Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T12:32:49.097Z Has data issue: false hasContentIssue false

Part II - Cases and Multidisciplinary Responses

Published online by Cambridge University Press:  10 June 2019

Marc Ozawa
Affiliation:
Energy Policy Research Group, University of Cambridge
Jonathan Chaplin
Affiliation:
University of Cambridge
Michael Pollitt
Affiliation:
Judge Business School, Cambridge
David Reiner
Affiliation:
Judge Business School, Cambridge
Paul Warde
Affiliation:
University of Cambridge
Get access

Summary

In this chapter, we discuss the evolution of the field of ‘ethics of nuclear energy’, regarding its past, present and future. We will first review the history of this field in the previous four decades, focusing on new and emerging challenges of nuclear energy production and waste disposal, in light of several important developments. Four of the most pressing ethical challenges will be further reviewed in