings of Dalbergia dolichopetala. Planta 174, 561–568CrossRefGoogle Scholar
Montoya, T., Nomura, T., Farrar, K., Kaneta, T., Yokota, T. and Bishop, G. J. (2002) Cloning of the tomato Curl3 gene highlights the putative dual role of the leucine-rich receptor kinase tBRI1/SR160 in plant steroid hormone and peptide signalling. Plant Cell 14, 3163–3176CrossRefGoogle Scholar
Moore, D., Hock, B., Greening, J. P., Kern, V. D., Novak Frazer, L. and Monzer, J. (1996) Gravimorphogenesis in agarics. Mycological Research 100, 257–273CrossRefGoogle ScholarPubMed
Moore, R. (1986) Calcium movement, graviresponsiveness and the structure of columella cells in primary roots of Amylomaize mutants of Zea mays. American Journal of Botany 73, 417–426CrossRefGoogle Scholar
Morris, K., Mackerness, A. S.-H., Page, T., John, C. F., Murphy, A. M., Carr, J. P. and Buchanan-Wollaston, V. (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant Journal 23, 677–685CrossRefGoogle Scholar
Moshkov, I. E., Mur, L. A. J., Novikova, G. V., Smith, A. R. and Hall, M. A. (2003) Ethylene regulates monomeric GTP-binding protein gene expression and activity in Arabidopsis. Plant Physiology 131, 1705–1717CrossRefGoogle ScholarPubMed
Mott, K. A. and Buckley, T. N. (2000) Patchy stomatal conductance: Emergent collective behaviour of stomata. Trends in Plant Science 5, 258–262CrossRefGoogle ScholarPubMed
Muday, G. K. and Murphy, A. S. (2002) An emerging model of auxin transport regulation. Plant Cell 14, 293–299CrossRefGoogle ScholarPubMed
Muller, A. and Weiler, E. W. (2000) Indolic constituents and indole-3-acetic acid biosynthesis in the wild-type and a tryptophan auxotroph mutant of Arabidopsis. Planta 211, 855–863Google Scholar
Muller, A., Guan, C., Galweiler, L., Tanzler, P., Huijser, P., Marchant, A., Parry, G., Bennett, M., Wisman, E. and Palme, K. (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO Journal 17, 6903–6911CrossRefGoogle ScholarPubMed
Muller, J. F., Goujaud, J. and Caboche, M. (1985) Isolation in vitro of naphthaleneacetic acid-tolerant mutants of Nicotiana tabacum, which are impaired in root morphogenesis. Molecular and General Genetics 199, 194–200CrossRefGoogle Scholar
Mundree, S. G., Whittaker, A., Thomson, J. A. and Farrant, J. M. (2000) An aldose reductase homolog from the resurrection plant Xerophyta viscosa, Baker. Planta 211, 693–670CrossRefGoogle ScholarPubMed
Musgrave, A., Jackson, M. B. and Ling, E. (1972) Callitriche stem elongation is controlled by ethylene and gibberellin. Nature 238, 93–96Google Scholar
Nadeau, J. A. and Sack, F. D. (2002) Control of stomatal distribution on the Arabidopsis leaf surface. Science 296, 1697–1700CrossRefGoogle ScholarPubMed
Nadeau, J. A., Zhang, X. S., Nair, H. and O'Neill, S. D. (1993) Temporal and spatial regulation of 1-aminocyclopropane-1-carboxylate oxidase in the pollination-induced senescence of orchid flowers. Plant Physiology 103, 31–39CrossRefGoogle ScholarPubMed
Nagahashi, G. and Douds, D. D. (1997) Appressorium formation by arbuscular mycorrhiza fungi on isolated cell walls. New Phytologist 136, 299–304CrossRefGoogle Scholar
Nakamura, A., Higuchi, K., Goda, H., Fujiwara, M. T., Sawa, S., Koshiba, T., Shimada, Y. and Yoshida, S. (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross-talk point of brassinosteroid and auxin signaling. Plant Physiology 133, 1843–1853CrossRefGoogle ScholarPubMed
Nakatsuka, A., Murachi, S., Okunishi, H., Shiomi, S., Nakano, R., Kubo, Y. and Inaba, A. (1998) Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-amino cyclopropane-1-carboxylate oxidase and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiology 118, 1295–1305CrossRefGoogle Scholar
Napier, R. M. (2001) Models of auxin binding. Journal of Plant Growth Regulation 20, 244–254CrossRefGoogle Scholar
Napier, R. M. and Venis, M. A. (1990) Monoclonal antibodies detect an auxin-induced conformational change in the maize auxin-binding protein. Planta 182, 313–318CrossRefGoogle ScholarPubMed
Napier, R. M., Venis, M. A., Bolton, M. A., Richardson, L. I. and Butcher, G. W. (1988) Preparation and characterization of monoclonal and polyclonal antibodies to maize membrane auxin-binding protein. Planta 176, 519–526CrossRefGoogle Scholar
Napier, R. M., Fowke, L. C., Hawes, C., Lewis, M. and Pelham, H. R. B. (1992) Immunological evidence that plants use both HDEL and KDEL for target proteins to the endoplasmic reticulum. Journal of Cell Science 102, 261–271Google Scholar
Narváez-Vásquez, J. and Ryan, C. A. (2004) The cellular localisation of prosystemin: A functional role for phloem parenchyma in systemic wound signalling. Planta 218, 360–369Google Scholar
Narváez-Vásquez, J., Pearce, G., Orozco-Cardenas, M. L., Franceschi, V. R. and Ryan, C. A. (1995) Autoradiographic and biochemical evidence for the systemic translocation of systemin in tomato plants. Planta 195, 593–600CrossRefGoogle Scholar
Neill, S. J., Desikan, R. and Hancock, J. T. (2003) Nitric oxide signalling in plants. New Phytologist 159, 11–35CrossRefGoogle Scholar
Neljubov, D. N. (1901) Uber die horizontale nutation der Stengel von Pisum sativum und eineger anderen Pflanzen. Beihefte zum Botanischen Zentralblatt 10, 128–138Google Scholar
Nick, P. (1999) Signals, motors, morphogenesis – the cytoskeleton in plant development. Plant Biology 1, 169–179CrossRefGoogle Scholar
Noel, A. R. A. and Staden, J. (1975) Phyllomorph senescence in Streptocarpus molweniensis. Annals of Botany 39, 921–929CrossRefGoogle Scholar
Nomura, T., Nakayama, M., Reid, J. B., Takeuchi, Y. and Yokota, T. (1997) Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiology 113, 31–37CrossRefGoogle ScholarPubMed
Noodén, L. D. and Leopold, A. C. (eds.) (1988) Senescence and Ageing in Plants. Academic Press, San Diego, 526 pp
Normanly, J. and Bartel, B. (1999) Redundancy as a way of life – IAA metabolism. Current Opinion in Plant Biology 2, 207–213CrossRefGoogle ScholarPubMed
Normanly, J., Slovin, J. P. and Cohen, J. D. (1995) Rethinking auxin biosynthesis and metabolism. Plant Physiology 107, 323–329CrossRefGoogle ScholarPubMed
Obara, K., Kuriyama, H. and Fukuda, H. (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiology 125, 615–626CrossRefGoogle ScholarPubMed
Obendorf, R. L. (1997) Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance. Seed Science Research 7, 63–74CrossRefGoogle Scholar
O'Donnell, P. J., Calvert, C., Atzorn, R., Wasternek, C., Leyser, H. M. O. and Bowles, D. J. (1996) Ethylene as a signal mediating the wound response to tomato plants. Science 274, 1914–1917CrossRefGoogle ScholarPubMed
Oeller, P. W., Keller, J. A., Parks, J. A., Silbert, J. E. and Theologis, A. (1993) Structural characterization of the early indoleacetic acid-inducible genes, PS-IAA4/5, and PS-IAA6, of pea (Pisum sativum L.)Journal of Molecular Biology 233, 789–798CrossRefGoogle Scholar
Oh, M.-H., Romanow, W. G., Smith, R. C., Zamski, E., Sasse, J. and Clouse, S. D. (1998) Soybean BRU1 encodes a functional xyloglucan endotransglycosylase that is highly expressed in inner epicotyl tissues during brassinosteroid-promoted elongation. Plant and Cell Physiology 39, 124–130CrossRefGoogle Scholar
Oh, M.-H., Ray, W. K., Huber, S. C., Asara, J. M., Gage, D. A. and Clouse, S. D. (2000) Recombinant brassinosteroid insensitive 1 receptor-like kinase autophosphorylates on serine and threonine residues and phosphorylates a conserved peptide motifin vitro. Plant Physiology 124, 751–766CrossRefGoogle ScholarPubMed
Ohkuma, K., Lyon, J. L., Addicott, F. T. and Smith, O. E. (1963) Abscisin II, an abscission-accelerating substance from young cotton fruit. Science 142, 1592–1593CrossRefGoogle ScholarPubMed
Oka, M., Miyamoto, K., Okada, K. and Ueda, J. (1999) Auxin polar transport and flower formation in Arabidopsis thaliana transformed with indoleacetamide hydrolase (iaaH) gene. Plant and Cell Physiology 40, 231–237Google ScholarPubMed
Okada, K., Ueda, J., Komaki, M. K., Bell, C. J. and Shimura, Y. (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3, 677–684CrossRefGoogle ScholarPubMed
Oliver, A. E., Crowe, L. M. and Crowe, J. H. (1998) Methods for dehydration-tolerance: Depression of the phase transition temperature in dry membranes and carbohydrate vitrification. Seed Science Research 8, 211–221CrossRefGoogle Scholar
Olsen, O.-A. (2001) Endosperm development: Cellularization and cell fate specification. Annual Review of Plant Physiology and Plant Molecular Biology 52, 233–267CrossRefGoogle ScholarPubMed
Olsen, O.-A., Lemmon, B. E. and Brown, R. C. (1998) A model for aleurone cell development. Trends in Plant Science 3, 168–169CrossRefGoogle Scholar
Olszewski, N., Sun, T.-P. and Gubler, F. (2002) Gibberellin signalling: Biosynthesis, catabolism, and response pathways. Plant Cell 14, Supplement, S61–S80CrossRefGoogle Scholar
O'Neill, S. D., Nadeau, J. A., Zhang, X. S., Bui, A. Q. and Halevy, A. H. (1993) Inter-organ regulation of ethylene biosynthetic genes by pollination. Plant Cell 5, 419–432CrossRefGoogle Scholar
Oparka, K. J. and Santa Cruz, S. (2000) The great escape: Phloem transport and unloading of macromolecules. Annual Review of Plant Physiology and Plant Molecular Biology 51, 323–347CrossRefGoogle Scholar
Osborne, D. J. (1976) Control of cell shape and cell size by the dual regulation of auxin and ethylene. In: Perspectives in Experimental Biology, Vol. 2, ‘Botany’, Sunderland, N. (ed.). Pergamon Press, Oxford, pp. 89–102CrossRef
Osborne, D. J. (1977a) Ethylene and target cells in the growth of plants. Science Progress (Oxford) 64, 51–63Google Scholar
Osborne, D. J. (1977b) Auxin and ethylene and the control of cell growth. The identification of three classes of target cells. In. Plant Growth Regulation, Pilet, P. E. (ed.). Springer, Heidelberg, pp. 161–171
Osborne, D. J. (1979) Target cells – new concepts for plant regulation in horticulture. Scientific Horticulture 30, 1–13Google Scholar
Osborne, D. J. (1984) Ethylene and plants of aquatic and semi-aquatic environments: A review. Plant Growth Regulation 2, 167–185CrossRefGoogle Scholar
Osborne, D. J. (1989) Abscission. CRC Critical Reviews in Plant Sciences 8, 103–129CrossRefGoogle Scholar
Osborne, D. J. (1990) Ethylene formation, cell types and differentiation. In: Polyamines and Ethylene: Biochemistry, Physiology, and Interactions. Flores, H. E., Arteca, R. N. and Shannon, J. C. (eds.). American Society of Plant Physiologists, pp. 203– 215
Osborne, D. J. and Boubriak, I. (2002) Telomeres and their relevance to the life and death of seeds. Critical Reviews in Plant Sciences 21, 127–141CrossRefGoogle Scholar
Osborne, D. J. and Cheah, K. S. E. (1982) Hormones and foliar senescence. In: Growth Regulators in Plant Senescence, Jackson, M. B., Grout, B. and Mackenzie, I. A. (eds.), British Plant Growth Regulator Group Monograph 8, pp. 57–83
Osborne, D. J. and Hallaway, M. (1964) The auxin, 2,4-dichlorophenoxyacetic acid as a regulator of protein synthesis and senescence in detached leaves o. Prunus. New Phytologist 63, 334–347CrossRefGoogle Scholar
Osborne, D. J. and Sargent, J. A. (1976) The positional differentiation of abscission zones during the development of leaves of Sambucus nigra and the response of the cells to auxin and ethylene. Planta 132, 197–204CrossRefGoogle ScholarPubMed
Osborne, D. J., McManus, M. T. and Webb, J. (1985) Target cells for ethylene action. In: Ethylene and Plant Development, Roberts, J. A. and Tucker, G. A. (eds.). Butterworths, London. pp. 197–212CrossRef
Osborne, D. J., Walters, J., Milborrow, B. V., Norville, A. and Stange, L. M. C. (1996) Evidence for a non-ACC ethylene biosynthesis pathway in lower plants. Phytochemistry 42, 51–60CrossRefGoogle Scholar
Ottenschlager, I., Wolff, P., Wolverton, C., Bhalerao, R. P., Sandberg, G., Ishikawa, H., Evans, M. and Palme, K. (2002) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proceedings of the National Academy of Sciences, USA 100, 2987–2991CrossRefGoogle Scholar
Ouaked, F., Rozhon, W., Lecourieux, D. and Hirt, H. (2003) A MAPK pathway mediates ethylene signalling in plants. EMBO Journal 22, 1282–1288CrossRefGoogle Scholar
Ouellet, F., Overoorde, P. J. and Theologis, A. (2001) IAA17/AXR3: Biochemical insight into an auxin phenotype. Plant Cell 13, 829–842CrossRefGoogle ScholarPubMed
Paleg, L. G. (1960) Physiological effects of gibberellic acid: I. On carbohydrate metabolism and amylase activity of barley endosperm. Plant Physiology 35, 293–299CrossRefGoogle ScholarPubMed
Palme, K., Hesse, T., Campos, N., Garbers, C., Yanofsky, M. F. and Schell, J. (1992) Molecular analysis of an auxin binding protein gene located on chromosome 4 ofArabidopsis. Plant Cell 4, 193–201CrossRefGoogle ScholarPubMed
Palmgren, M. G. (2001) Plant plasma membrane H+ ATPases: Powerhouses for nutrient uptake. Annual Review of Plant Physiology and Plant Molecular Biology 52, 817–845CrossRefGoogle ScholarPubMed
Parry, A. D., Neill, S. J. and Horgan, R. (1988) Xanthoxin levels and metabolism in the wild-type and wilty mutants of tomato. Planta 173, 397–404CrossRefGoogle ScholarPubMed
Patterson, S. E. and Bleecker, A. B. (2004) Ethylene-dependent and -independent processes associated with floral organ abscission inArabidopsis. Plant Physiology 134, 194–203CrossRefGoogle Scholar
Payton, S., Fray, R., Brown, S. and Grierson, D. (1996) Ethylene receptor expression is regulated during fruit ripening, flower senescence and abscission. Plant Molecular Biology 31, 1227–1231CrossRefGoogle ScholarPubMed
Pearce, G., Strydom, D., Johnson, S. and Ryan, C. A. (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253, 895–898CrossRefGoogle ScholarPubMed
Pearce, G., Moura, D. S., Stratmann, J. and Ryan, C. A. (2001a) Production of multiple plant hormones from a single polyprotein precursor. Nature 411, 817–820CrossRefGoogle Scholar
Pearce, G., Moura, D. S., Stratmann, J. and Ryan, C. A. (2001b) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proceedings of the National Academy of Sciences, USA 99, 12843–12847CrossRefGoogle Scholar
Peng, J. and Harberd, N. P. (1993) Derivative alleles of the Arabidopsis gibberellin-insensitive (gai) mutation confers a wild-type phenotype. Plant Cell 5, 351–360CrossRefGoogle ScholarPubMed
Peng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., Murphy, G. P. and Harberd, N. P. (1997) The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes and Development 11, 3194–3205CrossRefGoogle ScholarPubMed
Pennell, R. I. and Roberts, K. (1990) Sexual development in the pea is presaged by altered expression of arabinogalactan protein. Nature 344, 547–549CrossRefGoogle Scholar
Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Metraux, J.-P. and Broekaert, W. F. (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103–2113CrossRefGoogle ScholarPubMed
Perbal, G. and Driss-Ecole, D. (2003) Mechanotransduction in gravisensing cells. Trends in Plant Science 8, 498–504CrossRefGoogle ScholarPubMed
Philippar, K., Fuchs, I., Luthen, H., Hoth, S., Bauer, C. S., Haga, K., Thiel, G., Ljung, K., Sandberg, G., Bottger, M., Becker, D. and Hedrich, R. (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proceedings of the National Academy of Sciences, USA 96, 12186–12191CrossRefGoogle ScholarPubMed
Phinney, B. O. (1956) Biochemical mutants in maize: Dwarfism and its reversal with gibberellins. Plant Physiology 31, Supplement, 20Google Scholar
Piquemal, J., Larierre, C., Myton, K., O'Connell, A., Schuch, W., Grima-Pettenati, J. and Boudet, A.-M. (1998) Down-regulation of cinnamoyl-CoA reductase induces significant changes in lignin profiles in tobacco plants. Plant Journal 13, 71–83CrossRefGoogle Scholar
Poethig, R. S. (1987) Clonal analysis of cell lineage patterns in plant development. American Journal of Botany 74, 581–594CrossRefGoogle Scholar
Poethig, R. S. (1989) Genetic mosaics and cell lineage analysis in plants. Trends in Genetics 5, 273–277CrossRefGoogle ScholarPubMed
Poli, D. B., Jacobs, M. and Cooke, T. J. (2003) Auxin regulation of axial growth in bryophyte sporophytes: Its potential significance for the evolution of early land plants. American Journal of Botany 90, 1405–1415CrossRefGoogle ScholarPubMed
Priem, B. and Gross, K. C. (1992) Mannosyl- and xylosyl-containing glycans promote tomato (Lycopersicon esculentum Mill.) fruit ripening. Plant Physiology 98, 399–401CrossRefGoogle ScholarPubMed
Priem, B., Morvan, H., Monin, A., Hafez, A. and Morvan, C. (1990a) Influence of a plant glycan of the oligomannoside type on the growth of flax plantlets. Comptus Rendus Academic Press, Paris 311, 411–416Google Scholar
Priem, B., Solo-Kwan, J., Wieruszeski, J. M., Strecker, G., Nazih, H. and Morvan, H. (1990b) Isolation and characterization of free glycans from the oligomannoside type from the extracellular medium of a plant cell suspension. Glycoconjugate J. 7, 121–132CrossRefGoogle Scholar
Priem, B., Morvan, H. and Gross, K. C. (1994) Unconjugated N-glycans as a new class of plant oligosaccharins. Biochemical Society Transactions 22, 398–402CrossRefGoogle ScholarPubMed
Quatrano, R. S. (1978) Development of cell polarity. Annual Review of Plant Physiology 29, 487–510CrossRefGoogle Scholar
Racusen, R. H. and Schiavone, F. (1990) Positional cues and differential gene expression in somatic embryos of higher plants. Cell Differentiation and Development 30, 159–169CrossRefGoogle ScholarPubMed
Ramos, J., Zenser, N., Leyser, O. and Callis, J. (2001) Rapid degradation of auxin/ indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell 13, 2349–2360CrossRefGoogle ScholarPubMed
Rashotte, A. M., Brady, S. R., Reed, R. C., Ante, S. J. and Muday, G. K. (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiology 122, 481–490CrossRefGoogle ScholarPubMed
Raskin, I. (1992) Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology 43, 439–463CrossRefGoogle Scholar
Raskin, I. (1995) Salicylic acid. In. Plant Hormones: Physiology, Biochemistry and Molecular Biology, Davies, P. J. (ed.), 2nd Edition. Kluwer Academic Publishers, Dordrecht, pp. 188–205
Raskin, I., Ehmann, A., Melander, W. R. and Meeuse, B. J. D. (1987) Salicylic acid – a natural inducer of heat production in Arum lilies. Science 237, 1601–1602CrossRefGoogle ScholarPubMed
Rasmussen, J. B., Hammerschmidt, R. and Zook, M. N. (1991) Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae. Plant Physiology 97, 1342–1347CrossRefGoogle ScholarPubMed
Rasori, A., Ruperti, B., Bonghi, C., Tonutti, P. and Ramina, A. (2002) Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. Journal of Experimental Botany 53, 2333–2339CrossRefGoogle ScholarPubMed
Ray, P. M. (1977) Auxin-binding sites of maize coleoptiles are localized on membranes of the endoplasmic reticulum. Plant Physiology 59, 594–599CrossRefGoogle ScholarPubMed
Ray, P. M., Dohrmann, U. and Hertel, R. (1977) Characterization of napthaleneacetic acid binding to receptor sites on cellular membranes of maize coleoptiles tissue. Plant Physiology 59, 357–364CrossRefGoogle Scholar
Reymond, P., Grunberger, S., Paul, K., Muller, M. and Farmer, E. E. (1995) Oligogalacturonide defense signals in plants: Large fragments interact with the plasma membrane in vitro. Proceedings of the National Academy of Sciences, USA 92, 4145–4149CrossRefGoogle ScholarPubMed
Richmond, A. and Lang, A. (1957) Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 125, 650–651CrossRefGoogle Scholar
Ridge, I. (1992) Sensitivity in a wider context: Ethylene and petiole growth in Nymphoides peltata. In: Progress in Plant Growth Regulation. Karssen, C. M., van Loon, L. C. and Vreugdenhil, D. (eds.). Kluwer Academic Publishers, Dordrecht, pp. 254–263CrossRef
Ridge, I. and Osborne, D. J. (1969) Cell growth and cellulases: Regulation by ethylene and indole-3-acetic acid in shoots of Pisum sativum. Nature 223, 318–319CrossRefGoogle Scholar
Ridge, I. and Osborne, D. J. (1989) Wall extensibility, wall pH and tissue osmalality: significance for auxin and ethylene-enhanced petiole growth in semi-aquatic plants. Plant, Cell and Environment 12, 383–393CrossRefGoogle Scholar
Ridge, I., Omer, J., Osborne, D. J. and Walters, J. (1991) Cell expansion and wall pH in the fern Regnellidium diphyllum, a plant lacking acid-induced growth. Journal of Experimental Botany 42, 1171–1179CrossRefGoogle Scholar
Ridge, I., Omer, J. and Osborne, D. J. (1998) Different effects of vanadate on net proton secretion in the fern Regnellidium diphyllum and the dicotyledon Nymphoides peltata: Relevance to cell growth. Journal of Plant Physiology 153, 430–436CrossRefGoogle Scholar
Rinne, P., Tuominen, H. and Junttila, L. (1992) Arrested leaf abscission in the non-abscising variety of pubescent birch: Developmental morphological and hormonal aspects. Journal of Experimental Botany 43, 975–982CrossRefGoogle Scholar
Ritchie, S., McCubbin, A., Ambrose, G., Kao, T.-H. and Gilroy, S. (1999) The sensitivity of barley aleurone tissue to gibberellin is heterogeneous and may be spatially determined. Plant Physiology 120, 361–370CrossRefGoogle ScholarPubMed
Rober-Kleber, N., Albrechtová, J. T. P., Fleig, S., Huck, N., Michalke, W., Wagner, E., Speth, V., Neuhaus, G. and Fischer-Iglesias, C. (2003) Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. Plant Physiology 131, 1302–1312CrossRefGoogle ScholarPubMed
Roberts, I. N., Murray, P. F., Caputo, C. P., Passeron, S. and Barneix, A. J. (2003) Purification and characterization of a subtilisin-like serine protease induced during the senescence of wheat leaves. Physiologia Plantarum 118, 483–492CrossRefGoogle Scholar
Roberts, J. A. (1984) Tropic responses of hypocotyls from normal tomato plants and the gravitropic mutant Lazy-1. Plant Cell and Environment 7, 515–520Google Scholar
Robinson, P. M., Wareing, P. F. and Thomas, T. H. (1963) Dormancy regulators in woody plants. Isolation of the inhibitor varying with photoperiod inAcer pseudoplatanus. Nature 199, 875–876Google Scholar
Rogg, L., Lasswell, J. and Bartel, B. (2001) A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13, 465–480CrossRefGoogle ScholarPubMed
Rojo, E., Sharma, V. K., Kovaleva, V., Raikhel, N. V. and Fletcher, J. C. (2002) CLV3 is localised to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signalling pathway. Plant Cell 14, 969–977CrossRefGoogle Scholar
Roman, G., Lubarsky, B., Kieber, J. J., Rothenberg, M. and Ecker, J. R. (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana; Five novel mutant loci integrated into stress-response pathway. Genetics 139, 1393–1409Google ScholarPubMed
Rouse, D., Mackay, P., Stirnberg, P., Estelle, M. and Leyser, O. (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279, 1371–1373CrossRefGoogle Scholar
Ruegger, M., Dewey, E., Gray, W. M., Hobbie. L., Turner, J. and Estelle, M. (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes and Development 12, 198–207CrossRefGoogle ScholarPubMed
Ruel, K., Chabannes, M., Bondet, A.-M., Legrand, M. and Joseleau, J.-P. (2001) Reassessment of qualitative changes in lignification of transgenic tobacco plants and their impact on cell wall assembly. Phytochemistry 57, 875–882CrossRefGoogle ScholarPubMed
Ryals, J., Lawton, K. A., Delaney, T. P., Friedrich, L., Kessmann, H., Neuenschwander, U., Uknes, S., Vernooij, B. and Weymann, K. (1995) Signal transduction in systemic acquired resistance. Proceedings of the National Academy of Sciences, USA 92, 4202–4205CrossRefGoogle ScholarPubMed
Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. (1996) Systemic acquired resistance. Plant Cell 8, 1809–1819CrossRefGoogle ScholarPubMed
Ryan, C. A. (1974) Assay and biochemical properties of the proteinase inhibitor-inducing factor, a wound hormone. Plant Physiology 54, 328–332CrossRefGoogle ScholarPubMed
Ryan, C. A. and Moura, D. S. (2002) Systemic wound signalling in plants: A new perception. Proceedings of the National Academy of Sciences, USA 99, 6519–6520CrossRefGoogle Scholar
Ryan, C. A., Pearce, G., Scheer, J. and Moura, D. S. (2002) Polypeptide hormones. Plant Cell 14, Supplement, S251–S264CrossRefGoogle ScholarPubMed
Saibo, N. J. M., Vriezen, W. H., Beemster, G. T. S. and Straeten, D. (2003) Growth and stomata formation of Arabidopsis hypocotyls is controlled by gibberellins and modulated by ethylene and auxins. Plant Journal 33, 989–1000CrossRefGoogle ScholarPubMed
Sachs, T. (1991) Cell polarity and tissue patterning in plants. Development, Supplement 1, 83–93
Sachs, T. (2000) Integrating cellular and organismic aspects of vascular differentiation. Plant and Cell Physiology 41, 649–656CrossRefGoogle ScholarPubMed
Sakai, H., Hua, J., Chen, G. Q., Chang, C., Medrano, L. J., Bleecker, A. B. and Meyerowitz, E. M. (1998) ETR2 is an ETR1-like gene involved in ethylene signal transduction inArabidopsis.Proceedings of the National Academy of Sciences, USA 95, 5812–5817CrossRefGoogle Scholar
Sakai, H., Honma, T., Aoyama, T., Sato, S., Kato, T., Tabata, S. and Oka, A. (2001) ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294, 1519–1521CrossRefGoogle ScholarPubMed
Sakakibara, H. and Takei, K. (2002) Identification of cytokinin biosynthesis genes in Arabidopsis: A breakthrough for understanding the metabolic pathway and the regulation in higher plants. Journal of Plant Growth Regulation 21, 17–23CrossRefGoogle ScholarPubMed
Sakakibara, H., Suzuki, M., Takei, K., Deji, A., Taniguchi, M. and Sugiyama, T. (1998) A response-regulator homologue possibly involved in nitrogen signal transduction mediated by cytokinin in maize. Plant Journal 14, 337–344CrossRefGoogle ScholarPubMed
Sakakibara, H., Taniguchi, M. and Sugiyama, T. (2000) His-Asp phospho-relay signalling: A communication avenue between plants and the environment. Plant Molecular Biology 42, 273–278CrossRefGoogle Scholar
Salisbury, F. B. (1963) Flowering Process. Pergamon Press, Oxford, London, New York and Paris
Samejima, M. and Sibaoka, T. (1983) Identification of the excitable cells in the petiole of Mimosa pudica by intracellular injection of procion yellow. Plant and Cell Physiology 24, 33–39CrossRefGoogle Scholar
Samuel, G. (1927) On the shot-hole disease caused by Clasterosporium carpophilum and on the “shot-hole” effect. Annals of Botany 41, 375–404CrossRefGoogle Scholar
Sanders, P. M., Lee, P. Y., Biesgen, C., Boone, J. D., Beals, T. P., Weiler, E. W. and Goldberg, R. B. (2000) The Arabidopsis DELAYED DEHISCENCE 1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12, 1041–1061CrossRefGoogle ScholarPubMed
Sasaki, A., Itoh, H., Gomi, K., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Jeong, D.-H., An, G., Kitano, H., Ashikari, M. and Matsuoka, M. (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299, 1896–1998CrossRefGoogle Scholar
Satina, S., Blakeslee, A. F. and Avery, A. G. (1940) Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. American Journal of Botany 27, 895–905CrossRefGoogle Scholar
Sato-Nara, K., Yuhashi, K.-I., Higashi, K., Hosoya, K., Kubota, M. and Ezura, H. (1999) Stage- and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiology 120, 321–330CrossRefGoogle ScholarPubMed
Saunders, M. J. and Hepler, P. K. (1983) Calcium antagonists and calmodulin inhibitors block cytokinin-induced bud formation inFunaria. Developmental Biology 99, 41–49CrossRefGoogle Scholar
Savill, J., Gregory, C. and Haslett, C. (2003) Eat me or die. Science 302, 1516–1517CrossRefGoogle ScholarPubMed
Schaller, G. E. and Bleecker, A. B. (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270, 1809–1811CrossRefGoogle ScholarPubMed
Scheer, J. M. and Ryan, C. A. (1999) A 160-kD systemin receptor on the surface of Lycopersicon peruvianum suspension-cultured cells. Plant Cell 11, 1525–1536CrossRefGoogle ScholarPubMed
Scheer, J. M. and Ryan, C. A. (2002) The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proceedings of the National Academy of Sciences, USA 99, 9585–9590CrossRefGoogle ScholarPubMed
Scheres, B., Di Laurenzo, L., Willemsen, V., Hauser, M. T., Janmaat, K., Weisbeek, P. and Benfey, P. N. (1995) Mutations affecting the radial organization of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121, 53–62Google Scholar
Schlagnhaufer, C. D. and Arteca, R. N. (1991) The uptake and metabolism of brassino-steroid by tomato Lycopersicon esculentum plants. Journal of Plant Physiology. 138, 191–194CrossRefGoogle Scholar
Schopfer, P. (1990) Cytochemical identification of arabinogalactan protein in the outer epidermal wall of maize coleoptiles. Planta 183, 139–142Google Scholar
Schroeder, J. I. and Hagiwara, S. (1990) Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proceedings of the National Academy of Sciences, USA 87, 9305–9309CrossRefGoogle ScholarPubMed
Schroeder, J. I., Allen, G. J., Hugouvieux, V., Kwak, J. M. and Waner, D. (2001) Guard cell signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology 52, 627–658CrossRefGoogle ScholarPubMed
Schumaker, K. S. and Gizinski, M. J. (1993) Cytokinin stimulates dihyropyridine-sensitive calcium uptake in moss protoplasts. Proceedings of the National Academy of Sciences, USA 90, 10937–10941CrossRefGoogle Scholar
Segovia, M., Haramaty, L., Berges, J. A. and Falkowski, P. G. (2003) Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant Physiology 132, 99–105CrossRefGoogle ScholarPubMed
Seo, H. S., Song, J. T., Cheong, J.-J., Lee, Y.-H., Lee, Y.-W., Hwang, I., Lee, J. S. and Choi, Y. D. (2001) Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses. Proceedings of the National Academy of Sciences, USA 98, 4788–4793CrossRefGoogle ScholarPubMed
Setlow, P. (1992) DNA in dormant spores of Bacillus species is in an A-like conformation. Molecular Microbiology 6, 563–567CrossRefGoogle Scholar
Setlow, P. (1994) Mechanisms which contribute to the long-term survival of spores of Bacillus species. Journal of Applied Bacteriology 76, 49S–60SCrossRefGoogle Scholar
Shantz, E. M. and Steward, F. C. (1952) Coconut milk factor: The growth-promoting substances in coconut milk. Journal of the American Chemical Society 74, 6133–6135CrossRefGoogle Scholar
Sharma, Y. K., Leon, J., Raskin, I. and Davis, K. R. 1996. Ozone-induced responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proceedings of the National Academy of Sciences, USA 93, 5099–5104CrossRefGoogle ScholarPubMed
Shimada, Y., Goda, H., Nakamura, A., Takasuto, S., Fujioka, S. and Yoshida, S. (2003) Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids inArabidopsis. Plant Physiology 131, 287–297CrossRefGoogle Scholar
Shimomura, S., Sotobayashi, T., Futai, M. and Fuhui, T. (1986) Purification and properties of an auxin-binding protein from maize shoot membranes. Journal of Biochemistry 99, 1513–1524CrossRefGoogle ScholarPubMed
Shiu, O. Y., Oetiker, J. H., Yip, W. K. and Yang, S. F. (1998) The promoter of LE-ACS7, an early flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proceedings of the National Academy of Sciences, USA 95, 10334–10339CrossRefGoogle ScholarPubMed
Shulaev, V., Silverman, P. and Raskin, I. (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385, 718–721CrossRefGoogle Scholar
Siegel, B. A. and Verbeke, J. A. (1989) Diffusable factors essential for epidermal cell redifferentiation inCatharanthus roseus. Science 244, 580–582Google Scholar
Sievers, A. and Schmitz, M. (1982) Röntgen-Mikroanalyse von Barium, Schwefel und Strontium in Statolithen-Kompartimenten von Chara-Rhizoiden. Berichte der Deutschen Botanischen Gessellschaft 95, 353–360Google Scholar
Sievers, A., Braun, M. and Monshausen, G. B. (2002) The root cap: Structure and function. In: Plant Roots: The Hidden Half, Waisel, Y., Eshel, A. and Kafkefi, U. (eds.), 3rd Edition. Marcel Dekker, New York, Basel, pp. 33–47
Sievers, A. F. and True, R. H. (1912) U.S. Department of Agricultural Bureau Plant Industry Bulletin 232
Silverstone, A. L., Mak, P. Y. A., Martinez, E. C. and Sun, T.-P. (1997) The new RGA locus encodes a negative regulator of gibberellin response inArabidopsis thaliana. Genetics 146, 1087–1099Google ScholarPubMed
Silverstone, A. L., Clampaglio, C. N. and Sun, T.-P. (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10, 155–170CrossRefGoogle ScholarPubMed
Silverstone, A. L., Jung, H.-S., Dill, A., Kawaide, H., Kamiya, Y. and Sun, T.-P. (2001) Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13, 1555–1566CrossRefGoogle ScholarPubMed
Simpson, R. J., Lambers, H. and Dalling, M. J. (1982) Kinetin application to roots and its effect on uptake, translocation and distribution of nitrogen in wheat (Triticum aestivum) grown with a split root system. Physiologia Plantarum 56, 430–435CrossRefGoogle Scholar
Simpson, S. D., Ashford, D. A., Harvey, D. J. and Bowles, D. J. (1998) Short chain oligogalacturonides induce ethylene production and expression of the gene encoding aminocyclopropane-1-carboxylic acid oxidase in tomato plants. Glycobiology 8, 579–583CrossRefGoogle ScholarPubMed
Sisler, E. C. (1979) Measurement of ethylene binding in plant tissue. Plant Physiology 64, 538–542CrossRefGoogle ScholarPubMed
Sisler, E. C. (1980) Partial purification of an ethylene-binding component for plant tissue. Plant Physiology 66, 404–406CrossRefGoogle ScholarPubMed
Skoog, F. and Miller, C. O. (1957) Chemical regulation of growth and organ formation in plant tissues culturedin vitro. Symposium of the Society of Experimental Biology XX, 118–131Google Scholar
Smallwood, M., Beven, A., Donovan, N., Neill, S. J., Peart, J., Roberts, K. and Knox, J. P. (1994) Localization of cell wall proteins in relation to the developmental anatomy of the carrot root apex. Plant Journal 5, 237–246CrossRefGoogle Scholar
Smertenko, A. P., Bozhkov, P. V., Filonova, L. H., Arnold, S. and Hussey, P. J. (2003) Re-organisation of the cytoskeleton during developmental programmed cell death in Picea abies embryos. Plant Journal 33, 813–824CrossRefGoogle ScholarPubMed
Smigocki, A. C. and Owens, L. D. (1988) Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proceedings of the National Academy of Sciences, USA 85, 5131–5135CrossRefGoogle ScholarPubMed
Spiro, M. D., Bowers, J. F. and Cosgrove, D. J. (2002) A comparison of oligogalacturonide- and auxin-induced extracellular alkalinization and growth responses in roots of intact cucumber seedlings. Plant Physiology 130, 895–903CrossRefGoogle ScholarPubMed
Sponsel, V. M. (1995) The biosynthesis and metabolism of gibberellins in higher plants. In: Plant Hormones, Davies, P. J. (ed.), 2nd Edition. Kluwer Academic Publishers, Dordecht, pp. 66–97CrossRef
Stacey, N. J., Roberts, K. and Knox, J. P. (1990) Patterns of expression of the JIM4 arabinogalactan protein epitope in cell cultures and during somatic embryogenesis in Daucus carota L. Planta 180, 285–292CrossRefGoogle ScholarPubMed
Stange, L. and Osborne, D. J. (1988) Cell specificity in auxin- and ethylene-induced ‘super growth’ in Riella helicophylla. Planta 175, 341–347CrossRefGoogle Scholar
Staswick, P. E., Su, W. and Howell, S. H. (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proceedings of the National Academy of Sciences, USA 89, 6837–6840CrossRefGoogle Scholar
Staswick, P. E., Yuen, G. Y. and Lehman, C. C. (1998) Jasmonate signalling mutants of Arabidopsis are susceptible to the soil fungus, Pythium irregulare. Plant Journal 15, 747–754Google Scholar
Staswick, P. E., Tiryaki, I. and Rowe, M. L. (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405–1415CrossRefGoogle Scholar
Steeves, T. A. and Sussex I. M. (1989) Patterns in Plant Development, 2nd edition. Cambridge University Press, Cambridge, U.K.
Steffens, B., Feckler, C., Palme, K., Christian, M., Bo″tter, M. and Lu″then, H. (2001) The auxin signal for protoplast swelling is perceived by extracellular ABP1. Plant Journal 27, 591–599CrossRefGoogle ScholarPubMed
Stein, J. C., Howlett, B., Boyes, D. C., Nasrallah, M. E. and Nasrallah, J. B. (1991) Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatability locus ofBrassica oleracea. Proceedings of the National Academy of Sciences, USA 88, 8816–8820CrossRefGoogle Scholar
Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C. L., Paris, S., Galweiler, L., Palme, K. and Jurgens, G. (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286, 316–318CrossRefGoogle ScholarPubMed
Stewart, R. N., Meyer, F. G. and Desmene, H. (1972) Camellia + ‘Daisy Eggleson’ a graft chimera of Camellia sasangua and C. japonica. American Journal of Botany 59, 515–524CrossRefGoogle Scholar
Stintzi, A. and Browse, J. (2000) The Arabidopsis male-sterile mutant opr3 lacks the 12-oxophytodienoic acid reductase required for jasmonate biosynthesis. Proceedings of the National Academy of Sciences, USA 97, 10625–10630CrossRefGoogle Scholar
Stintzi, A., Weber, H., Reymond, P., Browse, J. and Farmer, E.E (2001) Plant defense in the absence of jasmonic acid: The role of cyclopentenones. Proceedings of the National Academy of Sciences, USA 98, 12837–12842CrossRefGoogle ScholarPubMed
Stratmann, J. W. (2003) Long distance run in the wound response – jasmonic acid is pulling ahead. Trends in Plant Science 8, 247–250CrossRefGoogle ScholarPubMed
Stratmann, J. W. and Ryan, C. A. (1997) Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors. Proceedings of the National Academy of Sciences, USA 94, 11085–11089CrossRefGoogle ScholarPubMed
Su, W. and Howell, S. H. (1992) A single genetic locus, Ckr1, defines Arabidopsis mutants in which root growth is resistant to low concentrations of cytokinin. Plant Physiology 99, 1569CrossRefGoogle ScholarPubMed
Sun, T.-P. (2000) Gibberellin signal transduction. Current Opinion in Plant Biology 3, 374–380CrossRefGoogle ScholarPubMed
Sun, T.-P. and Kamiya, Y. (1994) The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell. 6, 1509–1518CrossRefGoogle ScholarPubMed
Surplus, S. L., Jordan, B. R., Murphy, A. M., Carr, J. P., Thomas, B. and Mackerness, A.-H. (1998) Ultraviolet-B induced responses in Arabidopsis thaliana: Role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant, Cell and Environment 21, 685–694CrossRefGoogle Scholar
Suzuki, T., Sakurai, K., Ueguchi, C. and Mizuno, T. (2001a) Two types of putative nuclear factors that physically interact with histidine-containing phototransfer (Hpt) domains, signalling mediators in histo-Asp phosphorelay, inArabidopsis thatiana. Plant Cell Physiology 42, 37–45CrossRefGoogle Scholar
Suzuki, T., Miwa, K., Ishikawa, K., Yamada, H., Aiba, H. and Mizuno, T. (2001b) Th. Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant Cell Physiology 42, 107–113CrossRefGoogle Scholar
Suzuki, Y., Kitagawa, M., Knox, J. P. and Yamaguchi, I. (2002) A role for arabinogalactan proteins in gibberellin-induced α-amylase production in barley aleurone cells. Plant Journal 29, 733–741CrossRefGoogle ScholarPubMed
Swarup, R., Friml, J., Marchant, A., Ljung, K., Sandberg, G., Palme, K. and Bennett, M. (2001) Localisation of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes and Development 15, 2648–2653CrossRefGoogle Scholar
Sweere, U., Eichenberg, K., Lohrmann, J., Mira-Rodado, V., Baurle, I., Kudla, J., Nagy, F., Schafer, E. and Harter, K. (2001) Interaction of the response regulator ARR4 with phytochrome B in modulating red light signalling. Science 294, 1108–1111CrossRefGoogle Scholar
Szekeres, M., Németh, K., Koncz-Kálmán, Z., Mathur, J., Kauschmann, A., Altmann, T., Rédei, G. P., Nagy, F., Schell, J. and Koncz, C. (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation inArabidopsis. Cell 85, 171–182Google Scholar
Sztein, A. E., Ilic, N., Cohen, J. D. and Cooke, T. J. (2002) Indole-3-acectic acid biosynthesis in isolated axes from germinating bean seeds: The effect of wounding on the biosynthetic pathway. Plant Growth Regulation. 36, 201–207CrossRefGoogle Scholar
Szymanski, D. B. and Marks, M. D. (1998) GLABROUS1 over expression and TRIPTYCHON alter the cell cycle and trichome fate in Arabidopsis. Plant Cell 10, 2047–2062CrossRefGoogle Scholar
Szymkowiak, E. J. and Irish, E. E. (1999) Interactions between jointless and wild-type tomato tissues during development of the pedicel abscission zone and the inflorescence meristem. Plant Cell 11, 159–176CrossRefGoogle ScholarPubMed
Szymkowiak, E. J. and Sussex, I. M. (1992) The internal meristem layer (L3) determines floral meristem size and carpel number in tomato periclinal chimeras. Plant Cell 4, 1089–1100CrossRefGoogle ScholarPubMed
Tajima, Y., Imamura, A., Kiba, T., Amano, Y., Yamashino, T. and , Mizuno T. (2004) Comparative studies on the type-B response regulators revealing their distinctive properties in the His-to-Asp phospho-relay signal transduction ofArabidopsis thaliana. Plant Cell Physiology 45, 28–39CrossRefGoogle Scholar
Takahashi, H., Saito, T. and Suge, H. (1983) Separation of the effects of photoperiod and hormones on sex expression in cucumber. Plant and Cell Physiology 24, 147–154CrossRefGoogle Scholar
Takahashi, H., Kobayashi, T., Sato-Nara, K., Tomita, K.-O. and Ezura, H. (2002) Detection of ethylene receptor protein Cm-ERS1 during fruit development in melon (Cucumis melo L.). Journal of Experimental Botany 53, S415–422CrossRefGoogle Scholar
Takasaki, T., Hatakeyama, K., Suzuki, G., Watanabe, M., Isogai, A. and Hinata, K. (2000) The S receptor kinase determines self-incompatability in Brassica stigma. Nature 403, 913–916CrossRefGoogle Scholar
Takayama, S., Shimosato, H., Shiba, H., Funato, M., Che, F. S., Watanabe, M., Iwano, M. and Isogai, A. (2001) Direct ligand-receptor complex interaction controls Brassica self-incompatability. Nature 413, 534–538CrossRefGoogle Scholar
Takeda, T., Furuta, Y., Awano, T., Mizuno, K., Mitsuishi, Y. and Hayashi, T. (2002) Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments. Proceedings of the National Academy of Sciences, USA 99, 9055–9060CrossRefGoogle ScholarPubMed
Takei, K., Sakakibara, H. and Sugiyama, T. (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme inArabidopsis thaliana. Journal of Biological Chemistry 276, 26405–26410CrossRefGoogle ScholarPubMed
Takei, K., Takahashi, T., Sugiyama, T., Yamaya, T. and Sakakibara, H. (2002) Multiple routes communicating nitrogen availability from roots to shoots: A signal transduction pathway mediated by cytokinin. Journal of Experimental Botany 53, 971–977CrossRefGoogle ScholarPubMed
Tal, M. and Nevo, Y. (1973) Abnormal stomatal behaviour and root resistance, and hormonal imbalance in three wilty mutants of tomato. Biochemical Genetics 8, 291–300CrossRefGoogle ScholarPubMed
Tang, W., Ezcurra, I., Muschietti, J. and McCormick, S. (2002) A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 14, 2277–2287CrossRefGoogle ScholarPubMed
Taylor, J. G., Owen, T. P. Jr., Koonce, L. T. and Haigler, C. H. (1992) Dispersed lignin in tracheary elements treated with cellulose synthesis inhibitors provides evidence that molecules of the secondary cell wall mediate wall patterning. Plant Journal 2, 959–970CrossRefGoogle Scholar
The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815CrossRef
Tieman, D. and Klee, H. (1999) Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiology 120, 165–172CrossRefGoogle ScholarPubMed
Tieman, D. V., Taylor, M. G., Ciardi, J. A. and Klee, H. J. (2000) The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proceedings of the National Academy of Sciences, USA 97, 5663–5668CrossRefGoogle ScholarPubMed
Thelen, M. P. and Northcote, D. H. (1989) Identification and purification of a nuclease from Zinnia elegans L.: A potential molecular marker for xylogenesis. Planta 179, 181–195CrossRefGoogle ScholarPubMed
Theologis, A., Huynh, T. V. and Davis, R. W. (1985) Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. Journal of Molecular Biology 183, 53–68CrossRefGoogle ScholarPubMed
Thiel, G., Blatt, M. R., Fricker, M. D., White, I. R. and Millner, P. (1993) Modulation of K+ channels in Vicia stomatal guard cells by peptide homologs to the auxin binding protein C-terminus. Proceedings of the National Academy of Sciencse, USA 90, 11493–11497CrossRefGoogle ScholarPubMed
Thimann, K. V. (1980) Senescence in Plants. CRC Press Inc., Boca Raton, FL, 276 pp
Thomas, H., Ougham, H. J., Wagstaff, C. and Stead, A. D. (2003) Defining senescence and death. Journal of Experimental Botany 54, 1127–1132CrossRefGoogle ScholarPubMed
Thompson, D. S. and Osborne, D. J. (1994) A role for the stele in intertissue signaling in the initiation of abscission in bean leaves (Phaseolus vulgaris L.). Plant Physiology 105, 341–347CrossRefGoogle Scholar
Thompson, D.S, Davies, W. J. and Ho, L. C. (1998) Regulation of tomato fruit growth by epidermal cell wall enzymes. Plant Cell and Environment 21, 589–599CrossRefGoogle Scholar
Tillmann, U., Viola, G., Kayser, B., Seimeister, G., Hesse, T., Palme, K., Löbler, M. and Klämbt, D. (1989) cDNA clones of the auxin binding protein from corn coleoptiles (Zea mays L.): Isolation and characterization by immunological methods. EMBO Journal 8, 2463–2467Google ScholarPubMed
Timpte, C. (2001) Auxin binding protein: Curiouser and curiouser. Trends in Plant Science 6, 586–590CrossRefGoogle ScholarPubMed
Tiryaki, I. and Staswick, P. (2002) An Arabidopsis mutant defective jasmonate response is allelic to the auxin-signaling mutantaxr1. Plant Physiology 130, 887–894CrossRefGoogle ScholarPubMed
Tiwari, S. B., Wang, X.-J., Hagen, G. and Guilfoyle, T. J. (2001) Auxin/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13, 2809–2822CrossRefGoogle Scholar
Tran Thanh, K., Toubert, P., Cousson, A., Darvill, A. G., Gollin, D. J., Chelf, P. and Albersheim, P. (1985) Manipulation of the morphogenetic pathway of tobacco explants by oligosaccharins. Nature 314, 615–617CrossRefGoogle Scholar
Traw, M. B., Bergelson, J. (2003) Interactive effects of jasmonic acid, salicylic acid and gibberellin on induction of trichomes in Arabidopsis. Plant Physiology 133, 1367–1375CrossRefGoogle ScholarPubMed
Turner, S. R. and Somerville, C. R. (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9, 689–701CrossRefGoogle ScholarPubMed
Turner, J. G., Ellis, C. and Devoto, A. (2002) The jasmonate signal pathway. Plant Cell, 14, Supplement, S153–S164CrossRefGoogle ScholarPubMed
Ueda, J. and Kato, J. (1980) Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiology 66, 246–249CrossRefGoogle Scholar
Ulmasov, T., Hagen, G. and Guilfoyle, T. J. (1997a) ARF1, a transcription factor that binds to auxin response elements. Science 276, 1865–1868CrossRefGoogle Scholar
Ulmasov, T., Murfett, J., Hagen, G. and Guilfoyle, T. J. (1997b) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin reponse elements. Plant Cell 9, 1963–1971CrossRefGoogle Scholar
Ulmasov, T., Hagen, G. and Guilfoyle, T. J. (1999a) Activation and repression of transcription by auxin-response factors. Proceedings of the National Academy of Sciences, USA 96, 5844–5849CrossRefGoogle Scholar
Ulmasov, T., Hagen, G. and Guilfoyle, T. J. (1999b) Dimerization and DNA binding of auxin response factors. Plant Journal 19, 309–319CrossRefGoogle Scholar
Urao, T., Yakubov, B., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998) Stress-responsive expression of genes for two-component response regulator-like proteins in Arabidopsis thaliana. FEBS Letters 427, 175–178CrossRefGoogle ScholarPubMed
Urao, T., Miyata, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2000) Possible His-to-Asp phospho-relay signalling in an Arabidopsis two-component system. FEBS Letters 478, 227–232CrossRefGoogle Scholar
Vahatalo, M. and Virtanen, A. (1957) A new cyclic α-aminocarboxylic acid in berries of cowberry. Acta Chemica Scandinavica 11, 741–756CrossRefGoogle Scholar
Sande, K., Pawlowski, K., Czaja, I., Wieneke, U., Schell, J., Schmidt, J., Walden, R., Matvienko, M., Wellink, J., Kammen, A., Franssen, H. and Bisseling, T. (1996) Modification of phytohormone response by a peptide encoded by ENOD40 of legumes and a nonlegume. Science 273, 370–373CrossRefGoogle Scholar
Berg, C., Willemsen, V., Hage, W., Weisbeck, P. and Scheres, B. (1995) Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378, 62–65CrossRefGoogle ScholarPubMed
Schoot, C., Dietrich, M. A., Storms, M., Verbeke, J. A. and Lucas, W. J. (1995) Establishment of cell-to-cell communication pathway between separate carpels during gynoecium development. Planta 195, 450–455CrossRefGoogle Scholar
Doorn, W. and Stead, A. (1997) Abscission of flowers and floral parts. Journal of Experimental Botany 48, 821–837CrossRefGoogle Scholar
Hengel, A. J., Tadesse, Z., Immerzeel, P., Schols, H., Kammen, A. and Vries, S. C. (2001) N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiology 125, 1880–1890CrossRefGoogle ScholarPubMed
Huystee, R. B. and McManus, M. T. (1998) Glycans of higher plant peroxidases: Recent observations and future speculations. Glycoconjugate Journal 15, 101–106CrossRefGoogle ScholarPubMed
Overbeek, J. and Went, F. W. (1937) Mechanism and quantitative application of the pea test. Botanical Gazette 99, 22–41CrossRefGoogle Scholar
Overbeek, J., Conklin, M. E. and Blakeslee, A. F. (1941) Factors in coconut milk essential for growth and development of Datura embryos. Science 94, 350–351CrossRefGoogle Scholar
Veit, B., Briggs, S. P., Schmidt, R. J., Yanofsky, M. F. and Hake, S. (1998) Regulation of leaf initiation by the terminal ear 1 gene of maize. Nature 393, 166–168CrossRefGoogle ScholarPubMed
Venis, M. A. and Napier, R. M. (1995) Auxin receptors and auxin binding proteins. Critical Reviews in Plant Sciences 14, 27–47CrossRefGoogle Scholar
Venis, M. A., Napier, R., Barbier-Brygoo, H., Maurel, C., Perrit-Rechenmann, C. and Guern, J. (1992) Antibodies to a peptide from the maize auxin-binding protein have auxin agonist activity. Proceedings of the National Academy of Sciences, USA 89, 7208–7212CrossRefGoogle ScholarPubMed
Verbeke, J. A. (1992) Fusion events during floral morphogenesis. Annual Review of Plant Physiology and Plant Molecular Biology 43, 583–598CrossRefGoogle Scholar
Verbeke, J. A. and Walker, D. B. (1985) Rate of induced cellular dedifferentiation inCatharanthus roseus. American Journal of Botany 72, 1314–1317CrossRefGoogle Scholar
Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H. and Ryals, J. (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6, 959–965CrossRefGoogle ScholarPubMed
Verpy, E., Leibovici, M. and Petot, C. (1999) Characterization of otoconin-95, the major protein of murine otoconia, provides insights into the formation of these inner ear biomaterials. Proceedings of the National Academy of Sciences, USA 96, 529–534CrossRefGoogle Scholar
Vick, B. A. and Zimmerman, D. C. (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiology 75, 458–461CrossRefGoogle ScholarPubMed
Voesenek, L. A. C. J., Banga, M., Their, R. H., Mudde, C. M., Harren, F. M., Barendse, G. W. M. and Blom, C. W. P. M. (1993) Submergence-induced ethylene synthesis, entrapment, and growth in two plant species with contrasting flooding resistance. Plant Physiology 103, 783–791CrossRefGoogle Scholar
Vogel, J. P., Woeste, K. E., Theologis, A. and Kieber, J. J. (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene over-production, respectively. Proceedings of the National Academy of Sciences, USA 95, 4766–4771CrossRefGoogle Scholar
Groll, U. and Altmann, T. (2001) Stomatal cell biology. Current Opinion in Cell Biology 4, 555–560CrossRefGoogle Scholar
Groll, U., Berger, D. and Altmann, T. (2002) The subtilisin-like serine protease SDD1 mediates cell-to-cell signalling during Arabidopsis stomatal development. Plant Cell 14, 1527–1539CrossRefGoogle Scholar
Voznesenskaya, E. V., Edwards, G. E., Kiirats, O., Artyusheva, E. G. and Franceschi, V. R. (2003) Development of biochemical specialization and organelle partitioning in the single-cell C4 system in leaves of Borszczowia aralocaspica L. (Chenopodiaceae). American Journal of Botany 90, 1669–1680CrossRefGoogle Scholar
Vriezen, W. H., Rijn, C. P. E., Voesenek, A. C. J. and Mariani, C. (1997) A homolog of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant Journal 11, 1265–1271CrossRefGoogle ScholarPubMed
Vriezen, W. H., Graaf, B., Mariani, C. and Voesenek, L. A. C. J. (2000) Submergence induces expansin gene expression in flooding-tolerant Rumex palustris and not in flooding-intolerant R. acetosa. Planta 210, 956–963CrossRefGoogle Scholar
Wada, T, Tachibana, T., Shimura, Y. and Okada, K. (1997) Epidermal cell differentiation in Arabidopsis determined by a myb homolog, CPC. Science 277, 1113–1116CrossRefGoogle ScholarPubMed
Walker, J. C. and Key, J. L. (1982) Isolation of cloned cDNAs to auxin-responsive poly(A) + RNAs of elongating soybean hypocotyl. Proceedings of the National Academy of Sciences, USA 79, 7185–7189CrossRefGoogle ScholarPubMed
Walker, L. M. and Sack, F. D. (1990) Amyloplasts as possible statoliths in gravitropic protonemata of the moss Ceratodon purpureus. Planta 181, 71–77CrossRefGoogle ScholarPubMed
Wang, M., Oppedijk, B., Lu, X., Duijn, B. and Schilperoort, R. A. (1996) Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Molecular Biology 32, 1125–1134CrossRefGoogle ScholarPubMed
Wang, M., Oppedijk, B. J., Caspers, M. P. M., Lamers, G. E. M., Boot, M. J., Geerlings, D. N. G., Bakhuizen, B., Meijer, A. J. and Duijin, B. (1998) Spatial and temporal regulation of DNA fragmentation in aleurone of germinating barley. Journal of Experimental Botany 49, 1293–1301CrossRefGoogle Scholar
Wang, W., Hall, A. E., O'Malley, R. and Bleecker, A. B. (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proceedings of the National Academy of Sciences, USA 100, 352–357CrossRefGoogle Scholar
Wang, Z.-Y. and He, J.-X. (2004) Brassinosteroid signal transduction – choices of signals and receptors. Trends in Plant Science 9, 91–96CrossRefGoogle ScholarPubMed
Wang, Z.-Y., Seto, H., Fujioka, S., Yoshida, S. and Chory, J. (2001) BRI-1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410, 380–383CrossRefGoogle ScholarPubMed
Wang, Z.-Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T. and Chory, J. (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell 2, 505–513CrossRefGoogle ScholarPubMed
Warneck, H. and Seitz, H. U. (1993) Inhibition of gibberellic acid-induced elongation-growth of pea epicotyls by xyloglucan oligosaccharides. Journal of Experimental Botany 44, 1105–1109CrossRefGoogle Scholar
Warren-Wilson, J., Roberts, L. W., Warren-Wilson, P. M. and Gresshoff, P. M. (1994) Stimulatory and inhibiting effects of sucrose concentration in xylogenesis in lettuce pith explants: Possible mediation by ethylene biosynthesis. Annals of Botany 73, 65–73CrossRefGoogle Scholar
Warwicker, J. (2001) Modelling of auxin-binding protein 1 suggests that its C-terminus and auxin could compete for a binding site that incorporates a metal ion and tryptophan residue 44. Planta 212, 343–347CrossRefGoogle ScholarPubMed
Wasternack, C. and Parthier, B. (1997) Jasmonate-signalled plant gene expression. Trends in Plant Sciences 2, 302–307CrossRefGoogle Scholar
Watanabe, A. and Imaseki, H. (1982) Changes in translatable mRNA in senescing wheat leaves. Plant and Cell Physiology 23, 489–497CrossRefGoogle Scholar
Wayne, R., Staves, M. P. and Leopold, A. C. (1992) The contribution of the extracellular matrix to gravisensing in Characean cells. Journal of Cell Science 101, 611–623Google ScholarPubMed
Webster, B. D. and Leopold, A. C. (1972) Stem abscission in Phaseolus vulgaris explants. Botanical Gazette 133, 292CrossRefGoogle Scholar
Wei, N., Kwok, S. F., Arnim, A. G., Lee, A., McNellis, T. W., Piekas, B. and Deng, X. W. (1994) Arabidopsis COP8, COP10 and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell 6, 629–643CrossRefGoogle ScholarPubMed
Wen, C.-K. and Chang, C. (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14, 87–100CrossRefGoogle ScholarPubMed
Wendehemme, D., Pugin, A., Klessig, D. F. and Durner, J. (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends in Plant Science 6, 177–183CrossRefGoogle Scholar
Went, F. W. (1928) Wuchsstoff and Wachstum. Recueil des Travaux Botaniques Neerlandais 25, 1–116Google Scholar
Went, F. W. (1936) Allgemaine betrachtungen über das auxin-problem. Biologishes Zentralblatt 56, 449–463Google Scholar
Wenzel, C. L., Chandler, P. M., Cunningham, R. B. and Passioura, J. B. (1997) Characterization of the leaf epidermis of barley (Hordeum vulgare L. Himalaya). Annals of Botany 79, 41–46CrossRefGoogle Scholar
Weterings, K., Apuya, N. R., Bi, Y., Fisher, R. L., Harada, J. J. and Goldberg, R. B. (2001) Regional localization of suspensor mRNAs during early embryo development. Plant Cell 13, 2409–2425CrossRefGoogle ScholarPubMed
Whitelaw, C. A., Lyssenko, N. N., Chen, L., Zhou, D., Mattoo, A. K. and Tucker, M. L. (2002) Delayed abscission and shorter internodes correlate with a reduction in the ethylene receptor LeETR1 transcript in transgenic tomato. Plant Physiology 128, 978–987CrossRefGoogle ScholarPubMed
Whiting, P. and Goring, D. A. I. (1983) The composition of the carbohydrates in the middle lamella and secondary wall of tracheids from black spruce wood. Canadian Journal of Chemistry 61, 506–508CrossRefGoogle Scholar
Wildon, D. C., Thain, J. F., Minchin, P. E. H., Gubb, I. R., Reilly, A. J., Skipper, Y. D., Doherty, H. M., O'Donnell, P. J. and Bowles, D. J. (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360, 62–65CrossRefGoogle Scholar
Wilkinson, J. Q., Lanahan, M. B., Yen, H.-C., Giovannoni, J. J. and Klee, H. J. (1995) An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270, 1807–1809CrossRefGoogle ScholarPubMed
Wilkinson, S. and Davies, W. J. (2002) ABA-based chemical signalling: The co-ordination of responses to stress in plants. Plant, Cell and Environment 25, 195–210CrossRefGoogle ScholarPubMed
Willats, W. G. T. and Knox, J. P. (1996) A role for arabinogalactan-proteins in plant cell expansion: Evidence from studies on the interaction of β-glycosyl Yariv reagent with seedlings ofArabidopsis thaliana. Plant Journal 9, 919–925Google Scholar
Willats, W. G. T., McCartney, L. and Knox, J. P. (2001a) In situ analysis of pectic polysaccharides in seed mucilage and at the root surface of Arabidopsis thaliana. Planta 213, 37–44CrossRefGoogle Scholar
Willats, W. G. T., Orfila, C., Limberg, G., Buchholt, H. C., Alebeek, G-J. W. M., Voragen, G. J., Marcus, S. E., Christensen, T. M. I. E., Mikkelson, J. D., Murray, B. S. and Knox, J. P. (2001b) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturanan in plant cell walls: Implications for pectin methylesterase action, matrix properties, and cell adhesion. Journal of Biological Chemistry 276, 19404–19413CrossRefGoogle Scholar
Williams, R. W., Wilson, J. M. and Meyerowitz, E. M. (1997) A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signalling pathway. Proceedings of the National Academy of Sciences, USA 94, 10467–10472CrossRefGoogle Scholar
Williamson, R. E. (1991) Orientation of cortical microtubules in interphase plant cells. International Review of Cytology 129, 135–206CrossRefGoogle Scholar
Wilson, M. A., Sawyer, J., Hatcher, P. G. and Lerch, H. E. (1989) 1,3,5-hydroxybenzene structures in mosses. Phytochemistry 28, 1395–1400CrossRefGoogle Scholar
Wilson, M. P. K. and Bruck, D. K. (1999) Lack of influence of the epidermis on underlying cell development in leaflets of Pisum sativum var. argenteum (Fabaceae). Annals of Botany 83, 1–10CrossRefGoogle Scholar
Wisman, E., Cardon, G. H., Fransz, P. and Saedler, H. (1998) The behaviour of the autonomous maize transposable element En/Spm in Arabidopsis thaliana allows efficient mutagenesis. Plant Molecular Biology 37, 989–999CrossRefGoogle ScholarPubMed
Wolbang, C. M., Chandler, P. M., Smith, J. J. and Ross, J. J. (2004) Auxin and the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiology 134, 769–776CrossRefGoogle ScholarPubMed
Wong, C. H. and Osborne, D. J. (1978) The ethylene-induced enlargement of target cells in flower buds of Ecballium elaterium (L.) A. Rich. and their identification by the content of endo-reduplicated DNA. Planta 139, 103–111Google Scholar
Wong, L. M., Abel, S., Shen, N., Foata, M., Mall, Y. and Theologis, A. (1996) Differential activation of the primary auxin response genes, PS-IAA4/5 and PS-IAA6, during early plant development. Plant Journal 9, 587–600CrossRefGoogle ScholarPubMed
Woodward, F. I. and Kelly, C. K. (1995) The influence of CO2 concentration on stomatal density. New Phytologist 131, 311–327CrossRefGoogle Scholar
Worley, C. K., Zenser, N., Ramos, J., Rouse, D., Leyser, O., Theologis, A. and Callis, J. (2000) Degradion of Aux/IAA proteins is essential for normal auxin signalling. Plant Journal 21, 553–562CrossRefGoogle Scholar
Wright, A. D., Sampson, M. B., Neuffer, M. G., Michalczuk, L., Slovin, J. P. and Cohen, J. D. (1991) Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, tryptophan auxotroph. Science 254, 998–1000CrossRefGoogle ScholarPubMed
Wright, M. (1982) The polarity of movement of endogenously produced IAA in relation to a gravity perception mechanism. Journal of Experimental Botany 33, 929–934CrossRefGoogle Scholar
Wright, M. (1986) The acquisition of gravisensitivity during the development of nodes of Avena fatua. Journal of Plant Growth Regulation 5, 37–47CrossRefGoogle Scholar
Wright, M. and Osborne, D. J. (1974) Abscission in Phaseolus vulgaris: The positional differentiation and ethylene-induced expansion growth of specialised cells. Planta 120, 163–170CrossRefGoogle ScholarPubMed
Wright, M., Mousdale, D. M. A. and Osborne, D. J. (1978) Evidence for a gravity-regulated level of endogenous auxin controlling cell elongation and ethylene production during geotropic bending in grass nodes. Biochemistry, Physiology Pflanzen 172, 581–596CrossRefGoogle Scholar
Wright, S. T. C. and Hiron, R. W. P. (1969) (+)-Abscisic acid, the growth inhibitor induced in detached wheat leaves by a period of wilting. Nature 224, 719–720CrossRefGoogle Scholar
Xie, D.-X., Fey, B. F., James, S., Nieto-Rostro, M. and Turner, J. G. (2003) COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094CrossRefGoogle Scholar
Xu, D. P., Duan, X., Wang, B., Hong, B., Ho, T. H. D. and Wu, R. (1996) Expression of a late embryogenesis abundant protein gene HVA1 from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology 110, 249–257CrossRefGoogle ScholarPubMed
Xu, W., Purugganan, M. M., Polisensky, D. H., Antosiewicz, D. M., Fry, S. C. and Braam, J. (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7, 1555–1567CrossRefGoogle ScholarPubMed
Yabata, T. and Sumiki, Y. (1938) Biochemical studies on “Bakanae” fungus. Crystals with plant growth promoting activity. Journal of the Agricultural Chemistry Society, Japan 14, 1526Google Scholar
Yamagami, M., Haga, K., Napier, R. M. and Iino, M. (2004) Two distinct signalling pathways participate in auxin-induced swelling of pea epidermal protoplasts. Plant Physiology 134, 735–747CrossRefGoogle Scholar
Yamasaki, S., Fujii, N. and Takahashi, H. (2000) The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement with sex expression in flowers. Plant Cell Physiology 41, 608–616CrossRefGoogle ScholarPubMed
Yamazaki, T., Takaoka, M., Katoh, E., Hanada, K., Sakita, M., Sakata, K., Nishiuchi, Y. and Hirano, H. (2003) A possible physiological function and the tertiary structure of a 4-kDa peptide in legumes. European Journal of Biochemistry 270, 1269–1276CrossRefGoogle ScholarPubMed
Yang, H., Matsubayashi, Y., Nakamura, K. and Sakagami, Y. (1999) Oryza sativa PSK gene encodes a precursor of phytosulfokine-α, a sulfated peptide growth factor found in plants. Proceedings of the National Academy of Sciences, USA 96, 13560–13565CrossRefGoogle ScholarPubMed
Yang, H., Matsubayashi, Y., Nakamura, K. and Sakagami, Y. (2001) Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor. Plant Physiology 127, 842–851CrossRefGoogle ScholarPubMed
Yang, S. F. and Hoffman, N. E. (1984) Ethylene biosynthesis and its regulation in higher plants. Annnual Review of Plant Physiology 35, 155–189CrossRefGoogle Scholar
Yao, C., Conway, W. S. and Sams, C. E. (1995) Purification and characterization of a polygalacturonase-inhibiting protein from apple fruit. Phytopathology 85, 1373–1377CrossRefGoogle Scholar
Ye, Z.-H. (2002) Vascular tissue differentiation and pattern formation in plants. Annual Review of Plant Biology 53, 183–202CrossRefGoogle ScholarPubMed
Ye, Z.-H., Zhong, R., Morrison, W. H. and Himmelsbank, D. S. (2001) Caffeoyl coenzyme A O-methyltransferase and lignin biosynthesis. Phytochemistry 57, 1177–1185CrossRefGoogle ScholarPubMed
Yin, Y., Wang, Z.-Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T. and Chory, J. (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181–191CrossRefGoogle ScholarPubMed
Yokota, T. (1997) The structure, biosynthesis and function of brassinosteroids. Trends in Plant Sciences 2, 137–143CrossRefGoogle Scholar
York, W. S., Darvill, A. G. and Albersheim, P. (1984) Inhibition of a 2,4-dichlorophenoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide. Plant Physiology 75, 295–297CrossRefGoogle ScholarPubMed
Youl, J. J., Bacic, A. and Oxley, D. (1998) Arabinogalactan-proteins from Nicotiana alata and Pyrus communis contain glycosylphosphatidylinositol membrane anchors. Proceedings of the National Academy of Sciences, USA 95, 7921–7926CrossRefGoogle ScholarPubMed
Young, T. E. and Gallie, D. R. (1999) Analysis of programmed cell death in wheat endosperm reveals differences in endosperm development between cereals. Plant Molecular Biology 39, 915–926CrossRefGoogle ScholarPubMed
Young, T. E. and Gallie, D. R. (2000) Regulation of programmed cell death in maize endosperm by abscisic acid. Plant Molecular Biology 42, 397–414CrossRefGoogle ScholarPubMed
Young, T. E., Gallie, D. R. and DeMason, D. A. (1997) Ethylene mediated programmed cell death during maize endosperm development of wild type and Shrunken2 genotypes. Plant Physiology 115, 737–751CrossRefGoogle ScholarPubMed
Yuan, M., Warn, R. M., Shaw, P. J. and Lloyd, C. W. (1992) Dynamic microtubules under the radial and outer tangential walls of microinjected pea epidermal cells observed by computer reconstruction. Plant Journal 7, 17–23CrossRefGoogle Scholar
Zablackis, E., York, W. S., Pauly, M., Hantus, S., Rieter, W.-D., Chapple, C. C. S., Albersheim, P. and Darvill, A. (1996) Substitution of l-fucose by l-galactose in cell walls ofArabidopsis mur1. Science 272, 1808–1810Google Scholar
Zeevaart, J. A. D. (1976) Physiology of flower formation. Annual Review of Plant Physiology 27, 321–348CrossRefGoogle Scholar
Zenser, N., Ellsmore, A., Leasure, C. and Callis, J. (2001) Auxin modulates the degradation rate of Aux/IAA proteins. Proceedings of the National Academy of Sciences, USA 98, 11795–11800CrossRefGoogle ScholarPubMed
Zhang, D.-P., Wu, Z.-Y., Li, X.-Y. and Zhao, Z.-X. (2002) Purification and identification of a 42-kilodalton abscisic acid-specific-binding protein from epidermis of broad bean leaves. Plant Physiology 128, 714–725CrossRefGoogle ScholarPubMed
Zhao, J., Peng, P., Schmitz, R. J., Decker, A. D., Tax, F. E. and Li, J. (2002a) Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiology 130, 1221–1229CrossRefGoogle Scholar
Zhao, Y., Christensen, S. K., Fankhauser, C., Cashman, J. R., Cohen, J. D., Weigel, D. and Chory, J. (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306–309CrossRefGoogle ScholarPubMed
Zhao, Y., Hull, A. K., Gupta, N. R., Goss, K. A., Alonso, J., Ecker, J. R., Normanly, J., Chory, J. and Celenza, J. L. (2002b) Trp-dependent auxin biosynthesis in Arabidopsis: Involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes and Development 16, 3100–3112CrossRefGoogle Scholar
Zhong, R. and Ye, Z.-H. (2001) Alteration of auxin polar transport in Arabidopsis ifl1 mutants. Plant Physiology 126, 549–563CrossRefGoogle ScholarPubMed
Zhou, D., Kalaitzis, P., Mattoo, A. and Tucker, M. (1996) The mRNA for an ETR1 homologue in tomato is constitutively expressed in the vegetative and reproductive tissues. Plant Molecular Biology 30, 1331–1338CrossRefGoogle ScholarPubMed
Zureck, D. M. and Clouse, S. D. (1994) Molecular cloning and characterisation of a brassinosteroid-regulated gene from elongating soybean (Glycine max L.) epicotyls. Plant Physiology 104, 161–170CrossRefGoogle Scholar
Zurfluh, L. L. and Guilfoyle, T. J. (1982) Auxin-induced changes in the population of translatable messenger RNA in elongating sections of soybean hypocotyl. Plant Physiology 69, 332–337CrossRefGoogle ScholarPubMed
Abel, S. and Theologis, A. (1996) Early genes and auxin action. Plant Physiology 111, 9–17CrossRefGoogle ScholarPubMed
Abel, S., Oeller, P. W. and Theologis, A. (1994) Early auxin-induced genes encode short-lived nuclear proteins. Proceedings of the National Academy of Sciences, USA 91, 326–330CrossRefGoogle ScholarPubMed
Abernethy, G. A., Fountain, D. W. and McManus, M. T. (1998) Observations of the leaf anatomy of Festuca novae-zelandiae (Hack.) Cockayne and biochemical responses to a water deficit. New Zealand Journal of Botany 36, 113–123CrossRefGoogle Scholar
Achard, P., Vriezen, W. H., Straeten, D. and Harberd, N. (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15, 2816–2825CrossRefGoogle ScholarPubMed
Adams, D. O. and Yang, S. F. (1977) Methionine metabolism in apple tissue: Implication of S- adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiology 60, 892–896CrossRefGoogle Scholar
Adams, D. O. and Yang, S. F. (1979) Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences, USA 76, 170–174CrossRefGoogle Scholar
Addicott, F. T., Cairns, H. R., Cornforth, J. W., Lyon, J. L., Milborrow, B. V., Ohkuma, K., Ryback, G., Smith, G., Thiessen, W. E. and Wareing, P. F. (1968) Abscisic acid: A proposal for the redesignation of abscisin II (dormin). In: Biochemistry and Physiology of Plant Growth Substances, Wightman, F. and Setterfield, G. (eds). Runge Press, Ottawa, pp. 1527–1529
Ainley, W. M., Walker, J. C., Nagao, R. T. and Key, J. L. (1988) Sequencing and characterization of two auxin-regulated genes from soybean. Journal of Biological Chemistry 263, 10658–10666Google Scholar
Akiyoshi, D. E., Klee, H., Amasino, R. M., Nester, E. W. and Gordon, P. M. (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proceedings of the National Academy of Sciences, USA 81, 5994–5998CrossRefGoogle ScholarPubMed
Albersheim, P. and Valent, B. S. (1978) Host–pathogen interactions in plants. Plants when exposed to oligosaccharins of fungal origin defend themselves by accumulating antibiotics. Journal of Cell Biology 78, 627–643CrossRefGoogle Scholar
Aldington, S. and Fry, S. C. (1993) Oligosaccharins. Advances in Botanical Research 19, 2–101Google Scholar
Aldridge, D. C., Galt, S., Giles, D. and Turner, W. B. (1971) Metabolites of Lasiodiplodia theobromae. Journal of the Chemical Society. (C), Organic Chemistry 1623–1627CrossRef
Allan, A. C., Fricker, M. D., Ward, J. L., Beale, M. H. and Trewavas, A. J. (1994) Two transduction pathways mediate rapid effects of abscisic acid in Commelina commonis guard cells. Plant Cell 6, 1319–1328CrossRefGoogle ScholarPubMed
Allen, G. J., Kuchitsu, K., Chu, S. P., Murata, Y., and Schroeder, J. L. (1999) Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid induced cytosolic calcium rises in guard cells. Plant Cell 11, 1785–1798Google Scholar
Allen, G. J., Chu, S. P., Schumacher, K., Shimazaki, C., Vafeados, D., Kemper, A., Hawke, S. D., Tallman, G., Tsien, R. Y., Harper, J. F., Chory, J. and Schroeder, J. I. (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289, 2338–2342CrossRefGoogle ScholarPubMed
Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S. and Ecker, J. R. (1999) EIN2, a bifunctional transducer of ethylene and stress response inArabidopsis. Science 284, 2148–2152Google Scholar
Altamura, M. M., Zagli, D., Salvi, G., Lorenzo, G. and Bellincampi, D. (1998) Oligogalacturonides stimulate pericycle cell wall thickening and cell divisions leading to stoma formation in tobacco leaf explants. Planta 204, 429–436CrossRefGoogle Scholar
Anderson, B. E., Ward, J. M. and Schroeder, J. I. (1994) Evidence for an extracellular reception site for abscisic acid in Commelina guard cells. Plant Physiology 104, 1177–1183CrossRefGoogle ScholarPubMed
Aoyagi, S., Sugiyama, M. and Fukuda, H. (1998) BEN1 and ZEN1 cDNAs encoding S1-type DNases that are associated with programmed cell death in plants. FEBS Letters 429, 134–138CrossRefGoogle ScholarPubMed
Arimura, G., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W. and Takabayashi, J. (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406, 512–514Google ScholarPubMed
Ashikari, M., Wu, J., Yano, M., Sasaki, T. and Yoshimura, A. (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit GTP-binding protein. Proceedings of the National Academy of Sciences, USA 96, 10284–10289CrossRefGoogle ScholarPubMed
Assman, S. M. (1994) Ins and outs of guard cell ABA receptors. Plant Cell 6, 1187–1190CrossRefGoogle Scholar
Augur, C., Yu, L., Sakai, K., Ogawa, T., Sinai, P., Darvill, A. and Albersheim, P. (1992) Further studies on the ability of xyloglucan oligosaccharides to inhibit auxin-stimulated growth. Plant Physiology 99, 180–185CrossRefGoogle ScholarPubMed
Augur, C., Benhamou, N., Darvill, A. and Albersheim, P. (1993) Purification, characterization and cell wall localization of an α-fucosidase that inactivates a xyloglucan oligosaccharin. Plant Journal 3, 415–426CrossRefGoogle ScholarPubMed
Avers, C. J. (1963) Fine structure studies of Phleum root meristem cells. 11. Mitotic asymmetry and cellular differentiation. American Journal of Botany 50, 140–148CrossRefGoogle Scholar
Ballas, N., Wong, L.-M. and Theologis, A. (1993) Identification of the auxin-responsive element, AuxRE, in the primary indoleacetic acid-inducible gene, PS-IAA4/5, of pea (Pisum sativum). Journal of Molecular Biology 233, 580–596CrossRefGoogle Scholar
Barbier-Brygoo, H., Ephritikhine, G., Klambt, D., Ghislain, M. and Guern, J. (1989) Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proceedings of the National Academy of Sciences, USA 86, 891–895CrossRefGoogle ScholarPubMed
Barbier-Brygoo, H., Ephritikhine, G., Klämbt, D., Maurel, C., Palme, K., Schell, J. and Geurn, J. (1991) Perception of the auxin signal at the plasma membrane of tobacco mesophyll protoplasts. Plant Journal. 1, 83–94CrossRefGoogle Scholar
Barker, C. (2000) Systemic acquired resistance. In: Molecular Plant Pathology, Dickinson, M. and Benyon, J. (eds.), Annual Plant Reviews, Vol 4. Academic Press, Sheffield, pp. 198–217
Barlow, P. W. (1995) Gravity perception in plants: A multiplicity of systems derived by evolution?Plant Cell and Environment 18, 951–962CrossRefGoogle ScholarPubMed
Barry, G. F., Rogers, S. G., Fraley, R. T. and Brand, L. (1984) Identification of a cloned cytokinin biosynthetic gene. Proceedings of the National Academy of Sciences, USA 97, 14778–14783Google Scholar
Bartel, B. (1997) Auxin Biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 48, 51–66CrossRefGoogle ScholarPubMed
Bartel, B. and Fink, G. R. (1995) ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268, 1745–1748CrossRefGoogle ScholarPubMed
Bartel, B., LeClere, S., Magidin, M. and Zolman, B. K. (2001) Inputs to the active indole-3-acetic acid pool: De novo synthesis, conjugate hydrolysis and indole-3-butyric acid B-oxidation. Journal of Plant Growth Regulation 20, 198–216CrossRefGoogle Scholar
Bartels, D. and Salamini, F. (2001) Desiccation tolerance in the resurrection plant Craterostigma plantgineum. A contribution to the study of drought tolerance at a molecular level. Plant Physiology 127, 1346–1353CrossRefGoogle Scholar
Bartling, D., Seedorf, M., Mithofer, A. and Weiler, E. W. (1992) Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid. European Journal of Biochemistry 205, 417–424CrossRefGoogle ScholarPubMed
Barton, M. K. and Poethig, S. (1993) Formation of the shoot apical mersitem in Arabidopsis thaliana: An analysis of development in the wild-type and in the shoot meristemless mutant. Development 119, 823–831Google Scholar
Bassett, C. L., Artlip, T. S. and Callahan, A. M. (2002) Characterization of the peach homologue of the ethylene receptor, PpETR1, reveals some unusual features regarding transcript processing. Planta 215, 679–688CrossRefGoogle ScholarPubMed
Bauly, J. M., Sealy, I. M., Macdonald, H., Brearley, J., Dröge, S., Hillmer, S., Robinson, D. G., Venis, M. A., Blatt, M. R., Lazarus, C. M. and Napier, R. M. (2000) Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin. Plant Physiology 124, 1229–1238CrossRefGoogle Scholar
Baydoun, E. A-H. and Fry, S. C. (1985) The immobility of pectic substances in injured tomato leaves and its bearing on the identity of the wound hormones. Planta 165, 269–276CrossRefGoogle Scholar
Beaudoin, N., Serizet, C., Gosti, F. and Giraudat, J. (2000) Interactions between abscisic acid and ethylene signalling cascades. The Plant Cell 12, 1103–1116CrossRefGoogle Scholar
Beeckman, T., Burssens, S. and Inze, D. (2001) The peri-cell-cycle inArabidopsis. Journal of Experimental Botany 52, 403–411Google Scholar
Belanger, K. D., Wyman, A. J., Sudol, M. N., Singla-Pareek, S. L. and Quatrano, R. S. (2003) A signal peptide secretion screen in Fucus distichus embryos reveals expression of glucanase, EGF domain-containing, and LRR receptor kinase-like polypeptides during asymmetric growth. Planta 217, 931–950CrossRefGoogle Scholar
Bellincampi, D., Cardarelli, M., Zaghi, D., Serino, G., Salvi, G., Gatz, C., Cervone, F., Altamura, M. M., Costantino, P. and Lorenzo, G. D. (1996) Oligogalacturonides prevent rhizogenesis in rolB-transformed tobacco explants by inhibiting auxin-induced expression of the rolB gene. Plant Cell 8, 477–487CrossRefGoogle ScholarPubMed
Bellincampi, D., Salvi, S., Lorenzo, G., Cervone, F., Marfa, V., Eberhard, S., Darvill, A. and Albersheim, P. (1993) Oligogalacturonides inhibit the formation of roots on tobacco explants. Plant Journal 4, 207–213CrossRefGoogle Scholar
Bengochea, T., Acaster, M. A., Dodds, J. H., Evans, D. E., Jerie, P. H. and Hall, M. A. (1980) Studies on ethylene binding by cell-free preparations from cotyledons of Phaseolus vulgaris. II. Effects of structural analogues of ethylene and of inhibitors. Planta 148, 407–411CrossRefGoogle ScholarPubMed
Benjamins, R., Quint, A., Weijers, D., Hooykaas, P. and Offringa, R. (2001) The pinoid protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128, 4057–4067Google ScholarPubMed
Bennett, M. J., Marchant, A., Green, H. G., May, S. T., Ward, S. P., Millner, P. A., Walker, A. R., Schulz, B. and Feldman, K. A. (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273, 948–950CrossRefGoogle ScholarPubMed
Berger, F., Taylor, A. and Brownlee, C. (1994) Cell fate determination by the cell wall in early Fucus development. Science 263, 1421–1423CrossRefGoogle ScholarPubMed
Berger, S., Menudier, A., Julien, R. and Karamanos, Y. (1996) Regulation of de-N-glycosylation enzymes in germinating radish seeds. Plant Physiology 112, 259–264CrossRefGoogle ScholarPubMed
Bernier, G. (1988) The control of floral evocation and morphogenesis. Annual Review of Plant Physiology and Plant Molecular Biology 39, 175–219CrossRefGoogle Scholar
Bethke, P. C., Badger, M. R. and Jones, R. L. (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16, 332–341CrossRefGoogle ScholarPubMed
Bethke, P. C., Lonsdale, J. E., Fath, A. and Jones, R. L. (1999) Hormonally regulated programmed cell death in barley aleurone cells. Plant Cell 11, 1033–1046CrossRefGoogle ScholarPubMed
Beven, A., Guan, Y., Peart, J., Cooper, C. and Shaw, P. (1991) Monoclonal antibodies to plant nuclear matrix reveal intermediate filament related components within the nucleus. Journal of Cell Science 98, 293–302Google Scholar
Beveridge, C. A. (2000) The ups and downs of signalling between root and shoot. New Phytologist 147, 413–416CrossRefGoogle Scholar
Beveridge, C. A., Murfet, I. C., Kerhoas, L., Sotta, B., Miginiac, E. and Rameau, C. (1997a) The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutantrms4. Plant Journal 11, 339–345CrossRefGoogle Scholar
Beveridge, C. A., Symons, G. M., Murfet, I. C., Ross, J. J. and Rameau, C. (1997b) The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root sap zeatin riboside content but increased branching controlled by graft transmissible signal(s). Plant Physiology 115, 1251–1258CrossRefGoogle Scholar
Biale, J. B., Young, R. E. and Olmstead, A. J. (1954) Fruit respiration and ethylene production. Plant Physiology 29, 168–174CrossRefGoogle ScholarPubMed
Bierhorst, D. W. (1977) On the stem apex, leaf initiation and early leaf ontogeny in filicalean ferns. Amercian Journal of Botany 64, 125–152CrossRefGoogle Scholar
Binns, A. N. (1994) Cytokinin accumulation and action: Biochemical, genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology 45, 173–196CrossRefGoogle Scholar
Bleecker, A. B., Estelle, M. A., Somerville, C. and Kende, H. (1988) Insensitivity to ethylene conferred by a dominant mutant inArabidopsis thaliana. Science 241, 1086–1089Google Scholar
Bonfante, P., Genre, A., Faccio, A., Martini, I., Schauser, L., Stougaard, J., Webb, J. and Parniske, M. (2000) The Lotus japonicus Lj Sym-4 gene is required for the successful symbiotic infection of root epidermal cells. Molecular Plant-Microbe Interactions 13, 1109–1120CrossRefGoogle Scholar
Bonghi, C., Rascio, N., Ramina, A. and Casadoro, G. (1992) Cellulase and polygalacturonase involvement in the abscission of leaf and fruit explants of peach. Plant Molecular Biology 20, 839–848CrossRefGoogle ScholarPubMed
Boss, P. K. and Thomas, M. R. (2002) Association of dwarfism and floral induction with a grape “green revolution” mutation. Nature 416, 847–850CrossRefGoogle Scholar
Boubriak, I., Naumenko, N., Lyne, L. and Osborne, D. J. (2000) Loss of viability in rye embryos at different levels of hydration: senescence with apoptopic nucleosome cleavage or death with random DNA fragmentation. In: Seed Biology: Advances and Applications, Black, M. J., Bradford, K. J. and Vazquez-Ramos. J. (eds). CAB International, Oxford, pp. 205–214CrossRef
Bradford, K. J. and Yang, S. F. (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic cid, an ethylene precursor, in waterlogged tomato plants. Plant Physiology 65, 322–326CrossRefGoogle Scholar
Branca, C., Lorenzo, G. and Cervone, F. (1988) Competitive inhibition of the auxin-induced elongation by α-D-oligogalacturonides in pea stem segments. Physiologia Plantarum 72, 499–504CrossRefGoogle Scholar
Brandstatter, I. and Kieber, J. J. (1998) Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin inArabidopsis. Plant Cell 10, 1009–1020CrossRefGoogle Scholar
Brault, M., Caiveau, O., Pédron, J., Maldiney, R., Sotta, B. and Miginiac, E. (1999) Detection of membrane-bound cytokinin-binding proteins in Arabidopsis thaliana cells. European Journal Biochemistry 260, 512–519CrossRefGoogle ScholarPubMed
Brinegar, A. C. and Fox, J. E. (1985) Resolution of the subunit composition of a cytokinin-binding protein from wheat embryos. Biological Plantarum 27, 100–104CrossRefGoogle Scholar
Brinegar, A. C., Stevens, A. and Fox, J. E. (1985) Biosynthesis and degradation of a wheat triticum-durum embryo cytokinin-binding protein during embryogenesis and germination. Plant Physiology 79, 706–710CrossRefGoogle ScholarPubMed
Brown, J. C. and Jones, A. M. (1994) Mapping the auxin-binding site of auxin-binding protein 1. Journal of Biological Chemistry 269, 21136–21140Google ScholarPubMed
Brownlee, C. and Wood, J. W. (1986) A gradient of cytoplasmic free calcium in growing rhizoid cells ofFucus serratus. Nature 320, 624–626CrossRefGoogle Scholar
Brugiere, N., Rothstein, S. J. and Cui, Y. (2000) Molecular mechanisms of self-recognition in Brassica self-incompatability. Trends in Plant Science 5, 432–438CrossRefGoogle Scholar
Bui, A. Q. and O'Neill, S. D. (1998) Three 1-aminocyclopropane-1-carboxylate synthase genes regulated by primary and secondary pollination signals in orchid flowers. Plant Physiology 116, 419–428CrossRefGoogle ScholarPubMed
Buitink, J., Vu, B. L., Satour, P. and Leprince, O. (2003) The re-establishment of desiccation tolerance in germinated radicles of Medicago truncatula Geertn. seeds. Seed Science Research 13, 273–286Google Scholar
Burg, S. P. and Burg, E. A. (1962a) Role of ethylene in fruit ripening. Plant Physiology 37, 179–189CrossRefGoogle Scholar
Burg, S. P. and Burg, E. A. (1962b) Post-harvest ripening of avocados. Nature 194, 398–399CrossRefGoogle Scholar
Burlat, V., Kwon, M., Davin, L. B. and Lewis, N. G. (2001) Dirigent protein and dirigent sites in lignifying tissues. Phytochemistry 57, 883–897CrossRefGoogle ScholarPubMed
Burnett, E. C., Desikan, R., Moser, R. C. and Neill, S. J. (2000) ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. Journal of Experimental Botany 51, 197–205CrossRefGoogle ScholarPubMed
Burroughs, L. F. (1957) 1-Aminocyclopropane-1-carboxylic acid: A new amino acid in perry pears and cider apples. Nature 179, 360–361CrossRefGoogle ScholarPubMed
Bush, D. S. (1996) Effects of gibberellic acid and environmental factors on cytosolic calcium in wheat aleurone cells. Planta 199, 89–99CrossRefGoogle Scholar
Bush, M. S. and McCann, M. C. (1999) Pectic epitopes are differently distributed on the cell walls of potato (Solanum tuberosum) tubers. Physiologia Plantarum 107, 201–213CrossRefGoogle Scholar
Bush, M. S., Marry, M., Huxham, M. I., Jarvis, M. C. and McCann, M. C. (2001) Developmental regulation of pectic epitopes during potato tuberization. Planta 213, 869–880CrossRefGoogle Scholar
Byard, E. H. and Lange, B. M. H. (1991) Tubulin and microtubules. Essays in Biochemistry 26, 13–25Google ScholarPubMed
Campbell, A. D. and Labavitch, J. M. (1991a) Induction and regulation of ethylene biosynthesis by pectic oligomers in cultured pear cells. Plant Physiology 97, 699–705CrossRefGoogle Scholar
Campbell, A. D. and Labavitch, J. M. (1991b) Induction and regulation of ethylene biosynthesis and ripening by pectic oligomers in tomato pericarp discs. Plant Physiology 97, 706–713CrossRefGoogle Scholar
Cancel, J. D. and Larsen, P. B. (2002) Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiology 129, 1557–1567CrossRefGoogle ScholarPubMed
Carle, S.A, Bates, G. W. and Shannon, T. A. (1998) Hormonal control of gene expression during reactivation of the cell cycle in tobacco mesophyll protoplasts. Journal of Plant Growth Regulation 17, 221–230CrossRefGoogle ScholarPubMed
Casimiro, I., Beeckman, T., Graham, N., Bhalerao, R., Zhang, H., Caseros, P., Sandberg, G. and Bennett, M. J. (2003) Dissecting Arabidopsis lateral root development. Trends in Plant Science 8, 165–171CrossRefGoogle ScholarPubMed
Cassab, G. I., Lin, J.-J., Lin, L. S. and Varner, J. E. (1988) Ethylene effect on extension and peroxidase distribution in the subapical region of pea epicotyls. Plant Physiology. 88, 522–524CrossRefGoogle Scholar
Chailakhyan, M. H. (1936) On the mechanism of photoperiodic interaction. Comptes Rendus (Doklady) Academie des Sciences, USSR 10, 89–93Google Scholar
Chang, C., Kwok, S. F., Bleecker, A. B. and Meyerowitz, E. B. (1993) Arabidopsis ethylene response gene ETR1-similarity of product to two-component regulators. Science 262, 539–544CrossRefGoogle ScholarPubMed
Chang, C. and Meyerowitz, E. M. (1995) The ethylene hormone response in Arabidopsis – An eukaryotic two-component signaling system. Proceedings of the National Academy of Sciences, USA 92, 4129–4133CrossRefGoogle ScholarPubMed
Cheah, K. S. E. and Osborne, D. J. (1978) DNA lesions occur with loss of viability in embryos of ageing rye seed. Nature 272, 593–599CrossRefGoogle ScholarPubMed
Chen, J.-G., Shimomura, S., Sitbon, F., Sandberg, G. and Jones, A. M. (2001a) The role of auxin-binding protein 1 in the expansion of tobacco leaf cells. Plant Journal 28, 607–617CrossRefGoogle Scholar
Chen, J. G., Ullah, H., Young, J. C., Sussman, M. R. and Jones, A. M. (2001b) ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes and Development 15, 902–911CrossRefGoogle Scholar
Chen, R., Hilson, P., Sedbrook, J., Rosen, E., Casper, T. and Masson, P. H. (1998) The Arabidopsis thaliana AGRAVITROPIC1 gene encodes a component of the polar-auxin-transport efflux carrier. Proceedings of the National Academy of Sciences, USA 95, 15112–15117CrossRefGoogle ScholarPubMed
Chen, Y. F., Randlett, M. D., Findell, J. L. and Schaller, G. E. (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. Journal of Biological Chemistry, 277, 19861–19866CrossRefGoogle ScholarPubMed
Cheng, H., Qin, L., Lee, S., Fu, X., Richards, D. E., Cao, D., Luo, D., Harberd, N. P. and Peng, J. (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131, 1055–1064CrossRefGoogle ScholarPubMed
Cheung, A. Y. and Wu, H. M. (1999) Arabinogalactan proteins in plant sexual reproduction. Protoplasma 208, 87–98CrossRefGoogle Scholar
Chibnall, A. C. (1939) Protein Metabolism in the Plant. Yale University Press, New Haven; H. Milford, Oxford University Press, U.K.
Chlyah, H. (1974a) Inter-tissue correlations in organ fragments: Organogenetic capacity of tissues excised from stem segments of Torania fournieri Lind. cultured separately in vitro. Plant Physiology 54, 341–348CrossRefGoogle Scholar
Chlyah, H. (1974b) Formation and propagation of cell division-centers in the epidermal layer of internodal segments of Torrenia fournier grown in vitro. Simultaneous surface observations of all epidermal cells. Canadian Journal of Botany 52, 867–872CrossRefGoogle Scholar
Chlyah, H. (1978) Intercellular correlations: Relation between DNA synthesis and cell division in early stages of in vitro bud neoformation. Plant Physiology. 62, 482–485CrossRefGoogle ScholarPubMed
Cho, H.-T. and Cosgrove, D. J. (2000) Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 97, 9783–9788CrossRefGoogle ScholarPubMed
Choe, S., Dilkes, B. P., Fujioka, S., Takasuto, S., Sakurai, A. and Feldmann, K. A. (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10, 231–244Google ScholarPubMed
Choe, S., Tanaka, A., Noguchi, T., Fujioka, S., Takatsuto, S., Ross, A. S., Tax, F. E., Yoshida, S. and Feldmann, K. A. (2000) Lesions in the sterol Δ7 reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant Journal 21, 431–443CrossRefGoogle ScholarPubMed
Christensen, S. K., Dagenais, N., Chory, J. and Weigel, D. (2000) Regulation of auxin response by the protein kinase PINIOD. Cell 100, 469–478CrossRefGoogle Scholar
Ciardi, J. A., Tieman, D. M., Lund, S. T., Jones, J. B., Stall, R. E. and Klee, H. J. (2000) Response to Xanthomoanas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiology 123, 81–92CrossRefGoogle ScholarPubMed
Clark, A. M., Verbeke, J. A. and Bohnert, H. J. (1992) Epidermis-specific gene expression in Pachyphytum. Plant Cell 4, 1189–1198CrossRefGoogle ScholarPubMed
Clark, K. L., Larsen, P. B., Wang, X. and Chang, C. (1998) Association of the Arabidopsis CTR1 raf-like kinase with the ETR and ERS ethylene receptors. Proceedings of the National Academy of Sciences, USA 95, 5401–5406CrossRefGoogle Scholar
Clark, S. E., Running, M. P. and Meyerowitz, E. M. (1993) CLAVATA1, a regulator of meristem and flower development inArabidopsis. Development 119, 397–418Google ScholarPubMed
Clark, S. E., Running, M. P., and Meyerowitz, E. M. (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121, 2057–2067Google Scholar
Clark, S. E., Williams, R. W. and Meyerowitz, E. M. (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size inArabidopsis. Cell 89, 575–585Google ScholarPubMed
Clements, J. C. and Atkins, C. A. (2001) Characterization of a non-abscission mutant in Lupinus angustifolius L.: Physiological aspects. Annals of Botany 88, 629–635CrossRefGoogle Scholar
Close, T. J. (1996) Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiologia Plantarum 97, 795–803CrossRefGoogle Scholar
Clouse, S. D., Zurek, D. M., McMorris, T. C. and Baker, M. E. (1992) Effect of brassinolide on gene expression in elongating soybean epicotyls. Plant Physiology 100, 1377–1383CrossRefGoogle ScholarPubMed
Clouse, S. D., Hall, A. F., Langford, M., McMorris, T. C. and Baker, M. E. (1993) Physiological and molecular effects of brassinosteroids onArabidopsis thaliana. Journal of Plant Growth Regulation 12, 61–66CrossRefGoogle Scholar
Clouse, S. D., Langford, M. and McMorris, T. C. (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology 111, 671–678CrossRefGoogle ScholarPubMed
Clowes, F. A. L. (1978) Origin of the quiescent centre in Zea mays. New Phytologist. 80, 409–419CrossRefGoogle Scholar
Cohen, J. D. and Bandurski, R. S. (1982) Chemistry and physiology of the bound auxins. Annual Review of Plant Physiology 33, 403–430CrossRefGoogle Scholar
Compaan, B., Tang, W. C., Bisseling, T. and Franssen, H. (2001) ENOD40 expression in the pericycle precedes cortical cell division in Rhizobium-legume interaction and the highly conserved internal region of the gene does not encode a peptide. Plant and Soil 230, 1–8CrossRefGoogle Scholar
Cooper, W. C. and Henry, W. H. (1971) Abscission chemicals in relation to citrus fruit harvest. Journal of Agricultural and Food Chemistry 19, 559–563CrossRefGoogle Scholar
Cornford, C. A., Black, M., Chapman, J. M. and Baulcombe, D. C. (1986) Expression of α-amylase and other gibberellin-regulated genes in aleurone tissue of developing wheat grains. Planta 169, 420–428CrossRefGoogle ScholarPubMed
Cornforth, J. W., Milborrow, B. V., Ryback, G. and Wareing, P. F. (1965) Chemistry and physiology of ‘dormins’ in sycamore. Identity of sycamore ‘dormin’ with abscisin II. Nature 205, 1269–1270CrossRefGoogle Scholar
Coursol, S., Fan, L.-M., Stunff, H., Spiegel, S., Gilroy, S. and Assmann, S. M. (2003) Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423, 651–654CrossRefGoogle ScholarPubMed
Cousson, A. and Vavasseur, A. (1998) Putative involvement of cytosolic Ca2+ and GTP-binding proteins in cyclic-GMP-mediated induction of stomatal opening by auxin in Commelina communis L. Planta 206, 308–314CrossRefGoogle Scholar
Crabalona, L. (1967) Sur la présence de jasmonate de méthyle lévogyre [(pentène-2yl)-2 oxo-3 cyclopentylacétate de méthyle, cis] dans l'huile essentielle de romarin de Tunisie. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences. Serie C. 264, 2074–2076Google Scholar
Creelman, R. A. and Mullet, J. E. (1995) Jasmonic acid distribution and action in plants: Regulation during development and response to biotic and abiotic stress. Proceedings of the National Academy of Sciences, USA 92, 4114–4119CrossRefGoogle ScholarPubMed
Crick, F. (1970) Diffusion in embryogenesis. Nature 225, 420–422CrossRefGoogle ScholarPubMed
Cusick, F. (1966) On phylogenetic and ontogenetic fusion. In. Trends in Plant Morphogenesis, Cutter, E. G. (ed.), Longmans, Green and Co. Ltd. London, pp. 170–183
D'Agostino, I. B., Deruère, J. and Kieber, J. J. (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiology 124, 1706–1717CrossRefGoogle ScholarPubMed
Dan, H., Imaseki, H., Wasteneys, G. O. and Kazama, H. (2003) Ethylene stimulates endoreduplication but inhibits cytokinesis in cucumber hypocotyls epidermis. Plant Physiology 133, 1726–1731CrossRefGoogle ScholarPubMed
Darvill, A., Augur, C., Bergmann, C., Carlson, R. W., Cheong, J.-J., Eberhard, S., Hahn, M. G., , V.-M., Marfa, V., Meyer, B., Mohnen, D., O'Neill, M. A., Spiro, M. D., Halbeek, H., York, W. S. and Albersheim, P. (1992) Oligosaccharins – oligosaccharides that regulate growth, development and defence responses in plants. Glycobiology 2, 181–198CrossRefGoogle ScholarPubMed
Darwin, F. and Pertz, D. F. M. (1911) On a new method of estimating the aperture of stomata. Philosophical Transactions of the Royal Society (London) B84, 136–154Google Scholar
Davies, R. T., Goetz, D. H., Lasswell, J., Anderson, M. N. and Bartel, B. (1999) IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell 11, 365–376CrossRefGoogle ScholarPubMed
Day, C. D., Galgoci, B. F. C. and Irish, V. P. (1995) Genetic ablation of petal and stamen primordia to elucidate cell interactions during floral development. Development 121, 2887–2895Google ScholarPubMed
Del Campillo, E. and Bennett, A. B. (1996) Pedical breakstrength and cellulase gene expression during tomato flower abscission. Plant Physiology 111, 813–820CrossRefGoogle Scholar
Del Pozo, J. C., Timpte, C., Tan, S., Callis, J. and Estelle, M. (1998) The ubiquitin-related protein RUB1 and auxin responses inArabidopsis. Science 280, 1760–1763Google Scholar
Del Pozo, J. C., Dharmasiri, S., Hellmann, H., Walker, L., Gray, W. M. and Estelle, M. (2002) AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis cullin AtCUL1 is required for auxin responses. Plant Cell 14, 421–433CrossRefGoogle Scholar
Delledonne, M., Xia, Y., Dixon, R. A. and Lamb, C. (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394, 585–588CrossRefGoogle ScholarPubMed
Demole, E., Lederer, E. and Mercier, D. (1962) Isolement et détermination de la structure du jasmonate de méthyle constituant odorant caractéristique de l'essence de jasmin. Helvetica Chimica Acta 45, 675–685CrossRefGoogle Scholar
Demura, T. and Fukuda, H. (1994) Novel vascular cell-specific genes whose expression is regulated temporally and spatially during vascular system development. Plant Cell 6, 967–981Google ScholarPubMed
Devoto, A. and Turner, J. G. (2003) Regulation of jasmonate-mediated plant responses inArabidopsis. Annals of Botany 92, 329–337CrossRefGoogle ScholarPubMed
Diekmann, W., Venis, M. A. and Robinson, D. G. (1995) Auxins induce clustering of the auxin binding protein at the surface of maize coleoptile protoplasts. Proceedings of the National Academy of Sciences, USA 92, 3425–3429CrossRefGoogle ScholarPubMed
Dill, A., Jung, H.-S. and Sun, T.-P. (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proceedings of the National Academy of Sciences, USA 98, 14162–14167CrossRefGoogle ScholarPubMed
Ding, C.-K. and Wang, C. Y. (2003) The dual effects of methyl salicylate on ripening and expression of ethylene biosynthetic genes in tomato fruit. Plant Science 164, 589–596CrossRefGoogle Scholar
Dingwall, C. (1991) Transport across the nuclear envelope: Enigmas and explanations. BioEssays 13, 213–218CrossRefGoogle ScholarPubMed
Dixit, R. and Nasrallah, J. B. (2001) Recognizing self in the self-incompatability response. Plant Physiology 125, 105–108CrossRefGoogle Scholar
Doan, D. N. P., Linnestad, C. and Olsen, O.-A. (1996) Isolation of molecular markers from the barley endosperm coenocyte and the surrounding nucellus cell layers. Plant Molecular Biology 31, 877–886CrossRefGoogle ScholarPubMed
Doares, S. H., Syrovets, T., Weiler, E. W. and Ryan, C. A. (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proceedings of the National Academy of Sciences, USA 92, 4095–4098CrossRefGoogle ScholarPubMed
Dolan, L. (1996) Pattern in root epidermis: An interplay of diffusible signals and cellular geometry. Annals of Botany 77, 547–553CrossRefGoogle Scholar
Dolan, L., Linstead, P. and Roberts, K. (1997) Developmental regulation of pectic polysaccharides in the root meristem ofArabidopsis. Journal of Experimental Botany 48, 713–720CrossRefGoogle Scholar
Dolmetsch, R. E., Xu, K. and Lewis, R. S. (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392, 933–936CrossRefGoogle ScholarPubMed
Donovan, N., Peart, J., Roberts, K., Knox, J. P., Wang, M. and Neill, S. J. (1993) Production and characterisation of monoclonal antibodies against guard cell protoplasts of Pisum sativum. Journal of Experimental Botany 44, Supplement, P1.16Google Scholar
Draper, J. (1997) Salicylate, superoxide synthesis and cell suicide in plant defence. Trends in Plant Science 2, 162–165CrossRefGoogle Scholar
Dubrovsky, J. G., Doerner, P. W., Colon-Carmona, A. and Rost, T. L. (2000) Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiology 124, 1648–1654CrossRefGoogle ScholarPubMed
Durner, J. and Klessig, D. F. (1999) Nitric oxide as a signal in plants. Current Opinion in Plant Biology 2, 369–374CrossRefGoogle ScholarPubMed
Durner, J., Wendehenne, D. and Klessig, D. F. (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proceedings of the National Academy of Sciences, USA 95, 10328–10333CrossRefGoogle ScholarPubMed
Dwek, R. A. (1995) Glycobiology: More functions for oligosaccharides. Science 269, 1234–1235CrossRefGoogle ScholarPubMed
Eagles, C. F. and Wareing, P. F. (1963) Dormancy regulation in woody plants. Experimental induction of dormancy inBetula pubescens. Nature 199, 874–875CrossRefGoogle Scholar
Eberhard, S., Doubrava, N., Marfa, V., Mohnen, D., Southwick, A., Darvill, A. and Albersheim, P. (1989) Pectic cell wall fragments regulate tobacco thin-cell-layer explant morphogenesis. Plant Cell 1, 747–755CrossRefGoogle ScholarPubMed
Elder, R. H. and Osborne, D. J. (1993) Function of DNA synthesis and DNA repair in the survival of embryos during early germination and in dormancy. Seed Science Research 3, 43–53CrossRefGoogle Scholar
Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. and Nagata, S. (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50CrossRefGoogle ScholarPubMed
Engelmann, W., Sommerkamp, A., Veit, S. and Hans, J. (1997) Methyl jasmonate affects the circadian petal movement of Kalanchloe flowers. Biological Rhythms Research 28, 377–390CrossRefGoogle Scholar
English, P. J., Lycett, G. W., Roberts, J. A. and Jackson, M. B. (1995) Increased 1-aminocyclopropane-1-carboxylic acid oxidase activity in shoots of flooded tomato plants raises ethylene production to physiologically active levels. Plant Physiology 109, 1435–1440CrossRefGoogle ScholarPubMed
Ephritikhine, G., Barbier-Brygoo, H., Muller, J. F. and Guern, J. (1987) Auxin effect on the transmembranes potential difference of wild-type and mutant tobacco protoplasts exhibiting a differential sensitivity to auxin. Plant Physiology 83, 801–804CrossRefGoogle Scholar
Esau, K. (1965) Plant Anatomy, 2nd Edition. John Wiley & Sons Inc., New York
Evans, D. E., Dodds, J. H., Lloyd, P. C., ap Gwynn, I. and Hall, M. A. (1982) A study of the subcellular localisation of an ethylene binding site in developing cotyledons of Phaseolus vulgaris by high resolution autoradiography. Planta 154, 48–52CrossRefGoogle ScholarPubMed
Evans, M., Black, M. and Chapman, J. (1975) Induction of hormone sensitivity by dehydration is one possible role for drying in cereal seeds. Nature 258, 144–145CrossRefGoogle Scholar
Fahn, A. (1990) Plant Anatomy, 4th Edition, Pergamon Press, Ellmsford, NY
Fan, D. F. and Maclachlan, G. A. (1967) Studies on the regulation of cellulase activity and growth in excised pea epicotyl sections. Canadian Journal of Botany 45, 1837–1844CrossRefGoogle Scholar
Farkas, V. and Maclachlan, G. (1988) Stimulation of pea 1,4-β-glucanase activity by oligosaccharides derived from xyloglucan. Carbohydrate Research 184, 213–220CrossRefGoogle Scholar
Farmer, E. E. and Ryan, C. A. (1990) Inter-plant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences, USA 87, 7713–7716CrossRefGoogle Scholar
Farmer, E. E., Pearce, G. and Ryan, C. A. (1989) In vitro phosphorylation of plant plasma membrane proteins in response to the proteinase inhibitor inducing factor. Proceedings of the National Academy of Sciences, USA 86, 1539–1542CrossRefGoogle ScholarPubMed
Farmer, E. E., Moloshok, T. D., Saxton, M. J. and Ryan, C. A. (1991) Oligosaccharide signalling in plants – specificity of oligouronide-enhanced plasma-membrane protein phosphorylation. Journal of Biological Chemistry 266, 3140–3145Google Scholar
Fath, A., Bethke, P. C. and Jones, R. L. (1999) Barley aleurone cell death is not apoptotic: Characterization of nuclease activities and DNA degradation. Plant Journal 20, 305–315CrossRefGoogle Scholar
Feldman, K. A. and Marks, M. D. (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: A non-tissue culture approach. Molecular and General Genetics 208, 1–9CrossRefGoogle Scholar
Feldman, L. J. (1976) Th. de novo origin of the quiescent center in regenerating root apices o. Zea mays. Planta 128, 207–212CrossRefGoogle Scholar
Feldman, L. J. and Torrey, J. G. (1976) The isolation and culture in vitro of the quiescent centre of Zea mays. American Journal of Botany 63, 345–355CrossRefGoogle Scholar
Fernandez, D. E., Heck, G. R., Perry, S. E., Patterson, S.E, Bleeker, A. B. and Fang, S.-C. (2000) The embryo MADS domain factor AGL 15 acts postembryonically: Inhibition of perianth senescence and abscission via constitutive expression. Plant Cell 12, 183–198CrossRefGoogle Scholar
Feys, B. J., Benedetti, C. E., Penfold, C. N. and Turner, J. G. (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751–759CrossRefGoogle ScholarPubMed
Finkelstein, R. R., Gampala, S. S. L. and Rock, C. D. (2002) Abscisic acid signalling in seeds and seedlings. Plant Cell, 14, Supplement, S15–S45CrossRefGoogle Scholar
Fletcher, J. C. 2002. Shoot and floral meristem maintenance in Arabidopsis. Annual Review of Plant Physiology and Plant Molecular Biology 53, 45–66CrossRefGoogle ScholarPubMed
Fletcher, J. C., Brand, U., Running, M. P., Simon, R. and Meyerowitz, E. M. (1999) Signalling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911–1914CrossRefGoogle Scholar
Forde, B. G. (2000) Nitrate transporters in plants: Structure, function and regulation. Biochemica et Biophysica Acta 1465, 219–235CrossRefGoogle ScholarPubMed
Forde, B. G. (2002) The role of long-distance signalling in plant responses to nitrate and other nutrients. Journal of Experimental Botany 53, 39–43Google ScholarPubMed
Friedrichsen, D. M., Joazeiro, C. A. P., Li, J., Hunter, T. and Chory, J. (2000) Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiology 123, 1247–1256CrossRefGoogle ScholarPubMed
Friml, J. and Palme, K. (2002) Polar auxin transport – old questions and new concepts?Plant Molecular Biology 49, 273–284CrossRefGoogle ScholarPubMed
Friml, J., Wisniewska, J., Benkova, E., Mendgen, K. and Palme, K. (2002a) Lateral relocation of auxin efflux regulator PIN3 mediates tropism inArabidopsis. Nature 415, 806–809CrossRefGoogle Scholar
Friml, J., Benkova, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Jürgens, G. and Palme, K. (2002b) AtPIN4 mediates sink-driven auxin gradients and root patterning inArabidopsis. Cell 108, 661–673Google Scholar
Friml, J., Vietin, A., Sauer, M., Weijers, D., Schwartz, H., Hamann, T., Offringa, R. and Jürgens, G. (2003) Efflux-dependent auxin gradients establish the apical-basal axis ofArabidopsis. Nature 426, 147–153CrossRefGoogle ScholarPubMed
Fry, S. C., Aldington, S., Hetherington, P. R. and Aitken, J. (1993) Oligosaccharides as signals and substrates in the plant cell wall. Plant Physiology 103, 1–5CrossRefGoogle ScholarPubMed
Fu, X. and Harberd, N. (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740–743CrossRefGoogle ScholarPubMed
Fu, X., Sudhakar, D., Peng, J., Richards, D. E., Christou, P. and Harberd, P. (2001) Expression of Arabidopsis GAI in transgenic rice represses multiple gibberellin responses. Plant Cell 13, 1791–1802CrossRefGoogle ScholarPubMed
Fu, X., Richards, D. E., Ait-ali, T., Hynes, L. W., Ougham, H., Peng, J. and Harberd, N. P. (2002) Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell 14, 3191–3200CrossRefGoogle ScholarPubMed
Fujioka, S. and Yokota, T. (2003) Biosynthesis and metabolism of brassinosteroids. Annual Review of Plant Biology 54, 137–164CrossRefGoogle ScholarPubMed
Fujita, H. and Syono, K. (1996) Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabidopsis thaliana. Plant and Cell Physiology 37, 1094–1101CrossRefGoogle ScholarPubMed
Fukaki, H., Wysocka-Diller, J., Kato, T., Fujisawa, H., Benfey, P. N. and Tasaka, M. (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant Journal 14, 425–430CrossRefGoogle ScholarPubMed
Fukuda, H. (1994) Redifferentiation of single mesophyll cells into tracheary elements. International Journal of Plant Science 155, 262–271CrossRefGoogle Scholar
Fukuda, H. (1996) Xylogenesis: Initiation, progression, and cell death. Annual Review of Plant Physiology and Plant Molecular Biology 47, 299–325CrossRefGoogle Scholar
Fukuda, H. (1997) Tracheary element differentiation. Plant Cell 9, 1147–1156CrossRefGoogle ScholarPubMed
Fukuda, H. and Komamine, A. (1980) Direct evidence for cytodifferentiation to tracheary elements without intervening mitosis in a culture of single cells isolated from the mesophyll of Zinnia elegans. Plant Physiology 65, 61–64CrossRefGoogle Scholar
Gaff, D. F. and Ellis, R. P. (1974) Southern African grasses with foliage that revives after dehydration. Bothalia 11, 305–308CrossRefGoogle Scholar
Gaffney, T., Freidrich, L., Vernooji, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H. and Ryals, J. (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754–756CrossRefGoogle ScholarPubMed
Galway, M. E., Marucci, J. D., Lloyd, A. M., Walbot, V., Davis, R. W. and Schiefelbein, J. W. (1994) The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Developmental Biology 166, 740–754CrossRefGoogle ScholarPubMed
Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A. and Palme, K. (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226–2230CrossRefGoogle ScholarPubMed
Gamble, R., Coonfield, M. and Schaller, G. E. (1998) Histidine kinase activity of the ETR1 ethylene receptor fromArabidopsis. Proceedings of the National Academy of Sciences, USA 95, 7825–7829CrossRefGoogle Scholar
Gamble, R. L., Qu, X. and Schaller, G. E. (2002) Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiology 128, 1428–1438CrossRefGoogle ScholarPubMed
Gan, S. and Amasino, R. M. (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270, 1986–1988CrossRefGoogle ScholarPubMed
Gane, R. (1934) Production of ethylene by some ripening fruit. Nature 134, 1008CrossRefGoogle Scholar
Gao, D., Knight, M. R., Trewavas, A. J., Sattelmacher, B. and Plieth, C. (2004) Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiology 134, 898–908CrossRefGoogle ScholarPubMed
Gao, Z., Chen, Y.-F., Randlett, M. D., Zhao, X.-C., Findell, J. L., Kieber, J. J. and Schaller, G. E. (2003) Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signalling complexes. Journal of Biological Chemistry, 278, 34725–34732CrossRefGoogle Scholar
Geldner, M., Friml, J., York-Dieter, S., Jurgens, G. and Palme, K. (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428CrossRefGoogle ScholarPubMed
Ghoshroy, S., Lartey, R., Sheng, J. and Citousky, V. (1997) Transport of proteins and nucleic acids through plasmodesmata. Annual Review of Plant Physiology and Plant Molecular Biology 48, 27–50CrossRefGoogle ScholarPubMed
Gilroy, S. and Jones, R. L. (1994) Perception of gibberellin and abscisic acid at the external face of plasma membrane of the barley (Hordeum vulgare L) aleurone protoplasts. Plant Physiology 104, 1185–1192CrossRefGoogle ScholarPubMed
Girardin, J. P. L. (1864) Einfluss des Leuchtgases auf die Promenaden und Strassen Baume. Jahresber Agrikulturchem, Versuchssta, Berlin, 7, 199–200Google Scholar
Goffreda, J. C., Szymkowiak, E. J., Sussex, I. M. and Mutschler, M. A. (1990) Chimeric tomato plants show that aphid resistance and triacylglucose production are epidermal autonomous characters. Plant Cell 2, 643–649CrossRefGoogle ScholarPubMed
Goldsmith, M. H. M. (1977) The polar transport of auxin. Annual Reviews of Plant Physiology 28, 439–478CrossRefGoogle Scholar
Goldsworthy, A. and Mina, M. G. (1991) Electrical patterns of tobacco cells in media containing indole-3-acetic acid or 2,4-dichlorophenoxyacetic acid, their relation to organogenesis and herbicide action. Planta 183, 368–373CrossRefGoogle ScholarPubMed
Gollin, D. J., Darvill, A. G. and Albersheim, P. (1984) Plant cell wall fragments inhibit flowering and promote vegetative growth inLemna minor. Biology of the Cell 51, 275–280Google Scholar
Golub, S. J. and Wetmore, R. H. (1948) Studies of development in the vegetative shoot of Equisetum arvense L. I. The shoot apex. American Journal of Botany 35, 755–762CrossRefGoogle Scholar
Gomez-Cadenas, A., Zentella, R., Walker-Simmons, M. K. and Ho, T.-H. D. (2001) Gibberellin/abscisic acid antagonism in barley aleurone cells: Site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell 13, 667–679CrossRefGoogle ScholarPubMed
Goring, D. R. and Rothstein, S. J. (1992) The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase. Plant Cell 4, 1273–1281CrossRefGoogle Scholar
Gorst, J., Overall, R. L., and Wernicke, W. (1987) Ionic currents traversing cell clusters from carrot suspension cultures reveal perpetuation of morphogenetic potential as distinct from induction to embryogenesis. Cell Differentiation 21, 101–110CrossRefGoogle ScholarPubMed
Goto, N., Starke, M. and Kranz, A. R. (1987) Effect of gibberellins on flower development of the pin-formed mutant ofArabidopsis thaliana. Arabidopsis Information Services 23, 66–71Google Scholar
Grabov, A. and Blatt, M. R. (1999) A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiology 119, 277–287CrossRefGoogle ScholarPubMed
Granell, A., Cercos, M. and Carbonell, J. (1998) Plant cysteine proteinases in germination and senescence. In: Handbook of Proteolytic Enzymes, Barret A. J., Rawlings, N. D. and Woessner, J. F. (eds.). Academic Press, San Diego, London, pp. 578–583
Gray, W. M., del Pozo, J. C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W. L., Yang, M., Hong, M. and Estelle, M. (1999) Identification of an SCF-ligase complex required for auxin response inArabidopsis thaliana. Genes and Development 13, 1678–1691CrossRefGoogle Scholar
Gray, W. M., Kepinski, S., Rouse, D., Leyser, O. and Estelle, M. (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414, 271–276CrossRefGoogle ScholarPubMed
Grbic, V. and Bleecker, A. B. (1995) Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant Journal 8, 595–602CrossRefGoogle Scholar
Green, P. B. (1999) Expression of pattern in plants: Combining molecules and calculus-based biophysical paradigms. American Journal of Botany 86, 1059–1076CrossRefGoogle Scholar
Green, T. R. and Ryan, C. A. (1972) Wound-induced proteinase inhibitor in plant leaves: A possible defense mechanism against insects. Science 175, 776–777CrossRefGoogle ScholarPubMed
Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D., Steffens, G. L., Flippen-Anderson, J. L. and Cook, J. C. (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281, 216–217CrossRefGoogle Scholar
Gubler, F., Falla, R., Roberts, J. K. and Jacobsen, J. V. (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: Evidence for myb transactivation of a high-p1 α-amylase gene promoter. Plant Cell 7, 1879–1891Google ScholarPubMed
Gubler, F., Chandler, P. M., White, R. G., Llewellyn, D. J. and Jacobsen, J. V. (2002) Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physiology 129, 191–200CrossRefGoogle ScholarPubMed
Guilfoyle, T. J. and Hagan, G. (2001) Auxin response factors. Journal of Plant Growth Regulation 20, 281–291CrossRefGoogle Scholar
Guinel, F. C. and Geil, R. D. (2002) A model for the development of the rhizobial and arbuscular mycorrhizal symbiosis in legumes and its use to understand the roles of ethylene in the establishment of these two symbiosis. Canadian Journal of Botany 80, 695–720CrossRefGoogle Scholar
Gunawardena, A. H. L. A. N., Pearce, D. M., Jackson, M. B., Hawes, C. R. and Evans, D. E. (2001a) Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.)Planta 212, 205–214CrossRefGoogle Scholar
Gunawardena, A. H. L. A. N., Pearce, D. M. E., Jackson, M. B., Hawes, C. R. and Evans, D. E. (2001b) Rapid changes in cell wall pectic polysaccharides are closely associated with early stages of aerenchyma formation, a spatially localized form of programmed cell death in roots of maize (Zea mays L.) promoted by ethylene. Plant, Cell and Environment 24, 1369–1375CrossRefGoogle Scholar
Guo, H. and Ecker, J. R. (2003) Plant responses to ethylene gas are mediated by SCFEBP1/EBP2-dependent proteolysis of EIN3 transcription factor. Cell 115, 667–677CrossRefGoogle ScholarPubMed
Guzman, P. and Ecker, J. R. (1990) Exploring the triple response Arabidopsis to identify ethylene-related mutants. Plant Cell 2, 513–523CrossRefGoogle Scholar
Haberer, G. and Kieber, J. J. (2002) Cytokinins: New insights into a classic phytohormone. Plant Physiology 128, 354–362CrossRefGoogle ScholarPubMed
Hackett, R. M., Ho, C., Lin, Z., Foote, H. C. C., Fray, R. G. and Grierson, D. (2000) Anti-sense inhibition of the Nr gene restores normal ripening to the tomato Never ripe mutant, consistent with the ethylene receptor-inhibition model. Plant Physiology 124, 1079–1086CrossRefGoogle Scholar
Hadfield, K. A. and Bennett, A. B. (1998) Polygalacturonases: Many genes in search of a function. Plant Physiology 117, 337–343CrossRefGoogle ScholarPubMed
Hake, S. and Freeling, M. (1986) Analysis of genetic mosaics shows that extra epidermal cell divisions in Knotted mutant maize plants are induced by adjacent microphyll cells. Nature 320, 621–623CrossRefGoogle Scholar
Hall, A. E., Findell, J. l., Schaller, G. E., Sisler, E. C. and Bleecker, A. B. (2000) Ethylene perception by the ERS1 protein inArabidopsis. Plant Physiology 123, 1449–1458CrossRefGoogle ScholarPubMed
Hamann, T., Benkova, E., Bäurle, I., Kientz, M. and Jürgens, G. (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes and Development 16, 1610–1615CrossRefGoogle ScholarPubMed
Han, B., Berjak, P., Pammenter, N., Farrant, J., and Kermode, A. R. (1997) The recalcitrant plant species, Castanospermum australe and Trichilia dregeana, differ in their ability to produce dehydrin-related polypeptides during seed maturation and in response to ABA or water-deficit-related stresses. Journal of Experimental Botany 48, 1717–1726CrossRefGoogle Scholar
Hanada, K., Nishiuchi, Y. and Hirano, H. (2003) Amino acid residues on the surface of the soybean 4-kDa peptide involved in the interaction with its binding protein. European Journal of Biochemistry 270, 2583–2592CrossRefGoogle ScholarPubMed
Hangarter, R. P. and Good, N. E. (1981) Evidence that IAA conjugates are slow-release sources of free IAA in plant tissues. Plant Physiology 68, 1424–1427CrossRefGoogle ScholarPubMed
Hardtke, C. and Berleth, T. (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO Journal 17, 1405–1411CrossRefGoogle ScholarPubMed
Harper, J. R. and Balke, N. E. (1981) Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiology 68, 1349–1353CrossRefGoogle ScholarPubMed
Hartung, W. (1983) The site of action of abscisic acid at the guard cell plasmalemma of Valerianella locusta. Plant Cell and Environment 6, 427–428CrossRefGoogle Scholar
Hartung, W., Sauter, A. and Hose, E. (2002) Abscisic acid in the xylem: Where does it come from, where does it go?Journal of Experimental Botany 53, 27–32CrossRefGoogle Scholar
Haughn, G. W. and Somerville, C. R. (1986) Sulfonylurea-resistant mutants ofArabidopsis thaliana. Molecular and General Genetics 204, 430–434CrossRefGoogle Scholar
He, J.-X., Gendron, J. M., Yang, Y., Li, J. and Wang, Z.-Y. (2002) The GKS3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signalling pathway inArabidopsis. Proceedings of the National Academy of Sciences, USA 99, 10185–10190CrossRefGoogle Scholar
He, Z., Wang, Z.-Y., Li, J., Zhu, Q., Lamb, C., Ronald, P. and Chory, J. (2000) Perception of brassinosteroidsby the extracellular domain of the receptor kinase BRI1. Science 288, 2360–2363CrossRefGoogle ScholarPubMed
Hecht, K. (1912) Studien über den Vorgang der Plasmolyse. Beitrage zür Biologie der Pflanzen 11, 133–189Google Scholar
Hedden, P. and Phillips, A. L. (2000) Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Sciences 5, 523–530CrossRefGoogle ScholarPubMed
Heidstra, R., Yang, W. C., Yalcin, T., Peck, S., Emons, A.-M., Kammen, A. and Biseling, T. (1997) Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development 124, 1781–1787Google Scholar
Henderson, J., Bauly, J. M., Ashford, D. A., Oliver, S. C., Hawes, C. R., Lazarus, C. M. and Venis, M. A. (1997) Retention of maize auxin-binding protein in the endoplasmic reticulum: Quantifying escape and the role of auxin. Planta 202, 313–323CrossRefGoogle ScholarPubMed
Henderson, J., Lyne, L. and Osborne, D. J. (2001a) Failed expression of an endo-β-1,4-glucan-hydrolase (cellulase) in a non-abscinding mutant of Lupinus angustifolius cv. Danja. Phytochemistry 58, 1025–1034CrossRefGoogle Scholar
Henderson, J., Davies, H. A., Heyes, S. J. and Osborne, D. J. (2001b) The study of a monocotyledon abscission zone using microscopic, chemical, enzymatic and solid state 13CCP/MAS NMR analyses. Phytochemistry 56, 131–139CrossRefGoogle Scholar
Hensel, L. L., Grbic, V., Baumgerten, D. A. and Bleecker, A. B. (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5, 553–564CrossRefGoogle ScholarPubMed
Herschbach, C., Zalm, E., Schneider, A., Jouanin, L., Kok, L. J. and Rennenberg, H. (2000) Regulation of sulfur nutrition in wild-type and transgenic poplar over-expressing 8-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S. Plant Physiology 124, 461–474CrossRefGoogle ScholarPubMed
Hertel, R., Thomson, K.-St. and Russo, V. E. A. (1972) In vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107, 325–340CrossRefGoogle ScholarPubMed
Hesse, T., Feldwisch, J., Balschusemann, D., Bauw, G., Puype, M., Vandekeckhove, J., Löbler, M., Klämbt, D., Schell, J. and Palme, K. (1989) Molecular cloning and structural anlysis of a gene from Zea mays (L.) coding for the plant hormone auxin. EMBO Journal 8, 2453–2461Google Scholar
Heuros, G., Varotto, S., Salamini, F. and Thompson, R. D. (1995) Molecular characterization of BET1, a gene expressed in the endosperm transfer cells of maize. Plant Cell 7, 747–757CrossRefGoogle Scholar
Hey, S. J., Bacon, A., Burnett, E. and Neill, S. J. (1997) Abscisic acid signal transduction in epidermal cells of Pisum sativum L. Argenteum: Both dehydrin mRNA accumulation and stomatal response require protein phosphorylation and de-phosphorylation. Planta 202, 85–92CrossRefGoogle Scholar
Himanen, K., Boucheron, E., Vanneste, S., Engler, J. de A., Inze, D. and Beeckman, T. (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14, 2339–2351CrossRefGoogle ScholarPubMed
Holroyd, G. H., Hetherington, A. M. and Gray, J. E. (2002) A role for the cuticular waxes in the environmental control of stomatal development. New Phytologist 153, 433–439CrossRefGoogle Scholar
Hooley, R., Beale, M. H. and Smith, S. J. (1991) Gibberellin perception at the plasma membrane of Avena fatua aleurone protoplasts. Planta 183, 274–280CrossRefGoogle ScholarPubMed
Hooley, R., Beale, M. H., Smith, S. J., Walker, R. P., Rushton, P. J., Whitford, P. N. and Lazarus, C. M. (1992) Gibberellin perception and the Avena fatua aleurone: Do our molecular keys fit the correct locks. Biochemical Society Transcations 20, 85–89CrossRefGoogle ScholarPubMed
Hooley, R., Smith, S. J., Beale, M. H. and Walker, R. P. (1993) In vivo photoaffinity labelling of gibberellin-binding proteins in Avena fatua aleurone. Australian Journal of Plant Physiology 20, 573–584CrossRefGoogle Scholar
Hornberg, C. and Weiler, E. W. (1984) High affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature 310, 321–324CrossRefGoogle Scholar
Horton, R. F. and Osborne, D. J. (1967) Senescence, abscission and cellulase activity inPhaseolus vulgaris. Nature 214, 1086–1088CrossRefGoogle Scholar
Howe, G. A. and Ryan, C. A. (1999) Suppressors of systemin signalling identify genes in the tomato wound response pathway. Genetics 153, 1411–1421Google Scholar
Hua, J. and Meyerowitz, E. M. (1998) Ethylene responses are negatively regulated by a receptor gene family inArabidopsis thaliana. Cell 94, 261–271Google ScholarPubMed
Hua, J., Chang, C., Sun, Q. and Meyerowitz, E. M. (1995) Ethylene insensitivity conferred Arabidopsis ERS gene. Science 269, 1712–1714CrossRefGoogle ScholarPubMed
Hua, J., Sakai, S., Nourizadeh, S., Chen, Q. C., Bleecker, A. B., Ecker, J. R. and Meyerowitz, E. M. (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10, 1321–1332CrossRefGoogle ScholarPubMed
Huh, W.-K. I., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. and O'Shea, E. K. (2003) Global analysis of protein localization in budding yeast. Nature 425, 686–691CrossRefGoogle ScholarPubMed
Hull, A. K., Vij, R. and Celenza, J. L. (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proceedings of the National Academy of Sciences USA 97, 2379–2384CrossRefGoogle ScholarPubMed
Hülskamp, M., Miséra, S. and Jürgens, G. (1994) Genetic dissection of trichome cell development in Arabidopsis. Cell 76, 555–566CrossRefGoogle ScholarPubMed
Hwang, I. and Sheen, J. (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413, 383–389CrossRefGoogle ScholarPubMed
Hwang, I., Chen, H.-C. and Sheen, J. (2002) Two-component signal transduction pathways inArabidopsis. Plant Physiology 129, 500–515CrossRefGoogle Scholar
Ikeda, A., Ueguchi-Tanaka, M., Sonoda, Y., Kitano, H., Koshioka, M., Futsuhara, Y., Matsuoka, M. and Yamaguchi, J. (2001) Slender rice, a constitutive gibberellin response mutant is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13, 999–1010CrossRefGoogle ScholarPubMed
Imamura, A., Hanaki, N., Umeda, H., Nakamura, A., Suzuki, T., Ueguchi, C. and Mizuno, T. (1998) Response regulators implicated in His-to-Asp phospho-transfer signalling inArabidopsis. Proceedings of the National Academy of Sciences, USA 95, 2691–2696CrossRefGoogle Scholar
Imamura, A., Hanaki, N., Nakamura, A., Suzuki, T., Taniguchi, M., Kiba, T., Ueguchi, C., Sugiyama, T. and Mizuno, T. (1999) Compilation and characterization of Arabidopsis thaliana response regulators implicated in His-Asp phospho-relay signal transduction. Plant and Cell Physiology 40, 733–742CrossRefGoogle Scholar
Imaseki, H., Pjon, C. J. and Furuya, M. (1971) Phytochrome action in Oryza sativa L. Plant Physiology 48, 241–244CrossRefGoogle ScholarPubMed
Imber, D. and Tal, M. (1970) Phenotypic reversion of flacca, a wilty mutant of tomato, by abscisic acid. Science 169, 592–593CrossRefGoogle ScholarPubMed
Ingold, E., Sugiyama, M., and Komamine, A. (1990) L-α-aminoxy-β-phenylpropionic acid inhibits lignification but not the differentiation to tracheary elements of isolated mesophyll cells of Zinnia elegans. Physiologia Plantarum 78, 67–74CrossRefGoogle Scholar
Inohara, N., Shimomura, S., Fukui, T. and Futai, M. (1989) Auxin-binding protein located in the endoplasmatic reticulum of maize shoots: Molecular cloning and complete primary structure. Proceedings of the National Academy of Sciences, USA 83, 3654–3568Google Scholar
Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayasjhi, M., Kato, T., Tabata, S., Shinozaki, K. and Katimoto, T. (2001) Identification of CRE1 as a cytokinin receptor fromArabidopsis. Nature 409, 1060–1063CrossRefGoogle Scholar
Irvine, R. F. and Osborne, D. J. (1973) The effect of ethylene on 1-14C glycerol incorporation into phospholipids of etiolated pea stems. Biochemical Journal 136, 1133–1135CrossRefGoogle ScholarPubMed
Itoh, H., Ueguchi-Tanaka, M., Sato, Y., Ashikari, M. and Matsuoka, M. (2002) The gibberellin signalling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14, 57–70CrossRefGoogle ScholarPubMed
Jacinto, T., McGurl, B., Franceschi, V., Delano-Freier, J. and Ryan, C. A. (1997) Tomato prosystemin promoter confers wound-inducible, vascular bundle-specific expression of the β-glucoronidase gene in transgenic tomato plants. Planta 203, 406–412CrossRefGoogle Scholar
Jackson, D., Veit, B. and Hake, S. (1994) Expression of maize KNOTTED1 relates homeo-box genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120, 405–413Google Scholar
Jackson, M. B. (1993) Are plant hormones involved in root to shoot communication?Advances in Botanical Research 19, 103–187CrossRefGoogle Scholar
Jackson, M. B. (2002) Long-distance signalling from roots to shoots assessed: The flooding story. Journal of Experimental Botany 53, 175–181CrossRefGoogle ScholarPubMed
Jackson, M. B. and Armstrong, W. (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology 1, 274–287CrossRefGoogle Scholar
Jackson, M. B., Summers, J. E. and Voesenek, L. A. C. J. (1997) Potamogeton pectinatus: A vascular plant that makes no ethylene. In. Biology and Biotechnology of the Plant Hormone Ethylene, Kanellis, A. K. et al. (eds.). Kluwer Academic Press, Dordrecht, pp. 229–237CrossRef
Jacobs, W. P., McCready, C. C. and Osborne, D. J. (1966) Transport of the auxin 2,4-dichlorophenoxyacetic acid through abscission zones, pulvini, and petioles of Phaseolus vulgaris. Plant Physiology 41, 725–730CrossRefGoogle ScholarPubMed
Jaffe, L. F. (1958) Tropistic responses of zygotes of the Fucaceae to polarized light. Experimental Cell Research 15, 282–299CrossRefGoogle ScholarPubMed
Jaffe, L. F. (1966) Electrical currents through the developing Fucus egg. Proceedings of the National Academy of Sciences, USA 56, 1102–1109CrossRefGoogle ScholarPubMed
Jaffe, M. J., Leopold, A. C. and Staples, R. C. (2002) Thigmo responses in plants and fungi. American Journal of Botany 89, 375–382CrossRefGoogle ScholarPubMed
Jeong, S., Trotochaud, A. E. and Clark, S. E. (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11, 1925–1934CrossRefGoogle ScholarPubMed
Jerie, P. H., Shaari, A. R. and Hall, M. A. (1979) The compartmentation of ethylene in developing cotyledons of Phaseolus vulgaris L. Planta 144, 503–507CrossRefGoogle ScholarPubMed
John, I., Drake, R., Farrell, A., Cooper, W., Lee, P., Horton, P. and Grierson, D. (1995) Delayed leaf senescence in ethylene-deficient ACC oxidase anti-sense tomato plants: Molecular and physiological analysis. Plant Journal 7, 483–490CrossRefGoogle Scholar
Johnson, M. A. and Preuss, D. (2003) On your mark, get set, grow! LePRK2-LAT52 interactions regulate pollen tube growth. Trends in Plant Science 8, 97–99CrossRefGoogle ScholarPubMed
Jones, A. M. and Herman, E. M. (1993) KDEL-containing auxin-binding protein is secreted to the plasma membrane and cell wall. Plant Physiology 101, 595–606CrossRefGoogle ScholarPubMed
Jones, A. M., Im, K.-H., Savka, M. A., Wu, M.-J., DeWitt, G., Shillito, R. and Binns, A. N. (1998a) Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282, 1114–1117CrossRefGoogle Scholar
Jones, H. D., Smith, S. J., Desikan, R., Plakidou-Dymock, S., Lovegrove, A. and Hooley, R. (1998b) Heterotrimeric G proteins are implicated in gibberellin induction of α-amylase gene expression in wild oat aleurone. Plant Cell 10, 245–253CrossRefGoogle Scholar
Kagan, M. L. and Sachs, T. (1991) Development of immature stomata: Evidence for epigenetic selection of a spacing pattern. Developmental Biology 146, 100–105CrossRefGoogle ScholarPubMed
Kagan, M. L., Novoplansky, N. and Sachs, T. (1992) Variable cell lineages from the functional pea epidermis. Annals of Botany 69, 303–312CrossRefGoogle Scholar
Kaihara, S., Watanabe, K. and Takimoto, A. (1981) Flower-inducing effect of benzoic and salicylic acids on various strains of Lemna paucicostata andL. minor. Plant Cell Physiology 22, 819–825Google Scholar
Kakimoto, T. (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274, 982–985CrossRefGoogle ScholarPubMed
Kakimoto, T. (1998) Cytokinin signalling. Current Opinions in Plant Biology 1, 399–403CrossRefGoogle Scholar
Kakimoto, T. (2001) Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant Cell Physiology 42, 677–685CrossRefGoogle ScholarPubMed
Kalla, R., Shimamoto, K., Potter, R., Nielsen, P. S., Linnestad, C. and Olsen, O.-A. (1994) The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone-specific gene expression in transgenic rice. Plant Journal 6, 849–860CrossRefGoogle ScholarPubMed
Kaminek, M., Dobrev, P., Gaudinová, A., Motyka, V., Malbeck, J., Trávièkova, A. and Trčková, M. (2000) Potential physiological function of cytokinin binding proteins in seeds of cereals. Plant Physiology and Biochemistry 38, Supplement, S79Google Scholar
Kaminek, M., Trčková, M., Fox, J. E. and Gaudinová, A. (2003) Comparison of cytokinin-binding proteins from wheat and oat grains. Physiologia Plantarum 117, 453–458CrossRefGoogle ScholarPubMed
Karlson, P. (1956) Biochemical studies on insect hormones. Vitamins and Hormones 14, 227–266CrossRefGoogle ScholarPubMed
Kawai, M., Samarajeewa, P. K., Barrero, R. A., Nishiguchi, M. and Uchimiya, H. (1998) Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots. Planta 204, 277–287CrossRefGoogle Scholar
Kayes, J. M. and Clark, S. E. (1998) CLAVATA2, a regulator of meristem and organ development inArabidopsis. Development 125, 3843–3851Google ScholarPubMed
Keefe, D., Hinz, U. and Meins, F. (1990) The effect of ethylene on the cell-type-specific and intracellular localization of β 1,3-glucanase and chitinase in tobacco leaves. Planta 182, 43–51CrossRefGoogle Scholar
Kende, H. (1993) Ethylene biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 44, 283–307CrossRefGoogle Scholar
Kepenski, S. and Leyser, O. (2002) Ubiquitination and auxin signalling: A degrading story. Plant Cell 14, Supplement, S81–95Google Scholar
Kermode, A. R. (1997) Approaches to elucidate the basis of desiccation-tolerance in seeds. Seed Science Research 7, 75–95CrossRefGoogle Scholar
Khurana, J. P. and Maheshwari, S. C. (1978) Induction of flowering in Lemna paucicostata by salicylic acid. Plant Science Letters 12, 127–131CrossRefGoogle Scholar
Kiba, A., Sugimoto, M., Toyoda, K., Ichinose, Y., Yamada, T. and Shiraishi, T. (1998) Interaction between cell wall and plasma membrane via RGD motif is implicated in plant defense responses. Plant and Cell Physiology 39, 1245–1249CrossRefGoogle Scholar
Kiba, T., Taniguchi, M., Imamura, A., Ueguchi, C., Mizuno, T. and Sugiyama, T. (1999) Differential expression of genes for response regulators in response to cytokinins and nitrate inArabidopsis thaliana. Plant and Cell Physiology 40, 767–771CrossRefGoogle Scholar
Kieber, J. J., Rothenberg, M., Roman, G., Feldmann, K. A. and Ecker, J. R. (1993) CTR1, a negative regulator of the ethylene response pathway i. Arabidopsis, encodes a member of the Raf family of protein kinases. Cell, 72, 427–441CrossRefGoogle ScholarPubMed
Kim, J., Harter, K. and Theologis, A. (1997) Protein-protein interactions among the Aux/IAA proteins. Proceedings of the National Academy of Sciences, USA 94, 11786–11791CrossRefGoogle ScholarPubMed
Kim, Y.-S., Kim, D. and Jung, J. (2000) Two isoforms of soluble auxin receptor in rice (Oryza sativa L.) plants: Binding property for auxin and interaction with plasma membrane H+-ATPase. Plant Growth Regulation 32, 143–150CrossRefGoogle Scholar
Kim, Y.-S., Min, J.-K., Kim, D. and Jung, J. (2001) A soluble auxin-binding protein, ABP57. Journal of Biological Chemistry 276, 10730–10736CrossRefGoogle ScholarPubMed
Kiss, J. Z. and Sack, F. D. (1989) Reduced gravitropic sensitivity in roots of a starch-deficient mutant of Nicotiana sylvestris. Planta 180, 123–130CrossRefGoogle ScholarPubMed
Kiss, J. Z., Guisinger, M. M., Miller, A. J. and Stackhouse, K. S. (1997) Reduced gravitropism in hypocotyls of a starch-deficient mutant of Arabidopsis. Plant Cell Physiology 38, 518–525CrossRefGoogle ScholarPubMed
Klee, H. J. (2002) Control of ethylene-mediated processes in tomato at the level of receptors. Journal of Experimental Botany 53, 2057–2063CrossRefGoogle ScholarPubMed
Klee, H. J. and Tieman, D. (2002) The tomato ethylene receptor gene family: Form and function. Physiologia Plantarum 115, 336–341CrossRefGoogle ScholarPubMed
Klemsdal, S. S., Hughes, W., L⊘nneborg, A., Allen, R. B. and Olsen, O.-A. (1991) Primary structure of a novel barley gene differentially expressed in immature aleurone layers. Molecular and General Genetics 228, 9–16CrossRefGoogle ScholarPubMed
Knox, J. P. (1995) Developmentally regulated proteoglycans and glycoproteins of the plant cell surface. FASEB Journal 9, 1004–1012CrossRefGoogle ScholarPubMed
Knox, J. P. (1997) The use of antibodies to study the architecture and developmental regulation of plant cell walls. International Review of Cytology 171, 79–120CrossRefGoogle Scholar
Knox, J. P., Day, S. and Roberts, K. (1989) A set of cell surface glycoproteins form an early marker of cell position, but not cell type in the root apical meristem of Daucus carota L. Development 106, 47–56Google Scholar
Knox, J. P., Linstead, P. J., King, J., Cooper, C. and Roberts, K. (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181, 512–521CrossRefGoogle ScholarPubMed
Knox, J. P., Linstead, P. J., Peart, J., Cooper, C. and Roberts, K. (1991) Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant Journal 1, 317–326CrossRefGoogle ScholarPubMed
Koka, C. V., Cerny, R. E., Gardner, R. G., Noguchi, T., Fujioka, S., Takatsuto, S., Yoshida, S. and Clouse, S. D. (2000) A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiology 122, 85–98CrossRefGoogle Scholar
Komalavilas, P., Zhu, J.-K. and Nothnagel, E. A. (1991) Arabinogalactan-proteins from the suspension culture medium and plasma membrane of rose cells. Journal of Biological Chemistry 266, 15956–15965Google ScholarPubMed
Koornneef, M. and Veen, J. H. (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.). Heynh. Theoretical and Applied Genetics 58, 257–263CrossRefGoogle Scholar
Koornneef, M., Eden, J., Hanhart, C. J., Stam, P., Braacksma, F. J. and Feenstra, W. J. (1983) Linkage map ofArabidopsis thaliana. Journal of Heredity 74, 265–272CrossRefGoogle Scholar
Kowalczyk, M. and Sandberg, G. (2001) Quantitative analysis of indole-3-acetic acid metabolites inArabidopsis. Plant Physiology 127, 1845–1853CrossRefGoogle Scholar
Kreuger, M. and Holst, G.-J. (1993) Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. Planta 189, 243–248CrossRefGoogle Scholar
Kreuger, M. and Holst, G.-J. (1995) Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota L. Planta 197, 135–141CrossRefGoogle Scholar
Kreuger, M. and Holst, G.-J. (1996) Arabinogalactan proteins and plant differentiation. Plant Molecular Biology 30, 1077–1086CrossRefGoogle ScholarPubMed
Ku, H. S., Suge, H., Rappaport, L. and Pratt, H. K. (1970) Stimulation of rice coleoptile growth by ethylene. Planta 90, 333–339CrossRefGoogle ScholarPubMed
Kumar, A., Altabella, T., Taylor, M. A. and Tiburcio, A. F. (1997) Recent advances in polyamine research. Trends in Plant Science 2, 124–130CrossRefGoogle Scholar
Kumar, D. and Klessig, D. F. (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academy of Sciences, USA 100, 16101–16106CrossRefGoogle ScholarPubMed
Kuo, A., Cappellutti, S., Cervantes-Cervantes, M., Rodriguez, M. and Bush, D. S. (1996) Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression and cell death induced by gibberellin in wheat aleurone cells. Plant Cell 8, 259–269CrossRefGoogle ScholarPubMed
Kurosawa, K. (1926) Experimental studies on the secretion of Fusarium heterosporum on rice plants. Transactions of the Natural History Society, Formosa 16, 213–227Google Scholar
Kutschera, U. and Bette, A. (1998) In growing epidermal cells of rye coleoptiles microtubules are associated with the nuclei. Journal Plant Physiology 152, 463–467CrossRefGoogle Scholar
Lang-Pauluzzi, I. and Gunning, B. E. S. (2000) A plasmolytic cycle: The fate of cytoskeletal elements. Protoplasma 212, 174–185CrossRefGoogle Scholar
Lappartient, A. G., Vidmar, J. J., Leustek, T., Glass, A. D. M. and Touraine, B. (1999) Inter-organ signalling in plants: Regulation of ATP sulfurylase and sulfate transporter gene expression in roots mediated by phloem-translocated compound. Plant Journal 18, 89–95CrossRefGoogle Scholar
Lashbrook, C. C., Tieman, D. M. and Klee, H. J. (1998) Differential regulation of the tomato ETR gene family throughout plant development. Plant Journal 15, 243–252CrossRefGoogle ScholarPubMed
Laval, V., Chabannes, M., Carrière, M., Canut, H., Barre, A., Rougé, P., Pont-Lezica, R. and Galaud, J., 1999. A family of Arabidopsis plasma membrane receptors presenting animal β-integrin domains. Biochimica and Biophysica Acta 1435, 61–70CrossRefGoogle ScholarPubMed
Leblanc, N., Perrot-Reichenmann, C. and Barbier-Brygoo, H. (1999a) The auxin-binding protein Nt-Erabp1 alone activates an auxin-like transduction pathway. FEBS Letters 449, 57–60CrossRefGoogle Scholar
Leblanc, N., David, K., Grosclaude, J., Pradier, J.-M., Barbier-Brygoo, H., Labiau, S. and Perrot-Rechenmann, C. (1999b) A novel immunological approach establishes that the auxin-binding protein, Nt-abp1, is an element involved on auxin signalling at the plasma membrane. Journal of Biological Chemistry 274, 28314–28320CrossRefGoogle Scholar
LeClere, S., Tellez, R., Rampey, R. A., Matsuda, S. P. T. and Bartel, B. (2002) Characterization of a family of IAA-amino acid conjugate hydrolases from ArabidopsisJournal of Biological Chemistry 277, 20446–20452CrossRefGoogle ScholarPubMed
Lee, G. I. and Howe, G. A. (2003) The tomato mutant spr1 is defective in systemin perception and the production of a systemic wound signal for defense gene expression. Plant Journal 33, 567–576CrossRefGoogle ScholarPubMed
Lee, M. M. and Schiefelbein, J. (2001) Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis. Development 128, 1539–1546Google ScholarPubMed
Leiberman, M., Kanisti, A. T., Mapson, L. W. and Wardale, A. (1966) Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiology 41, 376–382CrossRefGoogle Scholar
Lembi, C. A., Morré, D. J., St-Thompson, K. and Hertel, R. (1971) N-1-naphthylphthalamic acid-binding of a plasma membrane-rich fraction from maize coleoptiles. Planta 99, 37–45CrossRefGoogle Scholar
Lenhard, M. and Laux, T. (2003) Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 130, 3163–3173CrossRefGoogle ScholarPubMed
Leon, J., Lawton, M. A. and Raskin, I. (1995) Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiology 108, 1673–1678CrossRefGoogle ScholarPubMed
Leon, P. and Sheen, J. (2003) Sugar and hormone connections. Trends in Plant Science 8, 110–116CrossRefGoogle ScholarPubMed
Leopold, A. C. and Guernsey, F. S. (1953) Auxin polarity in the Coleus plant. Botanical Gazette 115, 147–154CrossRefGoogle Scholar
Leshem, Y. Y. and Haramaty, E. (1996) The characterisation and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. Journal of Plant Physiology 148, 258–263CrossRefGoogle Scholar
Leshem, Y. Y. and Pinchasov, Y. (2000) Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during ripening of strawberries, Fragaria anannasa (Duch.) and avocado Persea americana (Mill.). Journal of Experimental Botany 51, 1471–1473Google Scholar
Leslie, C. A. and Romani, R. J. (1986) Salicylic acid: A new inhibitor of ethylene biosynthesis. Plant Cell Reports 5, 144–146CrossRefGoogle ScholarPubMed
Leslie, C. A. and Romani, R. J. (1988) Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiology 88, 833–837CrossRefGoogle ScholarPubMed
Letham, D. S. (1963) Zeatin, a factor inducing cell division fromZea mays. Life Sciences 8, 569–573CrossRefGoogle Scholar
Lewis, N. G. and Yamamoto, E. (1990) Lignin: Occurrence, biogenesis and biodegradation. Annual Review of Plant Physiology and Plant Molecular Biology 41, 455–496CrossRefGoogle ScholarPubMed
Leyser, H. M. O. (2002) Molecular genetics of auxin signalling. Annual Reviews of Plant Biology 53, 377–398CrossRefGoogle Scholar
Leyser, H. M. O. and Furner, I. J. (1992) Characterisation of three shoot apical meristem mutants ofArabidopsis thaliana. Development 116, 397–403Google Scholar
Leyser, H. M. O., Lincoln, C., Timpte, C., Lammer, D., Turner, J. and Estelle, M. (1993) The auxin-resistance gene AXR1 of Arabidopsis encodes a protein related to ubiquitin-activase enzyme E1. Nature 304, 161–164CrossRefGoogle Scholar
Lhernould, S., Karamanos, Y., Priem, B. and Morvan, H. (1994) Carbon starvation increases endoglycosidase activities and production of “unconjugated N-glycans” in Silene alba cells. Plant Physiology 106, 776–784CrossRefGoogle Scholar
Li, J. and Chory, J., (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90, 929–938CrossRefGoogle ScholarPubMed
Li, J. and Chory, J. (1999) Brassinosteroid action in plants. Journal of Experimental Botany 50, 275–282Google Scholar
Li, J. and Nam, K. H. (2002) Regulation of brassinosteroid signalling by a GSK3/SHAGGY-like kinase. Science 295, 1299–1301Google Scholar
Li, J., Nagpal, P., Vitart, V., McMorris, T. C. and Chory, J. (1996) A role for brassinosteroids in light-dependent development ofArabidopsis. Science 272, 398–401Google ScholarPubMed
Li, J., Biswas, M. G., Chao, A., Russel, D. W. and Chory, J. (1997) Conservation of function between mammalian and plant steroid 5α-reductases. Proceedings of the National Academy of Sciences, USA 94, 3554–3559CrossRefGoogle ScholarPubMed
Li, J., Nam, K. H., Vafeados, D. and Chory, J. (2001) BIN2, A new brassinosteroid-insensitive locus inArabidopsis. Plant Physiology 127, 14–22CrossRefGoogle Scholar
Li, N., Parsons, B. L., Liu, D. and Mattoo, A. K. (1992) Accumulation of wound-inducible ACC synthase transcripts in tomato fruit is inhibited by salicylic acid and polyamines. Plant Molecular Biology 18, 477–487CrossRefGoogle Scholar
Lincoln, J. E., Cordes, S., Read, E. and Fischer, R. L. (1987) Regulation of expression by ethylene during Lycopersicon esculentum (tomato) fruit development. Proceedings of the National Academy of Sciences, USA 84, 2793–2797CrossRefGoogle ScholarPubMed
Lindsey, K., Casson, S. and Chilley, P. (2002) Peptides: New signalling molecules in plants. Trends in Plant Science, 7, 78–83CrossRefGoogle ScholarPubMed
Liu, D. H., Post-Beiltenmiller, D. (1995) Discovery of an epidermal stearoyl-acyl carrier protein thio esterase: Its potential role in wax biosynthesis. Journal of Biological Chemistry, 270, 16962–16969CrossRefGoogle Scholar
Ljung, K., Bhalerao, R. P. and Sandberg, G. (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant Journal. 28, 465–474CrossRefGoogle ScholarPubMed
Lobler, M. and Klambt, D. (1985) Auxin-binding protein from coleoptile membranes of corn (Zea mays L.) I. Purification by immunological methods and characterization. Journal of Biological Chemistry 260, 9848–9853Google ScholarPubMed
Lopes, M. A. and Larkins, B. A. (1993) Endosperm origin, development, and function. Plant Cell 5, 1383–1399CrossRefGoogle Scholar
López-Serrano, M., Fernández, M. D., Pomar, F., Pedreño, M. A. and Barceló, A. R. (2004) Zinnia elegans uses the same peroxidase isoenzyme complement for cell wall lignification in both single-cell tracheary elements and xylem vessels. Journal of Experimental Botany 55, 423–431CrossRefGoogle ScholarPubMed
Lovegrove, A. and Hooley, R. (2000) Gibberellin and abscisic acid signalling in aleurone. Trends in Plant Science 5, 102–110CrossRefGoogle ScholarPubMed
Lovegrove, A., Barratt, D. H. P., Beale, M. H. and Hooley, R. (1998) Gibberellin-photoaffinity labelling of two polypeptides in plant plasma membranes. Plant Journal 15, 311–320CrossRefGoogle ScholarPubMed
Lu, C. and Fedoroff, N. (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin and cytokinin. Plant Cell 12, 2351–2366CrossRefGoogle ScholarPubMed
Lucas, W. J., Bouche-Pillon, S., Jackson, D. P., Nguyen, L., Baker, L., Ding, B. and Hake, S. (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270, 1980–1983CrossRefGoogle ScholarPubMed
Ludwig-M¨ller, J., Epstein, E. and Hilgenberg, W. (1996) Auxin-conjugate hydrolysis in Chinese cabbage: Characterization of an amidohydrolase and its role during infection with clubroot disease. Physiologia Plantarum 97, 627–634CrossRefGoogle Scholar
Macdonald, H., Henderson, J., Napier, R. M., Venis, M. A., Hawes, C. and Lazarus, C. M. (1994) Authentic processing and targeting of active maize auxin-binding protein in the baculovirus expression system. Plant Physiology 105, 1049–1057CrossRefGoogle ScholarPubMed
Macdonald, M. M. (1984) Dormancy, growth and differentiation of tuber buds of Solanum tuberosum. D. Phil Thesis, Oxford University, U.K., 171 pp
MacMillan, J. (1997) Biosynthesis of the gibberellin plant hormones. Natural Product Reports 14, 221–244CrossRefGoogle Scholar
MacRobbie, E. A. C. (2000) ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+ (Rb+) release. Proceedings of the National Academy of Sciences, USA 97, 12361–12368CrossRefGoogle Scholar
Mahonen, A. P., Bonke, M., Kauppinen, L., Riikone, M., Benfey, P. N. and Helariutta, Y. (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes and Development 14, 2938–2943CrossRefGoogle ScholarPubMed
Majewska-Sawka, A. and Nothnagel, E. A. (2000) The multiple roles of arabinogalactan proteins in plant development. Plant Physiology 122, 3–10CrossRefGoogle ScholarPubMed
Malone, M. (1993) Hydraulic signals. Philosophical Transactions of the Royal Society (London) B341, 33–39CrossRefGoogle Scholar
Malone, M. (1994) Wound-induced hydraulic signals and stimulus transmission in Mimosa pudica L. New Phytologist 128, 49–56CrossRefGoogle Scholar
Mandava, N. B. (1988) Plant growth-promoting brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology 39, 23–52CrossRefGoogle Scholar
Marfa, V., Gollin, D. J., Eberhard, S., Mohnen, D., Darvill, A. and Albersheim, P. (1991) Oligogalacturonides are able to induce flowers to form on tobacco explants. Plant Journal 1, 217–225CrossRefGoogle Scholar
Martin, A. C., del Pozo, J. C., Iglesias, J., Rubio, V., Solano, R., Pena, A., Leyva, A. and Paz-Ares, J. (2000) Influence of cytokinins on the expression of phosphate starvation responsive genes inArabidopsis. Plant Journal 24, 559–567Google ScholarPubMed
Martin, C. and Thimann, K. V. (1972) The role of protein synthesis in the senescence of leaves. Plant Physiology 49, 64–71CrossRefGoogle ScholarPubMed
Martin, J. P. and Juniper, B. E. (1970) The Cuticles of Plants. Edward Arnold Ltd., Sevenoaks, U.K.
Martinez, P. G., Gomez, R. L. and Gomez-Lim, L. A. (2001) Identification of an ETR1-homologue from mango fruit expressing during fruit ripening and wounding. Journal of Plant Physiology 158, 101–108CrossRefGoogle Scholar
Masuda, Y. and Yamamoto, R. (1972) Control of auxin-induced stem elongation by the epidermis. Physiologia Plantarum 27, 109–115CrossRefGoogle Scholar
Mathesius, U., Charon, C., Rolfe, B. G., Kondorosoi, A. and Crespi, M. (2000) Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized cytokinin addition. Molecular Plant-Microbe Interactions 13, 617–628CrossRefGoogle ScholarPubMed
Mathieu, Y., Kurkdjian, A., Xia, H., Guern, J., Koller, A., Spiro, M. D., O'Neill, M. A., Albersheim, P. A. and Darvill, A. (1991) Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. Plant Journal 1, 333–343Google ScholarPubMed
Matsubayashi, Y. and Sakagami, Y. (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proceedings of the National Academy of Sciences, USA 93, 7623–7627CrossRefGoogle ScholarPubMed
Matsubayashi, Y. and Sakagami, Y. (2000) 120- and 160-kDa receptors from endogenous mitogenic peptide, phytosulfokine-α in rice plasma membranes. Journal of Biological Chemistry 275, 15520–15525CrossRefGoogle ScholarPubMed
Matsubayashi, Y., Omura, N., Morita, A. and Sakagami, Y. (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296, 1470–1472CrossRefGoogle ScholarPubMed
Matsubayashi, Y., Takagi, L., Omura, N., Morita, A. and Sakagami, Y. (1999) The endogenous sulfated pentapeptide phytosulfokine-α stimulates tracheary element differentiation of isolated mesophyll cells of Zinnia. Plant Physiology 120, 1043–1048CrossRefGoogle ScholarPubMed
Mauro, M. L., Lorenzo, G., Costantino, P. and Bellincampi, D. (2002) Oligogalacturonides inhibit the induction of late but not early auxin-responsive genes in tobacco. Planta 215, 494–501CrossRefGoogle Scholar
McAinsh, M. R., Brownlee, C. and Hetherington, A. M. (1997) Calcium ions as second messengers in guard cell signal transduction. Physiologia Plantarum 100, 16–29CrossRefGoogle Scholar
McCabe, P. F., Valentine, T. A., Forsberg, L. S. and Pennell, R. I. (1997) Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9, 2225–2241CrossRefGoogle ScholarPubMed
McDougall, G. J. and Fry, S. C. (1989) Structure-activity relationships for xyloglucan oligosaccharides with antiauxin activity. Plant Physiology 89, 883–887CrossRefGoogle ScholarPubMed
McDougall, G. J. and Fry, S. C. (1990) Xyloglucan oligosaccharides promote growth and activate cellulase: Evidence for a role of cellulase in cell growth. Plant Physiology 93, 1042–1048CrossRefGoogle Scholar
McDougall, G. J. and Fry, S. C. (1991) Xyloglucan nonasaccharide, a naturally-occurring oligosaccharin, arises in vivo by polysaccharide breakdown. Journal of Plant Physiology 137, 332–336CrossRefGoogle Scholar
McGaw, B. A. and Burch, C. A. (1995) Cytokinin biosynthesis and metabolism. In. Plant Hormones: Physiology, Biochemistry and Molecular Biology, Davies, P. J. (ed.), 2nd Edition. Kluwer Academic Publishers, Dordrecht, pp. 98–117CrossRef
McGurl, B., Pearce, G., Orozco-Cardenas, M. and Ryan, C. A. (1992) Structure, expression and anti-sense inhibition of the systemin precursor gene. Science 255, 1570–1573CrossRefGoogle Scholar
McManus, M. T. (1983) Identification studies of the ethylene responsive target cells in leaf abscission zones. D.Phil Thesis, University of Oxford, U.K., 185 pp
McManus, M. T. (1994) Peroxidases in the separation zone during ethylene-induced bean leaf abscission. Phytochemistry 35, 567–572CrossRefGoogle Scholar
McManus, M. T. and Osborne, D. J. (1989) Identification and characterisation of a specific class of target cells for ethylene. In. Cell Separation in Plants, NATO ASF Series, Vol. H35. Springer Verlag, Berlin, Heidelberg, pp. 201–210
McManus, M.T and Osborne, D. J. (1990a) Evidence for the preferential expression of particular polypeptides in leaf abscission zones of the bean, Phaseolus vulgaris L. Journal of Plant Physiology 136, 391–397CrossRefGoogle Scholar
McManus, M. T. and Osborne, D. J. (1990b) Identification of polypeptides specific to rachis abscission zone cells of Sambucus nigra. Physiologia Plantarum 79, 471–478CrossRefGoogle Scholar
McManus, M. T. and Osborne, D. J. (1991) Identification and characterisation of ionically-bound cell wall glycoprotein expressed preferentially in the leaf rachis abscission zone of Sambucus nigra L. Journal of Plant Physiology 137, 251–255Google Scholar
McManus, M. T., Thompson, D. S., Merriman, C., Lyne, L. and Osborne, D. J. (1998) Transdifferentiation of mature cortical cells to functional abscission cells in bean. Plant Physiology 116, 891–899CrossRefGoogle Scholar
McManus, M. T., McKeating, J., Secher, D. S., Osborne, D. J., Ashford, D. A., Dwek, R. A. and Rademacher, T. W. (1988) Identification of a monoclonal antibody to abscission tissue that recognises xylose/fucose-containing N-linked oligosaccharides from higher plants. Planta 175, 506–512CrossRefGoogle ScholarPubMed
Mergemann, H. and Sauter, M. (2000) Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiology 124, 609–614CrossRefGoogle Scholar
Milborrow, B. V. (2001) The pathway of biosynthesis of abscisic acid in vascular plants: A review of the present state of knowledge of ABA biosynthesis. Journal of Experimental Botany 52, 1145–1164CrossRefGoogle ScholarPubMed
Mita, S., Kawamura, S. and Asai, T. (2002) Regulation of the expression of a putative ethylene receptor, PePRS2, during the development of passion fruit (Passiflora edulis). Physiologia Plantarum 114, 271–280CrossRefGoogle Scholar
Miyawaki, K., Matsumoto-Kitano, M. and Kakimoto, T. (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: Tissue specificity and regulation by auxin, cytokinin and nitrate. Plant Journal 37, 128–138CrossRefGoogle ScholarPubMed
Miyazawa, Y., Nakajima, N., Abe, T., Sakai, A., Fujioka, S., Kawano, S., Kuroiwa, T. and Yoshida, S. (2003) Activation of cell proliferation by brassinolide application in tobacco BY-2 cells: Effects of brassinolide on cell multiplication, cell-cycle-related gene expression, and organellar DNA contents. Journal of Experimental Botany 54, 2669–2678CrossRefGoogle ScholarPubMed
Mockaitis, K. and Howell, S. H. (2000) Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant Journal 24, 785–796CrossRefGoogle ScholarPubMed
Mohnen, D., Eberhard, S., Marfa, V., Doubrava, N., Toubart, P., Gollin, D. J., Gruber, T. A., Nuri, W., Albersheim, P. and Darvill, A. (1990) The control of root, vegetative shoot and flower morphogenesis in tobacco thin cell-layer explants (TLCs). Development 108, 191–201Google Scholar
Molisch, H. (1938) The Longevity of Plants, Fullington, H. (transl.). Science Press, Lancaster, PA
Mollet, J.-C., Park, S.-Y., Nothnagel, E. A. and Lord, E. M. (2000) A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12, 1737–1750CrossRefGoogle Scholar
Monteiro, A. M., Crozier, A. and Sandberg, G. (1988) The biosynthesis and conjugation of indole-3-acetic acid in germinating seed and seedlings of Dalbergia dolichopetala. Planta 174, 561–568CrossRefGoogle Scholar
Montoya, T., Nomura, T., Farrar, K., Kaneta, T., Yokota, T. and Bishop, G. J. (2002) Cloning of the tomato Curl3 gene highlights the putative dual role of the leucine-rich receptor kinase tBRI1/SR160 in plant steroid hormone and peptide signalling. Plant Cell 14, 3163–3176CrossRefGoogle Scholar
Moore, D., Hock, B., Greening, J. P., Kern, V. D., Novak Frazer, L. and Monzer, J. (1996) Gravimorphogenesis in agarics. Mycological Research 100, 257–273CrossRefGoogle ScholarPubMed
Moore, R. (1986) Calcium movement, graviresponsiveness and the structure of columella cells in primary roots of Amylomaize mutants of Zea mays. American Journal of Botany 73, 417–426CrossRefGoogle Scholar
Morris, K., Mackerness, A. S.-H., Page, T., John, C. F., Murphy, A. M., Carr, J. P. and Buchanan-Wollaston, V. (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant Journal 23, 677–685CrossRefGoogle Scholar
Moshkov, I. E., Mur, L. A. J., Novikova, G. V., Smith, A. R. and Hall, M. A. (2003) Ethylene regulates monomeric GTP-binding protein gene expression and activity in Arabidopsis. Plant Physiology 131, 1705–1717CrossRefGoogle ScholarPubMed
Mott, K. A. and Buckley, T. N. (2000) Patchy stomatal conductance: Emergent collective behaviour of stomata. Trends in Plant Science 5, 258–262CrossRefGoogle ScholarPubMed
Muday, G. K. and Murphy, A. S. (2002) An emerging model of auxin transport regulation. Plant Cell 14, 293–299CrossRefGoogle ScholarPubMed
Muller, A. and Weiler, E. W. (2000) Indolic constituents and indole-3-acetic acid biosynthesis in the wild-type and a tryptophan auxotroph mutant of Arabidopsis. Planta 211, 855–863Google Scholar
Muller, A., Guan, C., Galweiler, L., Tanzler, P., Huijser, P., Marchant, A., Parry, G., Bennett, M., Wisman, E. and Palme, K. (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO Journal 17, 6903–6911CrossRefGoogle ScholarPubMed
Muller, J. F., Goujaud, J. and Caboche, M. (1985) Isolation in vitro of naphthaleneacetic acid-tolerant mutants of Nicotiana tabacum, which are impaired in root morphogenesis. Molecular and General Genetics 199, 194–200CrossRefGoogle Scholar
Mundree, S. G., Whittaker, A., Thomson, J. A. and Farrant, J. M. (2000) An aldose reductase homolog from the resurrection plant Xerophyta viscosa, Baker. Planta 211, 693–670CrossRefGoogle ScholarPubMed
Musgrave, A., Jackson, M. B. and Ling, E. (1972) Callitriche stem elongation is controlled by ethylene and gibberellin. Nature 238, 93–96Google Scholar
Nadeau, J. A. and Sack, F. D. (2002) Control of stomatal distribution on the Arabidopsis leaf surface. Science 296, 1697–1700CrossRefGoogle ScholarPubMed
Nadeau, J. A., Zhang, X. S., Nair, H. and O'Neill, S. D. (1993) Temporal and spatial regulation of 1-aminocyclopropane-1-carboxylate oxidase in the pollination-induced senescence of orchid flowers. Plant Physiology 103, 31–39CrossRefGoogle ScholarPubMed
Nagahashi, G. and Douds, D. D. (1997) Appressorium formation by arbuscular mycorrhiza fungi on isolated cell walls. New Phytologist 136, 299–304CrossRefGoogle Scholar
Nakamura, A., Higuchi, K., Goda, H., Fujiwara, M. T., Sawa, S., Koshiba, T., Shimada, Y. and Yoshida, S. (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross-talk point of brassinosteroid and auxin signaling. Plant Physiology 133, 1843–1853CrossRefGoogle ScholarPubMed
Nakatsuka, A., Murachi, S., Okunishi, H., Shiomi, S., Nakano, R., Kubo, Y. and Inaba, A. (1998) Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-amino cyclopropane-1-carboxylate oxidase and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiology 118, 1295–1305CrossRefGoogle Scholar
Napier, R. M. (2001) Models of auxin binding. Journal of Plant Growth Regulation 20, 244–254CrossRefGoogle Scholar
Napier, R. M. and Venis, M. A. (1990) Monoclonal antibodies detect an auxin-induced conformational change in the maize auxin-binding protein. Planta 182, 313–318CrossRefGoogle ScholarPubMed
Napier, R. M., Venis, M. A., Bolton, M. A., Richardson, L. I. and Butcher, G. W. (1988) Preparation and characterization of monoclonal and polyclonal antibodies to maize membrane auxin-binding protein. Planta 176, 519–526CrossRefGoogle Scholar
Napier, R. M., Fowke, L. C., Hawes, C., Lewis, M. and Pelham, H. R. B. (1992) Immunological evidence that plants use both HDEL and KDEL for target proteins to the endoplasmic reticulum. Journal of Cell Science 102, 261–271Google Scholar
Narváez-Vásquez, J. and Ryan, C. A. (2004) The cellular localisation of prosystemin: A functional role for phloem parenchyma in systemic wound signalling. Planta 218, 360–369Google Scholar
Narváez-Vásquez, J., Pearce, G., Orozco-Cardenas, M. L., Franceschi, V. R. and Ryan, C. A. (1995) Autoradiographic and biochemical evidence for the systemic translocation of systemin in tomato plants. Planta 195, 593–600CrossRefGoogle Scholar
Neill, S. J., Desikan, R. and Hancock, J. T. (2003) Nitric oxide signalling in plants. New Phytologist 159, 11–35CrossRefGoogle Scholar
Neljubov, D. N. (1901) Uber die horizontale nutation der Stengel von Pisum sativum und eineger anderen Pflanzen. Beihefte zum Botanischen Zentralblatt 10, 128–138Google Scholar
Nick, P. (1999) Signals, motors, morphogenesis – the cytoskeleton in plant development. Plant Biology 1, 169–179CrossRefGoogle Scholar
Noel, A. R. A. and Staden, J. (1975) Phyllomorph senescence in Streptocarpus molweniensis. Annals of Botany 39, 921–929CrossRefGoogle Scholar
Nomura, T., Nakayama, M., Reid, J. B., Takeuchi, Y. and Yokota, T. (1997) Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiology 113, 31–37CrossRefGoogle ScholarPubMed
Noodén, L. D. and Leopold, A. C. (eds.) (1988) Senescence and Ageing in Plants. Academic Press, San Diego, 526 pp
Normanly, J. and Bartel, B. (1999) Redundancy as a way of life – IAA metabolism. Current Opinion in Plant Biology 2, 207–213CrossRefGoogle ScholarPubMed
Normanly, J., Slovin, J. P. and Cohen, J. D. (1995) Rethinking auxin biosynthesis and metabolism. Plant Physiology 107, 323–329CrossRefGoogle ScholarPubMed
Obara, K., Kuriyama, H. and Fukuda, H. (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiology 125, 615–626CrossRefGoogle ScholarPubMed
Obendorf, R. L. (1997) Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance. Seed Science Research 7, 63–74CrossRefGoogle Scholar
O'Donnell, P. J., Calvert, C., Atzorn, R., Wasternek, C., Leyser, H. M. O. and Bowles, D. J. (1996) Ethylene as a signal mediating the wound response to tomato plants. Science 274, 1914–1917CrossRefGoogle ScholarPubMed
Oeller, P. W., Keller, J. A., Parks, J. A., Silbert, J. E. and Theologis, A. (1993) Structural characterization of the early indoleacetic acid-inducible genes, PS-IAA4/5, and PS-IAA6, of pea (Pisum sativum L.)Journal of Molecular Biology 233, 789–798CrossRefGoogle Scholar
Oh, M.-H., Romanow, W. G., Smith, R. C., Zamski, E., Sasse, J. and Clouse, S. D. (1998) Soybean BRU1 encodes a functional xyloglucan endotransglycosylase that is highly expressed in inner epicotyl tissues during brassinosteroid-promoted elongation. Plant and Cell Physiology 39, 124–130CrossRefGoogle Scholar
Oh, M.-H., Ray, W. K., Huber, S. C., Asara, J. M., Gage, D. A. and Clouse, S. D. (2000) Recombinant brassinosteroid insensitive 1 receptor-like kinase autophosphorylates on serine and threonine residues and phosphorylates a conserved peptide motifin vitro. Plant Physiology 124, 751–766CrossRefGoogle ScholarPubMed
Ohkuma, K., Lyon, J. L., Addicott, F. T. and Smith, O. E. (1963) Abscisin II, an abscission-accelerating substance from young cotton fruit. Science 142, 1592–1593CrossRefGoogle ScholarPubMed
Oka, M., Miyamoto, K., Okada, K. and Ueda, J. (1999) Auxin polar transport and flower formation in Arabidopsis thaliana transformed with indoleacetamide hydrolase (iaaH) gene. Plant and Cell Physiology 40, 231–237Google ScholarPubMed
Okada, K., Ueda, J., Komaki, M. K., Bell, C. J. and Shimura, Y. (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3, 677–684CrossRefGoogle ScholarPubMed
Oliver, A. E., Crowe, L. M. and Crowe, J. H. (1998) Methods for dehydration-tolerance: Depression of the phase transition temperature in dry membranes and carbohydrate vitrification. Seed Science Research 8, 211–221CrossRefGoogle Scholar
Olsen, O.-A. (2001) Endosperm development: Cellularization and cell fate specification. Annual Review of Plant Physiology and Plant Molecular Biology 52, 233–267CrossRefGoogle ScholarPubMed
Olsen, O.-A., Lemmon, B. E. and Brown, R. C. (1998) A model for aleurone cell development. Trends in Plant Science 3, 168–169CrossRefGoogle Scholar
Olszewski, N., Sun, T.-P. and Gubler, F. (2002) Gibberellin signalling: Biosynthesis, catabolism, and response pathways. Plant Cell 14, Supplement, S61–S80CrossRefGoogle Scholar
O'Neill, S. D., Nadeau, J. A., Zhang, X. S., Bui, A. Q. and Halevy, A. H. (1993) Inter-organ regulation of ethylene biosynthetic genes by pollination. Plant Cell 5, 419–432CrossRefGoogle Scholar
Oparka, K. J. and Santa Cruz, S. (2000) The great escape: Phloem transport and unloading of macromolecules. Annual Review of Plant Physiology and Plant Molecular Biology 51, 323–347CrossRefGoogle Scholar
Osborne, D. J. (1976) Control of cell shape and cell size by the dual regulation of auxin and ethylene. In: Perspectives in Experimental Biology, Vol. 2, ‘Botany’, Sunderland, N. (ed.). Pergamon Press, Oxford, pp. 89–102CrossRef
Osborne, D. J. (1977a) Ethylene and target cells in the growth of plants. Science Progress (Oxford) 64, 51–63Google Scholar
Osborne, D. J. (1977b) Auxin and ethylene and the control of cell growth. The identification of three classes of target cells. In. Plant Growth Regulation, Pilet, P. E. (ed.). Springer, Heidelberg, pp. 161–171
Osborne, D. J. (1979) Target cells – new concepts for plant regulation in horticulture. Scientific Horticulture 30, 1–13Google Scholar
Osborne, D. J. (1984) Ethylene and plants of aquatic and semi-aquatic environments: A review. Plant Growth Regulation 2, 167–185CrossRefGoogle Scholar
Osborne, D. J. (1989) Abscission. CRC Critical Reviews in Plant Sciences 8, 103–129CrossRefGoogle Scholar
Osborne, D. J. (1990) Ethylene formation, cell types and differentiation. In: Polyamines and Ethylene: Biochemistry, Physiology, and Interactions. Flores, H. E., Arteca, R. N. and Shannon, J. C. (eds.). American Society of Plant Physiologists, pp. 203– 215
Osborne, D. J. and Boubriak, I. (2002) Telomeres and their relevance to the life and death of seeds. Critical Reviews in Plant Sciences 21, 127–141CrossRefGoogle Scholar
Osborne, D. J. and Cheah, K. S. E. (1982) Hormones and foliar senescence. In: Growth Regulators in Plant Senescence, Jackson, M. B., Grout, B. and Mackenzie, I. A. (eds.), British Plant Growth Regulator Group Monograph 8, pp. 57–83
Osborne, D. J. and Hallaway, M. (1964) The auxin, 2,4-dichlorophenoxyacetic acid as a regulator of protein synthesis and senescence in detached leaves o. Prunus. New Phytologist 63, 334–347CrossRefGoogle Scholar
Osborne, D. J. and Sargent, J. A. (1976) The positional differentiation of abscission zones during the development of leaves of Sambucus nigra and the response of the cells to auxin and ethylene. Planta 132, 197–204CrossRefGoogle ScholarPubMed
Osborne, D. J., McManus, M. T. and Webb, J. (1985) Target cells for ethylene action. In: Ethylene and Plant Development, Roberts, J. A. and Tucker, G. A. (eds.). Butterworths, London. pp. 197–212CrossRef
Osborne, D. J., Walters, J., Milborrow, B. V., Norville, A. and Stange, L. M. C. (1996) Evidence for a non-ACC ethylene biosynthesis pathway in lower plants. Phytochemistry 42, 51–60CrossRefGoogle Scholar
Ottenschlager, I., Wolff, P., Wolverton, C., Bhalerao, R. P., Sandberg, G., Ishikawa, H., Evans, M. and Palme, K. (2002) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proceedings of the National Academy of Sciences, USA 100, 2987–2991CrossRefGoogle Scholar
Ouaked, F., Rozhon, W., Lecourieux, D. and Hirt, H. (2003) A MAPK pathway mediates ethylene signalling in plants. EMBO Journal 22, 1282–1288CrossRefGoogle Scholar
Ouellet, F., Overoorde, P. J. and Theologis, A. (2001) IAA17/AXR3: Biochemical insight into an auxin phenotype. Plant Cell 13, 829–842CrossRefGoogle ScholarPubMed
Paleg, L. G. (1960) Physiological effects of gibberellic acid: I. On carbohydrate metabolism and amylase activity of barley endosperm. Plant Physiology 35, 293–299CrossRefGoogle ScholarPubMed
Palme, K., Hesse, T., Campos, N., Garbers, C., Yanofsky, M. F. and Schell, J. (1992) Molecular analysis of an auxin binding protein gene located on chromosome 4 ofArabidopsis. Plant Cell 4, 193–201CrossRefGoogle ScholarPubMed
Palmgren, M. G. (2001) Plant plasma membrane H+ ATPases: Powerhouses for nutrient uptake. Annual Review of Plant Physiology and Plant Molecular Biology 52, 817–845CrossRefGoogle ScholarPubMed
Parry, A. D., Neill, S. J. and Horgan, R. (1988) Xanthoxin levels and metabolism in the wild-type and wilty mutants of tomato. Planta 173, 397–404CrossRefGoogle ScholarPubMed
Patterson, S. E. and Bleecker, A. B. (2004) Ethylene-dependent and -independent processes associated with floral organ abscission inArabidopsis. Plant Physiology 134, 194–203CrossRefGoogle Scholar
Payton, S., Fray, R., Brown, S. and Grierson, D. (1996) Ethylene receptor expression is regulated during fruit ripening, flower senescence and abscission. Plant Molecular Biology 31, 1227–1231CrossRefGoogle ScholarPubMed
Pearce, G., Strydom, D., Johnson, S. and Ryan, C. A. (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253, 895–898CrossRefGoogle ScholarPubMed
Pearce, G., Moura, D. S., Stratmann, J. and Ryan, C. A. (2001a) Production of multiple plant hormones from a single polyprotein precursor. Nature 411, 817–820CrossRefGoogle Scholar
Pearce, G., Moura, D. S., Stratmann, J. and Ryan, C. A. (2001b) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proceedings of the National Academy of Sciences, USA 99, 12843–12847CrossRefGoogle Scholar
Peng, J. and Harberd, N. P. (1993) Derivative alleles of the Arabidopsis gibberellin-insensitive (gai) mutation confers a wild-type phenotype. Plant Cell 5, 351–360CrossRefGoogle ScholarPubMed
Peng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., Murphy, G. P. and Harberd, N. P. (1997) The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes and Development 11, 3194–3205CrossRefGoogle ScholarPubMed
Pennell, R. I. and Roberts, K. (1990) Sexual development in the pea is presaged by altered expression of arabinogalactan protein. Nature 344, 547–549CrossRefGoogle Scholar
Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Metraux, J.-P. and Broekaert, W. F. (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103–2113CrossRefGoogle ScholarPubMed
Perbal, G. and Driss-Ecole, D. (2003) Mechanotransduction in gravisensing cells. Trends in Plant Science 8, 498–504CrossRefGoogle ScholarPubMed
Philippar, K., Fuchs, I., Luthen, H., Hoth, S., Bauer, C. S., Haga, K., Thiel, G., Ljung, K., Sandberg, G., Bottger, M., Becker, D. and Hedrich, R. (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proceedings of the National Academy of Sciences, USA 96, 12186–12191CrossRefGoogle ScholarPubMed
Phinney, B. O. (1956) Biochemical mutants in maize: Dwarfism and its reversal with gibberellins. Plant Physiology 31, Supplement, 20Google Scholar
Piquemal, J., Larierre, C., Myton, K., O'Connell, A., Schuch, W., Grima-Pettenati, J. and Boudet, A.-M. (1998) Down-regulation of cinnamoyl-CoA reductase induces significant changes in lignin profiles in tobacco plants. Plant Journal 13, 71–83CrossRefGoogle Scholar
Poethig, R. S. (1987) Clonal analysis of cell lineage patterns in plant development. American Journal of Botany 74, 581–594CrossRefGoogle Scholar
Poethig, R. S. (1989) Genetic mosaics and cell lineage analysis in plants. Trends in Genetics 5, 273–277CrossRefGoogle ScholarPubMed
Poli, D. B., Jacobs, M. and Cooke, T. J. (2003) Auxin regulation of axial growth in bryophyte sporophytes: Its potential significance for the evolution of early land plants. American Journal of Botany 90, 1405–1415CrossRefGoogle ScholarPubMed
Priem, B. and Gross, K. C. (1992) Mannosyl- and xylosyl-containing glycans promote tomato (Lycopersicon esculentum Mill.) fruit ripening. Plant Physiology 98, 399–401CrossRefGoogle ScholarPubMed
Priem, B., Morvan, H., Monin, A., Hafez, A. and Morvan, C. (1990a) Influence of a plant glycan of the oligomannoside type on the growth of flax plantlets. Comptus Rendus Academic Press, Paris 311, 411–416Google Scholar
Priem, B., Solo-Kwan, J., Wieruszeski, J. M., Strecker, G., Nazih, H. and Morvan, H. (1990b) Isolation and characterization of free glycans from the oligomannoside type from the extracellular medium of a plant cell suspension. Glycoconjugate J. 7, 121–132CrossRefGoogle Scholar
Priem, B., Morvan, H. and Gross, K. C. (1994) Unconjugated N-glycans as a new class of plant oligosaccharins. Biochemical Society Transactions 22, 398–402CrossRefGoogle ScholarPubMed
Quatrano, R. S. (1978) Development of cell polarity. Annual Review of Plant Physiology 29, 487–510CrossRefGoogle Scholar
Racusen, R. H. and Schiavone, F. (1990) Positional cues and differential gene expression in somatic embryos of higher plants. Cell Differentiation and Development 30, 159–169CrossRefGoogle ScholarPubMed
Ramos, J., Zenser, N., Leyser, O. and Callis, J. (2001) Rapid degradation of auxin/ indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell 13, 2349–2360CrossRefGoogle ScholarPubMed
Rashotte, A. M., Brady, S. R., Reed, R. C., Ante, S. J. and Muday, G. K. (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiology 122, 481–490CrossRefGoogle ScholarPubMed
Raskin, I. (1992) Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology 43, 439–463CrossRefGoogle Scholar
Raskin, I. (1995) Salicylic acid. In. Plant Hormones: Physiology, Biochemistry and Molecular Biology, Davies, P. J. (ed.), 2nd Edition. Kluwer Academic Publishers, Dordrecht, pp. 188–205
Raskin, I., Ehmann, A., Melander, W. R. and Meeuse, B. J. D. (1987) Salicylic acid – a natural inducer of heat production in Arum lilies. Science 237, 1601–1602CrossRefGoogle ScholarPubMed
Rasmussen, J. B., Hammerschmidt, R. and Zook, M. N. (1991) Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae. Plant Physiology 97, 1342–1347CrossRefGoogle ScholarPubMed
Rasori, A., Ruperti, B., Bonghi, C., Tonutti, P. and Ramina, A. (2002) Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. Journal of Experimental Botany 53, 2333–2339CrossRefGoogle ScholarPubMed
Ray, P. M. (1977) Auxin-binding sites of maize coleoptiles are localized on membranes of the endoplasmic reticulum. Plant Physiology 59, 594–599CrossRefGoogle ScholarPubMed
Ray, P. M., Dohrmann, U. and Hertel, R. (1977) Characterization of napthaleneacetic acid binding to receptor sites on cellular membranes of maize coleoptiles tissue. Plant Physiology 59, 357–364CrossRefGoogle Scholar
Reymond, P., Grunberger, S., Paul, K., Muller, M. and Farmer, E. E. (1995) Oligogalacturonide defense signals in plants: Large fragments interact with the plasma membrane in vitro. Proceedings of the National Academy of Sciences, USA 92, 4145–4149CrossRefGoogle ScholarPubMed
Richmond, A. and Lang, A. (1957) Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 125, 650–651CrossRefGoogle Scholar
Ridge, I. (1992) Sensitivity in a wider context: Ethylene and petiole growth in Nymphoides peltata. In: Progress in Plant Growth Regulation. Karssen, C. M., van Loon, L. C. and Vreugdenhil, D. (eds.). Kluwer Academic Publishers, Dordrecht, pp. 254–263CrossRef
Ridge, I. and Osborne, D. J. (1969) Cell growth and cellulases: Regulation by ethylene and indole-3-acetic acid in shoots of Pisum sativum. Nature 223, 318–319CrossRefGoogle Scholar
Ridge, I. and Osborne, D. J. (1989) Wall extensibility, wall pH and tissue osmalality: significance for auxin and ethylene-enhanced petiole growth in semi-aquatic plants. Plant, Cell and Environment 12, 383–393CrossRefGoogle Scholar
Ridge, I., Omer, J., Osborne, D. J. and Walters, J. (1991) Cell expansion and wall pH in the fern Regnellidium diphyllum, a plant lacking acid-induced growth. Journal of Experimental Botany 42, 1171–1179CrossRefGoogle Scholar
Ridge, I., Omer, J. and Osborne, D. J. (1998) Different effects of vanadate on net proton secretion in the fern Regnellidium diphyllum and the dicotyledon Nymphoides peltata: Relevance to cell growth. Journal of Plant Physiology 153, 430–436CrossRefGoogle Scholar
Rinne, P., Tuominen, H. and Junttila, L. (1992) Arrested leaf abscission in the non-abscising variety of pubescent birch: Developmental morphological and hormonal aspects. Journal of Experimental Botany 43, 975–982CrossRefGoogle Scholar
Ritchie, S., McCubbin, A., Ambrose, G., Kao, T.-H. and Gilroy, S. (1999) The sensitivity of barley aleurone tissue to gibberellin is heterogeneous and may be spatially determined. Plant Physiology 120, 361–370CrossRefGoogle ScholarPubMed
Rober-Kleber, N., Albrechtová, J. T. P., Fleig, S., Huck, N., Michalke, W., Wagner, E., Speth, V., Neuhaus, G. and Fischer-Iglesias, C. (2003) Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. Plant Physiology 131, 1302–1312CrossRefGoogle ScholarPubMed
Roberts, I. N., Murray, P. F., Caputo, C. P., Passeron, S. and Barneix, A. J. (2003) Purification and characterization of a subtilisin-like serine protease induced during the senescence of wheat leaves. Physiologia Plantarum 118, 483–492CrossRefGoogle Scholar
Roberts, J. A. (1984) Tropic responses of hypocotyls from normal tomato plants and the gravitropic mutant Lazy-1. Plant Cell and Environment 7, 515–520Google Scholar
Robinson, P. M., Wareing, P. F. and Thomas, T. H. (1963) Dormancy regulators in woody plants. Isolation of the inhibitor varying with photoperiod inAcer pseudoplatanus. Nature 199, 875–876Google Scholar
Rogg, L., Lasswell, J. and Bartel, B. (2001) A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13, 465–480CrossRefGoogle ScholarPubMed
Rojo, E., Sharma, V. K., Kovaleva, V., Raikhel, N. V. and Fletcher, J. C. (2002) CLV3 is localised to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signalling pathway. Plant Cell 14, 969–977CrossRefGoogle Scholar
Roman, G., Lubarsky, B., Kieber, J. J., Rothenberg, M. and Ecker, J. R. (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana; Five novel mutant loci integrated into stress-response pathway. Genetics 139, 1393–1409Google ScholarPubMed
Rouse, D., Mackay, P., Stirnberg, P., Estelle, M. and Leyser, O. (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279, 1371–1373CrossRefGoogle Scholar
Ruegger, M., Dewey, E., Gray, W. M., Hobbie. L., Turner, J. and Estelle, M. (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes and Development 12, 198–207CrossRefGoogle ScholarPubMed
Ruel, K., Chabannes, M., Bondet, A.-M., Legrand, M. and Joseleau, J.-P. (2001) Reassessment of qualitative changes in lignification of transgenic tobacco plants and their impact on cell wall assembly. Phytochemistry 57, 875–882CrossRefGoogle ScholarPubMed
Ryals, J., Lawton, K. A., Delaney, T. P., Friedrich, L., Kessmann, H., Neuenschwander, U., Uknes, S., Vernooij, B. and Weymann, K. (1995) Signal transduction in systemic acquired resistance. Proceedings of the National Academy of Sciences, USA 92, 4202–4205CrossRefGoogle ScholarPubMed
Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. (1996) Systemic acquired resistance. Plant Cell 8, 1809–1819CrossRefGoogle ScholarPubMed
Ryan, C. A. (1974) Assay and biochemical properties of the proteinase inhibitor-inducing factor, a wound hormone. Plant Physiology 54, 328–332CrossRefGoogle ScholarPubMed
Ryan, C. A. and Moura, D. S. (2002) Systemic wound signalling in plants: A new perception. Proceedings of the National Academy of Sciences, USA 99, 6519–6520CrossRefGoogle Scholar
Ryan, C. A., Pearce, G., Scheer, J. and Moura, D. S. (2002) Polypeptide hormones. Plant Cell 14, Supplement, S251–S264CrossRefGoogle ScholarPubMed
Saibo, N. J. M., Vriezen, W. H., Beemster, G. T. S. and Straeten, D. (2003) Growth and stomata formation of Arabidopsis hypocotyls is controlled by gibberellins and modulated by ethylene and auxins. Plant Journal 33, 989–1000CrossRefGoogle ScholarPubMed
Sachs, T. (1991) Cell polarity and tissue patterning in plants. Development, Supplement 1, 83–93
Sachs, T. (2000) Integrating cellular and organismic aspects of vascular differentiation. Plant and Cell Physiology 41, 649–656CrossRefGoogle ScholarPubMed
Sakai, H., Hua, J., Chen, G. Q., Chang, C., Medrano, L. J., Bleecker, A. B. and Meyerowitz, E. M. (1998) ETR2 is an ETR1-like gene involved in ethylene signal transduction inArabidopsis.Proceedings of the National Academy of Sciences, USA 95, 5812–5817CrossRefGoogle Scholar
Sakai, H., Honma, T., Aoyama, T., Sato, S., Kato, T., Tabata, S. and Oka, A. (2001) ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294, 1519–1521CrossRefGoogle ScholarPubMed
Sakakibara, H. and Takei, K. (2002) Identification of cytokinin biosynthesis genes in Arabidopsis: A breakthrough for understanding the metabolic pathway and the regulation in higher plants. Journal of Plant Growth Regulation 21, 17–23CrossRefGoogle ScholarPubMed
Sakakibara, H., Suzuki, M., Takei, K., Deji, A., Taniguchi, M. and Sugiyama, T. (1998) A response-regulator homologue possibly involved in nitrogen signal transduction mediated by cytokinin in maize. Plant Journal 14, 337–344CrossRefGoogle ScholarPubMed
Sakakibara, H., Taniguchi, M. and Sugiyama, T. (2000) His-Asp phospho-relay signalling: A communication avenue between plants and the environment. Plant Molecular Biology 42, 273–278CrossRefGoogle Scholar
Salisbury, F. B. (1963) Flowering Process. Pergamon Press, Oxford, London, New York and Paris
Samejima, M. and Sibaoka, T. (1983) Identification of the excitable cells in the petiole of Mimosa pudica by intracellular injection of procion yellow. Plant and Cell Physiology 24, 33–39CrossRefGoogle Scholar
Samuel, G. (1927) On the shot-hole disease caused by Clasterosporium carpophilum and on the “shot-hole” effect. Annals of Botany 41, 375–404CrossRefGoogle Scholar
Sanders, P. M., Lee, P. Y., Biesgen, C., Boone, J. D., Beals, T. P., Weiler, E. W. and Goldberg, R. B. (2000) The Arabidopsis DELAYED DEHISCENCE 1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12, 1041–1061CrossRefGoogle ScholarPubMed
Sasaki, A., Itoh, H., Gomi, K., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Jeong, D.-H., An, G., Kitano, H., Ashikari, M. and Matsuoka, M. (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299, 1896–1998CrossRefGoogle Scholar
Satina, S., Blakeslee, A. F. and Avery, A. G. (1940) Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. American Journal of Botany 27, 895–905CrossRefGoogle Scholar
Sato-Nara, K., Yuhashi, K.-I., Higashi, K., Hosoya, K., Kubota, M. and Ezura, H. (1999) Stage- and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiology 120, 321–330CrossRefGoogle ScholarPubMed
Saunders, M. J. and Hepler, P. K. (1983) Calcium antagonists and calmodulin inhibitors block cytokinin-induced bud formation inFunaria. Developmental Biology 99, 41–49CrossRefGoogle Scholar
Savill, J., Gregory, C. and Haslett, C. (2003) Eat me or die. Science 302, 1516–1517CrossRefGoogle ScholarPubMed
Schaller, G. E. and Bleecker, A. B. (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270, 1809–1811CrossRefGoogle ScholarPubMed
Scheer, J. M. and Ryan, C. A. (1999) A 160-kD systemin receptor on the surface of Lycopersicon peruvianum suspension-cultured cells. Plant Cell 11, 1525–1536CrossRefGoogle ScholarPubMed
Scheer, J. M. and Ryan, C. A. (2002) The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proceedings of the National Academy of Sciences, USA 99, 9585–9590CrossRefGoogle ScholarPubMed
Scheres, B., Di Laurenzo, L., Willemsen, V., Hauser, M. T., Janmaat, K., Weisbeek, P. and Benfey, P. N. (1995) Mutations affecting the radial organization of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121, 53–62Google Scholar
Schlagnhaufer, C. D. and Arteca, R. N. (1991) The uptake and metabolism of brassino-steroid by tomato Lycopersicon esculentum plants. Journal of Plant Physiology. 138, 191–194CrossRefGoogle Scholar
Schopfer, P. (1990) Cytochemical identification of arabinogalactan protein in the outer epidermal wall of maize coleoptiles. Planta 183, 139–142Google Scholar
Schroeder, J. I. and Hagiwara, S. (1990) Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proceedings of the National Academy of Sciences, USA 87, 9305–9309CrossRefGoogle ScholarPubMed
Schroeder, J. I., Allen, G. J., Hugouvieux, V., Kwak, J. M. and Waner, D. (2001) Guard cell signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology 52, 627–658CrossRefGoogle ScholarPubMed
Schumaker, K. S. and Gizinski, M. J. (1993) Cytokinin stimulates dihyropyridine-sensitive calcium uptake in moss protoplasts. Proceedings of the National Academy of Sciences, USA 90, 10937–10941CrossRefGoogle Scholar
Segovia, M., Haramaty, L., Berges, J. A. and Falkowski, P. G. (2003) Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant Physiology 132, 99–105CrossRefGoogle ScholarPubMed
Seo, H. S., Song, J. T., Cheong, J.-J., Lee, Y.-H., Lee, Y.-W., Hwang, I., Lee, J. S. and Choi, Y. D. (2001) Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses. Proceedings of the National Academy of Sciences, USA 98, 4788–4793CrossRefGoogle ScholarPubMed
Setlow, P. (1992) DNA in dormant spores of Bacillus species is in an A-like conformation. Molecular Microbiology 6, 563–567CrossRefGoogle Scholar
Setlow, P. (1994) Mechanisms which contribute to the long-term survival of spores of Bacillus species. Journal of Applied Bacteriology 76, 49S–60SCrossRefGoogle Scholar
Shantz, E. M. and Steward, F. C. (1952) Coconut milk factor: The growth-promoting substances in coconut milk. Journal of the American Chemical Society 74, 6133–6135CrossRefGoogle Scholar
Sharma, Y. K., Leon, J., Raskin, I. and Davis, K. R. 1996. Ozone-induced responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proceedings of the National Academy of Sciences, USA 93, 5099–5104CrossRefGoogle ScholarPubMed
Shimada, Y., Goda, H., Nakamura, A., Takasuto, S., Fujioka, S. and Yoshida, S. (2003) Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids inArabidopsis. Plant Physiology 131, 287–297CrossRefGoogle Scholar
Shimomura, S., Sotobayashi, T., Futai, M. and Fuhui, T. (1986) Purification and properties of an auxin-binding protein from maize shoot membranes. Journal of Biochemistry 99, 1513–1524CrossRefGoogle ScholarPubMed
Shiu, O. Y., Oetiker, J. H., Yip, W. K. and Yang, S. F. (1998) The promoter of LE-ACS7, an early flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proceedings of the National Academy of Sciences, USA 95, 10334–10339CrossRefGoogle ScholarPubMed
Shulaev, V., Silverman, P. and Raskin, I. (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385, 718–721CrossRefGoogle Scholar
Siegel, B. A. and Verbeke, J. A. (1989) Diffusable factors essential for epidermal cell redifferentiation inCatharanthus roseus. Science 244, 580–582Google Scholar
Sievers, A. and Schmitz, M. (1982) Röntgen-Mikroanalyse von Barium, Schwefel und Strontium in Statolithen-Kompartimenten von Chara-Rhizoiden. Berichte der Deutschen Botanischen Gessellschaft 95, 353–360Google Scholar
Sievers, A., Braun, M. and Monshausen, G. B. (2002) The root cap: Structure and function. In: Plant Roots: The Hidden Half, Waisel, Y., Eshel, A. and Kafkefi, U. (eds.), 3rd Edition. Marcel Dekker, New York, Basel, pp. 33–47
Sievers, A. F. and True, R. H. (1912) U.S. Department of Agricultural Bureau Plant Industry Bulletin 232
Silverstone, A. L., Mak, P. Y. A., Martinez, E. C. and Sun, T.-P. (1997) The new RGA locus encodes a negative regulator of gibberellin response inArabidopsis thaliana. Genetics 146, 1087–1099Google ScholarPubMed
Silverstone, A. L., Clampaglio, C. N. and Sun, T.-P. (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10, 155–170CrossRefGoogle ScholarPubMed
Silverstone, A. L., Jung, H.-S., Dill, A., Kawaide, H., Kamiya, Y. and Sun, T.-P. (2001) Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13, 1555–1566CrossRefGoogle ScholarPubMed
Simpson, R. J., Lambers, H. and Dalling, M. J. (1982) Kinetin application to roots and its effect on uptake, translocation and distribution of nitrogen in wheat (Triticum aestivum) grown with a split root system. Physiologia Plantarum 56, 430–435CrossRefGoogle Scholar
Simpson, S. D., Ashford, D. A., Harvey, D. J. and Bowles, D. J. (1998) Short chain oligogalacturonides induce ethylene production and expression of the gene encoding aminocyclopropane-1-carboxylic acid oxidase in tomato plants. Glycobiology 8, 579–583CrossRefGoogle ScholarPubMed
Sisler, E. C. (1979) Measurement of ethylene binding in plant tissue. Plant Physiology 64, 538–542CrossRefGoogle ScholarPubMed
Sisler, E. C. (1980) Partial purification of an ethylene-binding component for plant tissue. Plant Physiology 66, 404–406CrossRefGoogle ScholarPubMed
Skoog, F. and Miller, C. O. (1957) Chemical regulation of growth and organ formation in plant tissues culturedin vitro. Symposium of the Society of Experimental Biology XX, 118–131Google Scholar
Smallwood, M., Beven, A., Donovan, N., Neill, S. J., Peart, J., Roberts, K. and Knox, J. P. (1994) Localization of cell wall proteins in relation to the developmental anatomy of the carrot root apex. Plant Journal 5, 237–246CrossRefGoogle Scholar
Smertenko, A. P., Bozhkov, P. V., Filonova, L. H., Arnold, S. and Hussey, P. J. (2003) Re-organisation of the cytoskeleton during developmental programmed cell death in Picea abies embryos. Plant Journal 33, 813–824CrossRefGoogle ScholarPubMed
Smigocki, A. C. and Owens, L. D. (1988) Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proceedings of the National Academy of Sciences, USA 85, 5131–5135CrossRefGoogle ScholarPubMed
Spiro, M. D., Bowers, J. F. and Cosgrove, D. J. (2002) A comparison of oligogalacturonide- and auxin-induced extracellular alkalinization and growth responses in roots of intact cucumber seedlings. Plant Physiology 130, 895–903CrossRefGoogle ScholarPubMed
Sponsel, V. M. (1995) The biosynthesis and metabolism of gibberellins in higher plants. In: Plant Hormones, Davies, P. J. (ed.), 2nd Edition. Kluwer Academic Publishers, Dordecht, pp. 66–97CrossRef
Stacey, N. J., Roberts, K. and Knox, J. P. (1990) Patterns of expression of the JIM4 arabinogalactan protein epitope in cell cultures and during somatic embryogenesis in Daucus carota L. Planta 180, 285–292CrossRefGoogle ScholarPubMed
Stange, L. and Osborne, D. J. (1988) Cell specificity in auxin- and ethylene-induced ‘super growth’ in Riella helicophylla. Planta 175, 341–347CrossRefGoogle Scholar
Staswick, P. E., Su, W. and Howell, S. H. (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proceedings of the National Academy of Sciences, USA 89, 6837–6840CrossRefGoogle Scholar
Staswick, P. E., Yuen, G. Y. and Lehman, C. C. (1998) Jasmonate signalling mutants of Arabidopsis are susceptible to the soil fungus, Pythium irregulare. Plant Journal 15, 747–754Google Scholar
Staswick, P. E., Tiryaki, I. and Rowe, M. L. (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405–1415CrossRefGoogle Scholar
Steeves, T. A. and Sussex I. M. (1989) Patterns in Plant Development, 2nd edition. Cambridge University Press, Cambridge, U.K.
Steffens, B., Feckler, C., Palme, K., Christian, M., Bo″tter, M. and Lu″then, H. (2001) The auxin signal for protoplast swelling is perceived by extracellular ABP1. Plant Journal 27, 591–599CrossRefGoogle ScholarPubMed
Stein, J. C., Howlett, B., Boyes, D. C., Nasrallah, M. E. and Nasrallah, J. B. (1991) Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatability locus ofBrassica oleracea. Proceedings of the National Academy of Sciences, USA 88, 8816–8820CrossRefGoogle Scholar
Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C. L., Paris, S., Galweiler, L., Palme, K. and Jurgens, G. (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286, 316–318CrossRefGoogle ScholarPubMed
Stewart, R. N., Meyer, F. G. and Desmene, H. (1972) Camellia + ‘Daisy Eggleson’ a graft chimera of Camellia sasangua and C. japonica. American Journal of Botany 59, 515–524CrossRefGoogle Scholar
Stintzi, A. and Browse, J. (2000) The Arabidopsis male-sterile mutant opr3 lacks the 12-oxophytodienoic acid reductase required for jasmonate biosynthesis. Proceedings of the National Academy of Sciences, USA 97, 10625–10630CrossRefGoogle Scholar
Stintzi, A., Weber, H., Reymond, P., Browse, J. and Farmer, E.E (2001) Plant defense in the absence of jasmonic acid: The role of cyclopentenones. Proceedings of the National Academy of Sciences, USA 98, 12837–12842CrossRefGoogle ScholarPubMed
Stratmann, J. W. (2003) Long distance run in the wound response – jasmonic acid is pulling ahead. Trends in Plant Science 8, 247–250CrossRefGoogle ScholarPubMed
Stratmann, J. W. and Ryan, C. A. (1997) Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors. Proceedings of the National Academy of Sciences, USA 94, 11085–11089CrossRefGoogle ScholarPubMed
Su, W. and Howell, S. H. (1992) A single genetic locus, Ckr1, defines Arabidopsis mutants in which root growth is resistant to low concentrations of cytokinin. Plant Physiology 99, 1569CrossRefGoogle ScholarPubMed
Sun, T.-P. (2000) Gibberellin signal transduction. Current Opinion in Plant Biology 3, 374–380CrossRefGoogle ScholarPubMed
Sun, T.-P. and Kamiya, Y. (1994) The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell. 6, 1509–1518CrossRefGoogle ScholarPubMed
Surplus, S. L., Jordan, B. R., Murphy, A. M., Carr, J. P., Thomas, B. and Mackerness, A.-H. (1998) Ultraviolet-B induced responses in Arabidopsis thaliana: Role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant, Cell and Environment 21, 685–694CrossRefGoogle Scholar
Suzuki, T., Sakurai, K., Ueguchi, C. and Mizuno, T. (2001a) Two types of putative nuclear factors that physically interact with histidine-containing phototransfer (Hpt) domains, signalling mediators in histo-Asp phosphorelay, inArabidopsis thatiana. Plant Cell Physiology 42, 37–45CrossRefGoogle Scholar
Suzuki, T., Miwa, K., Ishikawa, K., Yamada, H., Aiba, H. and Mizuno, T. (2001b) Th. Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant Cell Physiology 42, 107–113CrossRefGoogle Scholar
Suzuki, Y., Kitagawa, M., Knox, J. P. and Yamaguchi, I. (2002) A role for arabinogalactan proteins in gibberellin-induced α-amylase production in barley aleurone cells. Plant Journal 29, 733–741CrossRefGoogle ScholarPubMed
Swarup, R., Friml, J., Marchant, A., Ljung, K., Sandberg, G., Palme, K. and Bennett, M. (2001) Localisation of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes and Development 15, 2648–2653CrossRefGoogle Scholar
Sweere, U., Eichenberg, K., Lohrmann, J., Mira-Rodado, V., Baurle, I., Kudla, J., Nagy, F., Schafer, E. and Harter, K. (2001) Interaction of the response regulator ARR4 with phytochrome B in modulating red light signalling. Science 294, 1108–1111CrossRefGoogle Scholar
Szekeres, M., Németh, K., Koncz-Kálmán, Z., Mathur, J., Kauschmann, A., Altmann, T., Rédei, G. P., Nagy, F., Schell, J. and Koncz, C. (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation inArabidopsis. Cell 85, 171–182Google Scholar
Sztein, A. E., Ilic, N., Cohen, J. D. and Cooke, T. J. (2002) Indole-3-acectic acid biosynthesis in isolated axes from germinating bean seeds: The effect of wounding on the biosynthetic pathway. Plant Growth Regulation. 36, 201–207CrossRefGoogle Scholar
Szymanski, D. B. and Marks, M. D. (1998) GLABROUS1 over expression and TRIPTYCHON alter the cell cycle and trichome fate in Arabidopsis. Plant Cell 10, 2047–2062CrossRefGoogle Scholar
Szymkowiak, E. J. and Irish, E. E. (1999) Interactions between jointless and wild-type tomato tissues during development of the pedicel abscission zone and the inflorescence meristem. Plant Cell 11, 159–176CrossRefGoogle ScholarPubMed
Szymkowiak, E. J. and Sussex, I. M. (1992) The internal meristem layer (L3) determines floral meristem size and carpel number in tomato periclinal chimeras. Plant Cell 4, 1089–1100CrossRefGoogle ScholarPubMed
Tajima, Y., Imamura, A., Kiba, T., Amano, Y., Yamashino, T. and , Mizuno T. (2004) Comparative studies on the type-B response regulators revealing their distinctive properties in the His-to-Asp phospho-relay signal transduction ofArabidopsis thaliana. Plant Cell Physiology 45, 28–39CrossRefGoogle Scholar
Takahashi, H., Saito, T. and Suge, H. (1983) Separation of the effects of photoperiod and hormones on sex expression in cucumber. Plant and Cell Physiology 24, 147–154CrossRefGoogle Scholar
Takahashi, H., Kobayashi, T., Sato-Nara, K., Tomita, K.-O. and Ezura, H. (2002) Detection of ethylene receptor protein Cm-ERS1 during fruit development in melon (Cucumis melo L.). Journal of Experimental Botany 53, S415–422CrossRefGoogle Scholar
Takasaki, T., Hatakeyama, K., Suzuki, G., Watanabe, M., Isogai, A. and Hinata, K. (2000) The S receptor kinase determines self-incompatability in Brassica stigma. Nature 403, 913–916CrossRefGoogle Scholar
Takayama, S., Shimosato, H., Shiba, H., Funato, M., Che, F. S., Watanabe, M., Iwano, M. and Isogai, A. (2001) Direct ligand-receptor complex interaction controls Brassica self-incompatability. Nature 413, 534–538CrossRefGoogle Scholar
Takeda, T., Furuta, Y., Awano, T., Mizuno, K., Mitsuishi, Y. and Hayashi, T. (2002) Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments. Proceedings of the National Academy of Sciences, USA 99, 9055–9060CrossRefGoogle ScholarPubMed
Takei, K., Sakakibara, H. and Sugiyama, T. (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme inArabidopsis thaliana. Journal of Biological Chemistry 276, 26405–26410CrossRefGoogle ScholarPubMed
Takei, K., Takahashi, T., Sugiyama, T., Yamaya, T. and Sakakibara, H. (2002) Multiple routes communicating nitrogen availability from roots to shoots: A signal transduction pathway mediated by cytokinin. Journal of Experimental Botany 53, 971–977CrossRefGoogle ScholarPubMed
Tal, M. and Nevo, Y. (1973) Abnormal stomatal behaviour and root resistance, and hormonal imbalance in three wilty mutants of tomato. Biochemical Genetics 8, 291–300CrossRefGoogle ScholarPubMed
Tang, W., Ezcurra, I., Muschietti, J. and McCormick, S. (2002) A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 14, 2277–2287CrossRefGoogle ScholarPubMed
Taylor, J. G., Owen, T. P. Jr., Koonce, L. T. and Haigler, C. H. (1992) Dispersed lignin in tracheary elements treated with cellulose synthesis inhibitors provides evidence that molecules of the secondary cell wall mediate wall patterning. Plant Journal 2, 959–970CrossRefGoogle Scholar
The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815CrossRef
Tieman, D. and Klee, H. (1999) Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiology 120, 165–172CrossRefGoogle ScholarPubMed
Tieman, D. V., Taylor, M. G., Ciardi, J. A. and Klee, H. J. (2000) The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proceedings of the National Academy of Sciences, USA 97, 5663–5668CrossRefGoogle ScholarPubMed
Thelen, M. P. and Northcote, D. H. (1989) Identification and purification of a nuclease from Zinnia elegans L.: A potential molecular marker for xylogenesis. Planta 179, 181–195CrossRefGoogle ScholarPubMed
Theologis, A., Huynh, T. V. and Davis, R. W. (1985) Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. Journal of Molecular Biology 183, 53–68CrossRefGoogle ScholarPubMed
Thiel, G., Blatt, M. R., Fricker, M. D., White, I. R. and Millner, P. (1993) Modulation of K+ channels in Vicia stomatal guard cells by peptide homologs to the auxin binding protein C-terminus. Proceedings of the National Academy of Sciencse, USA 90, 11493–11497CrossRefGoogle ScholarPubMed
Thimann, K. V. (1980) Senescence in Plants. CRC Press Inc., Boca Raton, FL, 276 pp
Thomas, H., Ougham, H. J., Wagstaff, C. and Stead, A. D. (2003) Defining senescence and death. Journal of Experimental Botany 54, 1127–1132CrossRefGoogle ScholarPubMed
Thompson, D. S. and Osborne, D. J. (1994) A role for the stele in intertissue signaling in the initiation of abscission in bean leaves (Phaseolus vulgaris L.). Plant Physiology 105, 341–347CrossRefGoogle Scholar
Thompson, D.S, Davies, W. J. and Ho, L. C. (1998) Regulation of tomato fruit growth by epidermal cell wall enzymes. Plant Cell and Environment 21, 589–599CrossRefGoogle Scholar
Tillmann, U., Viola, G., Kayser, B., Seimeister, G., Hesse, T., Palme, K., Löbler, M. and Klämbt, D. (1989) cDNA clones of the auxin binding protein from corn coleoptiles (Zea mays L.): Isolation and characterization by immunological methods. EMBO Journal 8, 2463–2467Google ScholarPubMed
Timpte, C. (2001) Auxin binding protein: Curiouser and curiouser. Trends in Plant Science 6, 586–590CrossRefGoogle ScholarPubMed
Tiryaki, I. and Staswick, P. (2002) An Arabidopsis mutant defective jasmonate response is allelic to the auxin-signaling mutantaxr1. Plant Physiology 130, 887–894CrossRefGoogle ScholarPubMed
Tiwari, S. B., Wang, X.-J., Hagen, G. and Guilfoyle, T. J. (2001) Auxin/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13, 2809–2822CrossRefGoogle Scholar
Tran Thanh, K., Toubert, P., Cousson, A., Darvill, A. G., Gollin, D. J., Chelf, P. and Albersheim, P. (1985) Manipulation of the morphogenetic pathway of tobacco explants by oligosaccharins. Nature 314, 615–617CrossRefGoogle Scholar
Traw, M. B., Bergelson, J. (2003) Interactive effects of jasmonic acid, salicylic acid and gibberellin on induction of trichomes in Arabidopsis. Plant Physiology 133, 1367–1375CrossRefGoogle ScholarPubMed
Turner, S. R. and Somerville, C. R. (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9, 689–701CrossRefGoogle ScholarPubMed
Turner, J. G., Ellis, C. and Devoto, A. (2002) The jasmonate signal pathway. Plant Cell, 14, Supplement, S153–S164CrossRefGoogle ScholarPubMed
Ueda, J. and Kato, J. (1980) Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiology 66, 246–249CrossRefGoogle Scholar
Ulmasov, T., Hagen, G. and Guilfoyle, T. J. (1997a) ARF1, a transcription factor that binds to auxin response elements. Science 276, 1865–1868CrossRefGoogle Scholar
Ulmasov, T., Murfett, J., Hagen, G. and Guilfoyle, T. J. (1997b) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin reponse elements. Plant Cell 9, 1963–1971CrossRefGoogle Scholar
Ulmasov, T., Hagen, G. and Guilfoyle, T. J. (1999a) Activation and repression of transcription by auxin-response factors. Proceedings of the National Academy of Sciences, USA 96, 5844–5849CrossRefGoogle Scholar
Ulmasov, T., Hagen, G. and Guilfoyle, T. J. (1999b) Dimerization and DNA binding of auxin response factors. Plant Journal 19, 309–319CrossRefGoogle Scholar
Urao, T., Yakubov, B., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998) Stress-responsive expression of genes for two-component response regulator-like proteins in Arabidopsis thaliana. FEBS Letters 427, 175–178CrossRefGoogle ScholarPubMed
Urao, T., Miyata, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2000) Possible His-to-Asp phospho-relay signalling in an Arabidopsis two-component system. FEBS Letters 478, 227–232CrossRefGoogle Scholar
Vahatalo, M. and Virtanen, A. (1957) A new cyclic α-aminocarboxylic acid in berries of cowberry. Acta Chemica Scandinavica 11, 741–756CrossRefGoogle Scholar
Sande, K., Pawlowski, K., Czaja, I., Wieneke, U., Schell, J., Schmidt, J., Walden, R., Matvienko, M., Wellink, J., Kammen, A., Franssen, H. and Bisseling, T. (1996) Modification of phytohormone response by a peptide encoded by ENOD40 of legumes and a nonlegume. Science 273, 370–373CrossRefGoogle Scholar
Berg, C., Willemsen, V., Hage, W., Weisbeck, P. and Scheres, B. (1995) Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378, 62–65CrossRefGoogle ScholarPubMed
Schoot, C., Dietrich, M. A., Storms, M., Verbeke, J. A. and Lucas, W. J. (1995) Establishment of cell-to-cell communication pathway between separate carpels during gynoecium development. Planta 195, 450–455CrossRefGoogle Scholar
Doorn, W. and Stead, A. (1997) Abscission of flowers and floral parts. Journal of Experimental Botany 48, 821–837CrossRefGoogle Scholar
Hengel, A. J., Tadesse, Z., Immerzeel, P., Schols, H., Kammen, A. and Vries, S. C. (2001) N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiology 125, 1880–1890CrossRefGoogle ScholarPubMed
Huystee, R. B. and McManus, M. T. (1998) Glycans of higher plant peroxidases: Recent observations and future speculations. Glycoconjugate Journal 15, 101–106CrossRefGoogle ScholarPubMed
Overbeek, J. and Went, F. W. (1937) Mechanism and quantitative application of the pea test. Botanical Gazette 99, 22–41CrossRefGoogle Scholar
Overbeek, J., Conklin, M. E. and Blakeslee, A. F. (1941) Factors in coconut milk essential for growth and development of Datura embryos. Science 94, 350–351CrossRefGoogle Scholar
Veit, B., Briggs, S. P., Schmidt, R. J., Yanofsky, M. F. and Hake, S. (1998) Regulation of leaf initiation by the terminal ear 1 gene of maize. Nature 393, 166–168CrossRefGoogle ScholarPubMed
Venis, M. A. and Napier, R. M. (1995) Auxin receptors and auxin binding proteins. Critical Reviews in Plant Sciences 14, 27–47CrossRefGoogle Scholar
Venis, M. A., Napier, R., Barbier-Brygoo, H., Maurel, C., Perrit-Rechenmann, C. and Guern, J. (1992) Antibodies to a peptide from the maize auxin-binding protein have auxin agonist activity. Proceedings of the National Academy of Sciences, USA 89, 7208–7212CrossRefGoogle ScholarPubMed
Verbeke, J. A. (1992) Fusion events during floral morphogenesis. Annual Review of Plant Physiology and Plant Molecular Biology 43, 583–598CrossRefGoogle Scholar
Verbeke, J. A. and Walker, D. B. (1985) Rate of induced cellular dedifferentiation inCatharanthus roseus. American Journal of Botany 72, 1314–1317CrossRefGoogle Scholar
Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H. and Ryals, J. (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6, 959–965CrossRefGoogle ScholarPubMed
Verpy, E., Leibovici, M. and Petot, C. (1999) Characterization of otoconin-95, the major protein of murine otoconia, provides insights into the formation of these inner ear biomaterials. Proceedings of the National Academy of Sciences, USA 96, 529–534CrossRefGoogle Scholar
Vick, B. A. and Zimmerman, D. C. (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiology 75, 458–461CrossRefGoogle ScholarPubMed
Voesenek, L. A. C. J., Banga, M., Their, R. H., Mudde, C. M., Harren, F. M., Barendse, G. W. M. and Blom, C. W. P. M. (1993) Submergence-induced ethylene synthesis, entrapment, and growth in two plant species with contrasting flooding resistance. Plant Physiology 103, 783–791CrossRefGoogle Scholar
Vogel, J. P., Woeste, K. E., Theologis, A. and Kieber, J. J. (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene over-production, respectively. Proceedings of the National Academy of Sciences, USA 95, 4766–4771CrossRefGoogle Scholar
Groll, U. and Altmann, T. (2001) Stomatal cell biology. Current Opinion in Cell Biology 4, 555–560CrossRefGoogle Scholar
Groll, U., Berger, D. and Altmann, T. (2002) The subtilisin-like serine protease SDD1 mediates cell-to-cell signalling during Arabidopsis stomatal development. Plant Cell 14, 1527–1539CrossRefGoogle Scholar
Voznesenskaya, E. V., Edwards, G. E., Kiirats, O., Artyusheva, E. G. and Franceschi, V. R. (2003) Development of biochemical specialization and organelle partitioning in the single-cell C4 system in leaves of Borszczowia aralocaspica L. (Chenopodiaceae). American Journal of Botany 90, 1669–1680CrossRefGoogle Scholar
Vriezen, W. H., Rijn, C. P. E., Voesenek, A. C. J. and Mariani, C. (1997) A homolog of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant Journal 11, 1265–1271CrossRefGoogle ScholarPubMed
Vriezen, W. H., Graaf, B., Mariani, C. and Voesenek, L. A. C. J. (2000) Submergence induces expansin gene expression in flooding-tolerant Rumex palustris and not in flooding-intolerant R. acetosa. Planta 210, 956–963CrossRefGoogle Scholar
Wada, T, Tachibana, T., Shimura, Y. and Okada, K. (1997) Epidermal cell differentiation in Arabidopsis determined by a myb homolog, CPC. Science 277, 1113–1116CrossRefGoogle ScholarPubMed
Walker, J. C. and Key, J. L. (1982) Isolation of cloned cDNAs to auxin-responsive poly(A) + RNAs of elongating soybean hypocotyl. Proceedings of the National Academy of Sciences, USA 79, 7185–7189CrossRefGoogle ScholarPubMed
Walker, L. M. and Sack, F. D. (1990) Amyloplasts as possible statoliths in gravitropic protonemata of the moss Ceratodon purpureus. Planta 181, 71–77CrossRefGoogle ScholarPubMed
Wang, M., Oppedijk, B., Lu, X., Duijn, B. and Schilperoort, R. A. (1996) Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Molecular Biology 32, 1125–1134CrossRefGoogle ScholarPubMed
Wang, M., Oppedijk, B. J., Caspers, M. P. M., Lamers, G. E. M., Boot, M. J., Geerlings, D. N. G., Bakhuizen, B., Meijer, A. J. and Duijin, B. (1998) Spatial and temporal regulation of DNA fragmentation in aleurone of germinating barley. Journal of Experimental Botany 49, 1293–1301CrossRefGoogle Scholar
Wang, W., Hall, A. E., O'Malley, R. and Bleecker, A. B. (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proceedings of the National Academy of Sciences, USA 100, 352–357CrossRefGoogle Scholar
Wang, Z.-Y. and He, J.-X. (2004) Brassinosteroid signal transduction – choices of signals and receptors. Trends in Plant Science 9, 91–96CrossRefGoogle ScholarPubMed
Wang, Z.-Y., Seto, H., Fujioka, S., Yoshida, S. and Chory, J. (2001) BRI-1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410, 380–383CrossRefGoogle ScholarPubMed
Wang, Z.-Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T. and Chory, J. (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell 2, 505–513CrossRefGoogle ScholarPubMed
Warneck, H. and Seitz, H. U. (1993) Inhibition of gibberellic acid-induced elongation-growth of pea epicotyls by xyloglucan oligosaccharides. Journal of Experimental Botany 44, 1105–1109CrossRefGoogle Scholar
Warren-Wilson, J., Roberts, L. W., Warren-Wilson, P. M. and Gresshoff, P. M. (1994) Stimulatory and inhibiting effects of sucrose concentration in xylogenesis in lettuce pith explants: Possible mediation by ethylene biosynthesis. Annals of Botany 73, 65–73CrossRefGoogle Scholar
Warwicker, J. (2001) Modelling of auxin-binding protein 1 suggests that its C-terminus and auxin could compete for a binding site that incorporates a metal ion and tryptophan residue 44. Planta 212, 343–347CrossRefGoogle ScholarPubMed
Wasternack, C. and Parthier, B. (1997) Jasmonate-signalled plant gene expression. Trends in Plant Sciences 2, 302–307CrossRefGoogle Scholar
Watanabe, A. and Imaseki, H. (1982) Changes in translatable mRNA in senescing wheat leaves. Plant and Cell Physiology 23, 489–497CrossRefGoogle Scholar
Wayne, R., Staves, M. P. and Leopold, A. C. (1992) The contribution of the extracellular matrix to gravisensing in Characean cells. Journal of Cell Science 101, 611–623Google ScholarPubMed
Webster, B. D. and Leopold, A. C. (1972) Stem abscission in Phaseolus vulgaris explants. Botanical Gazette 133, 292CrossRefGoogle Scholar
Wei, N., Kwok, S. F., Arnim, A. G., Lee, A., McNellis, T. W., Piekas, B. and Deng, X. W. (1994) Arabidopsis COP8, COP10 and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell 6, 629–643CrossRefGoogle ScholarPubMed
Wen, C.-K. and Chang, C. (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14, 87–100CrossRefGoogle ScholarPubMed
Wendehemme, D., Pugin, A., Klessig, D. F. and Durner, J. (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends in Plant Science 6, 177–183CrossRefGoogle Scholar
Went, F. W. (1928) Wuchsstoff and Wachstum. Recueil des Travaux Botaniques Neerlandais 25, 1–116Google Scholar
Went, F. W. (1936) Allgemaine betrachtungen über das auxin-problem. Biologishes Zentralblatt 56, 449–463Google Scholar
Wenzel, C. L., Chandler, P. M., Cunningham, R. B. and Passioura, J. B. (1997) Characterization of the leaf epidermis of barley (Hordeum vulgare L. Himalaya). Annals of Botany 79, 41–46CrossRefGoogle Scholar
Weterings, K., Apuya, N. R., Bi, Y., Fisher, R. L., Harada, J. J. and Goldberg, R. B. (2001) Regional localization of suspensor mRNAs during early embryo development. Plant Cell 13, 2409–2425CrossRefGoogle ScholarPubMed
Whitelaw, C. A., Lyssenko, N. N., Chen, L., Zhou, D., Mattoo, A. K. and Tucker, M. L. (2002) Delayed abscission and shorter internodes correlate with a reduction in the ethylene receptor LeETR1 transcript in transgenic tomato. Plant Physiology 128, 978–987CrossRefGoogle ScholarPubMed
Whiting, P. and Goring, D. A. I. (1983) The composition of the carbohydrates in the middle lamella and secondary wall of tracheids from black spruce wood. Canadian Journal of Chemistry 61, 506–508CrossRefGoogle Scholar
Wildon, D. C., Thain, J. F., Minchin, P. E. H., Gubb, I. R., Reilly, A. J., Skipper, Y. D., Doherty, H. M., O'Donnell, P. J. and Bowles, D. J. (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360, 62–65CrossRefGoogle Scholar
Wilkinson, J. Q., Lanahan, M. B., Yen, H.-C., Giovannoni, J. J. and Klee, H. J. (1995) An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270, 1807–1809CrossRefGoogle ScholarPubMed
Wilkinson, S. and Davies, W. J. (2002) ABA-based chemical signalling: The co-ordination of responses to stress in plants. Plant, Cell and Environment 25, 195–210CrossRefGoogle ScholarPubMed
Willats, W. G. T. and Knox, J. P. (1996) A role for arabinogalactan-proteins in plant cell expansion: Evidence from studies on the interaction of β-glycosyl Yariv reagent with seedlings ofArabidopsis thaliana. Plant Journal 9, 919–925Google Scholar
Willats, W. G. T., McCartney, L. and Knox, J. P. (2001a) In situ analysis of pectic polysaccharides in seed mucilage and at the root surface of Arabidopsis thaliana. Planta 213, 37–44CrossRefGoogle Scholar
Willats, W. G. T., Orfila, C., Limberg, G., Buchholt, H. C., Alebeek, G-J. W. M., Voragen, G. J., Marcus, S. E., Christensen, T. M. I. E., Mikkelson, J. D., Murray, B. S. and Knox, J. P. (2001b) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturanan in plant cell walls: Implications for pectin methylesterase action, matrix properties, and cell adhesion. Journal of Biological Chemistry 276, 19404–19413CrossRefGoogle Scholar
Williams, R. W., Wilson, J. M. and Meyerowitz, E. M. (1997) A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signalling pathway. Proceedings of the National Academy of Sciences, USA 94, 10467–10472CrossRefGoogle Scholar
Williamson, R. E. (1991) Orientation of cortical microtubules in interphase plant cells. International Review of Cytology 129, 135–206CrossRefGoogle Scholar
Wilson, M. A., Sawyer, J., Hatcher, P. G. and Lerch, H. E. (1989) 1,3,5-hydroxybenzene structures in mosses. Phytochemistry 28, 1395–1400CrossRefGoogle Scholar
Wilson, M. P. K. and Bruck, D. K. (1999) Lack of influence of the epidermis on underlying cell development in leaflets of Pisum sativum var. argenteum (Fabaceae). Annals of Botany 83, 1–10CrossRefGoogle Scholar
Wisman, E., Cardon, G. H., Fransz, P. and Saedler, H. (1998) The behaviour of the autonomous maize transposable element En/Spm in Arabidopsis thaliana allows efficient mutagenesis. Plant Molecular Biology 37, 989–999CrossRefGoogle ScholarPubMed
Wolbang, C. M., Chandler, P. M., Smith, J. J. and Ross, J. J. (2004) Auxin and the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiology 134, 769–776CrossRefGoogle ScholarPubMed
Wong, C. H. and Osborne, D. J. (1978) The ethylene-induced enlargement of target cells in flower buds of Ecballium elaterium (L.) A. Rich. and their identification by the content of endo-reduplicated DNA. Planta 139, 103–111Google Scholar
Wong, L. M., Abel, S., Shen, N., Foata, M., Mall, Y. and Theologis, A. (1996) Differential activation of the primary auxin response genes, PS-IAA4/5 and PS-IAA6, during early plant development. Plant Journal 9, 587–600CrossRefGoogle ScholarPubMed
Woodward, F. I. and Kelly, C. K. (1995) The influence of CO2 concentration on stomatal density. New Phytologist 131, 311–327CrossRefGoogle Scholar
Worley, C. K., Zenser, N., Ramos, J., Rouse, D., Leyser, O., Theologis, A. and Callis, J. (2000) Degradion of Aux/IAA proteins is essential for normal auxin signalling. Plant Journal 21, 553–562CrossRefGoogle Scholar
Wright, A. D., Sampson, M. B., Neuffer, M. G., Michalczuk, L., Slovin, J. P. and Cohen, J. D. (1991) Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, tryptophan auxotroph. Science 254, 998–1000CrossRefGoogle ScholarPubMed
Wright, M. (1982) The polarity of movement of endogenously produced IAA in relation to a gravity perception mechanism. Journal of Experimental Botany 33, 929–934CrossRefGoogle Scholar
Wright, M. (1986) The acquisition of gravisensitivity during the development of nodes of Avena fatua. Journal of Plant Growth Regulation 5, 37–47CrossRefGoogle Scholar
Wright, M. and Osborne, D. J. (1974) Abscission in Phaseolus vulgaris: The positional differentiation and ethylene-induced expansion growth of specialised cells. Planta 120, 163–170CrossRefGoogle ScholarPubMed
Wright, M., Mousdale, D. M. A. and Osborne, D. J. (1978) Evidence for a gravity-regulated level of endogenous auxin controlling cell elongation and ethylene production during geotropic bending in grass nodes. Biochemistry, Physiology Pflanzen 172, 581–596CrossRefGoogle Scholar
Wright, S. T. C. and Hiron, R. W. P. (1969) (+)-Abscisic acid, the growth inhibitor induced in detached wheat leaves by a period of wilting. Nature 224, 719–720CrossRefGoogle Scholar
Xie, D.-X., Fey, B. F., James, S., Nieto-Rostro, M. and Turner, J. G. (2003) COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094CrossRefGoogle Scholar
Xu, D. P., Duan, X., Wang, B., Hong, B., Ho, T. H. D. and Wu, R. (1996) Expression of a late embryogenesis abundant protein gene HVA1 from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology 110, 249–257CrossRefGoogle ScholarPubMed
Xu, W., Purugganan, M. M., Polisensky, D. H., Antosiewicz, D. M., Fry, S. C. and Braam, J. (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7, 1555–1567CrossRefGoogle ScholarPubMed
Yabata, T. and Sumiki, Y. (1938) Biochemical studies on “Bakanae” fungus. Crystals with plant growth promoting activity. Journal of the Agricultural Chemistry Society, Japan 14, 1526Google Scholar
Yamagami, M., Haga, K., Napier, R. M. and Iino, M. (2004) Two distinct signalling pathways participate in auxin-induced swelling of pea epidermal protoplasts. Plant Physiology 134, 735–747CrossRefGoogle Scholar
Yamasaki, S., Fujii, N. and Takahashi, H. (2000) The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement with sex expression in flowers. Plant Cell Physiology 41, 608–616CrossRefGoogle ScholarPubMed
Yamazaki, T., Takaoka, M., Katoh, E., Hanada, K., Sakita, M., Sakata, K., Nishiuchi, Y. and Hirano, H. (2003) A possible physiological function and the tertiary structure of a 4-kDa peptide in legumes. European Journal of Biochemistry 270, 1269–1276CrossRefGoogle ScholarPubMed
Yang, H., Matsubayashi, Y., Nakamura, K. and Sakagami, Y. (1999) Oryza sativa PSK gene encodes a precursor of phytosulfokine-α, a sulfated peptide growth factor found in plants. Proceedings of the National Academy of Sciences, USA 96, 13560–13565CrossRefGoogle ScholarPubMed
Yang, H., Matsubayashi, Y., Nakamura, K. and Sakagami, Y. (2001) Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor. Plant Physiology 127, 842–851CrossRefGoogle ScholarPubMed
Yang, S. F. and Hoffman, N. E. (1984) Ethylene biosynthesis and its regulation in higher plants. Annnual Review of Plant Physiology 35, 155–189CrossRefGoogle Scholar
Yao, C., Conway, W. S. and Sams, C. E. (1995) Purification and characterization of a polygalacturonase-inhibiting protein from apple fruit. Phytopathology 85, 1373–1377CrossRefGoogle Scholar
Ye, Z.-H. (2002) Vascular tissue differentiation and pattern formation in plants. Annual Review of Plant Biology 53, 183–202CrossRefGoogle ScholarPubMed
Ye, Z.-H., Zhong, R., Morrison, W. H. and Himmelsbank, D. S. (2001) Caffeoyl coenzyme A O-methyltransferase and lignin biosynthesis. Phytochemistry 57, 1177–1185CrossRefGoogle ScholarPubMed
Yin, Y., Wang, Z.-Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T. and Chory, J. (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181–191CrossRefGoogle ScholarPubMed
Yokota, T. (1997) The structure, biosynthesis and function of brassinosteroids. Trends in Plant Sciences 2, 137–143CrossRefGoogle Scholar
York, W. S., Darvill, A. G. and Albersheim, P. (1984) Inhibition of a 2,4-dichlorophenoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide. Plant Physiology 75, 295–297CrossRefGoogle ScholarPubMed
Youl, J. J., Bacic, A. and Oxley, D. (1998) Arabinogalactan-proteins from Nicotiana alata and Pyrus communis contain glycosylphosphatidylinositol membrane anchors. Proceedings of the National Academy of Sciences, USA 95, 7921–7926CrossRefGoogle ScholarPubMed
Young, T. E. and Gallie, D. R. (1999) Analysis of programmed cell death in wheat endosperm reveals differences in endosperm development between cereals. Plant Molecular Biology 39, 915–926CrossRefGoogle ScholarPubMed
Young, T. E. and Gallie, D. R. (2000) Regulation of programmed cell death in maize endosperm by abscisic acid. Plant Molecular Biology 42, 397–414CrossRefGoogle ScholarPubMed
Young, T. E., Gallie, D. R. and DeMason, D. A. (1997) Ethylene mediated programmed cell death during maize endosperm development of wild type and Shrunken2 genotypes. Plant Physiology 115, 737–751CrossRefGoogle ScholarPubMed
Yuan, M., Warn, R. M., Shaw, P. J. and Lloyd, C. W. (1992) Dynamic microtubules under the radial and outer tangential walls of microinjected pea epidermal cells observed by computer reconstruction. Plant Journal 7, 17–23CrossRefGoogle Scholar
Zablackis, E., York, W. S., Pauly, M., Hantus, S., Rieter, W.-D., Chapple, C. C. S., Albersheim, P. and Darvill, A. (1996) Substitution of l-fucose by l-galactose in cell walls ofArabidopsis mur1. Science 272, 1808–1810Google Scholar
Zeevaart, J. A. D. (1976) Physiology of flower formation. Annual Review of Plant Physiology 27, 321–348CrossRefGoogle Scholar
Zenser, N., Ellsmore, A., Leasure, C. and Callis, J. (2001) Auxin modulates the degradation rate of Aux/IAA proteins. Proceedings of the National Academy of Sciences, USA 98, 11795–11800CrossRefGoogle ScholarPubMed
Zhang, D.-P., Wu, Z.-Y., Li, X.-Y. and Zhao, Z.-X. (2002) Purification and identification of a 42-kilodalton abscisic acid-specific-binding protein from epidermis of broad bean leaves. Plant Physiology 128, 714–725CrossRefGoogle ScholarPubMed
Zhao, J., Peng, P., Schmitz, R. J., Decker, A. D., Tax, F. E. and Li, J. (2002a) Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiology 130, 1221–1229CrossRefGoogle Scholar
Zhao, Y., Christensen, S. K., Fankhauser, C., Cashman, J. R., Cohen, J. D., Weigel, D. and Chory, J. (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306–309CrossRefGoogle ScholarPubMed
Zhao, Y., Hull, A. K., Gupta, N. R., Goss, K. A., Alonso, J., Ecker, J. R., Normanly, J., Chory, J. and Celenza, J. L. (2002b) Trp-dependent auxin biosynthesis in Arabidopsis: Involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes and Development 16, 3100–3112CrossRefGoogle Scholar
Zhong, R. and Ye, Z.-H. (2001) Alteration of auxin polar transport in Arabidopsis ifl1 mutants. Plant Physiology 126, 549–563CrossRefGoogle ScholarPubMed
Zhou, D., Kalaitzis, P., Mattoo, A. and Tucker, M. (1996) The mRNA for an ETR1 homologue in tomato is constitutively expressed in the vegetative and reproductive tissues. Plant Molecular Biology 30, 1331–1338CrossRefGoogle ScholarPubMed
Zureck, D. M. and Clouse, S. D. (1994) Molecular cloning and characterisation of a brassinosteroid-regulated gene from elongating soybean (Glycine max L.) epicotyls. Plant Physiology 104, 161–170CrossRefGoogle Scholar
Zurfluh, L. L. and Guilfoyle, T. J. (1982) Auxin-induced changes in the population of translatable messenger RNA in elongating sections of soybean hypocotyl. Plant Physiology 69, 332–337CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Daphne J. Osborne, The Open University, Milton Keynes, Michael T. McManus, Massey University, Auckland
  • Book: Hormones, Signals and Target Cells in Plant Development
  • Online publication: 06 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546228.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Daphne J. Osborne, The Open University, Milton Keynes, Michael T. McManus, Massey University, Auckland
  • Book: Hormones, Signals and Target Cells in Plant Development
  • Online publication: 06 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546228.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Daphne J. Osborne, The Open University, Milton Keynes, Michael T. McManus, Massey University, Auckland
  • Book: Hormones, Signals and Target Cells in Plant Development
  • Online publication: 06 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546228.011
Available formats
×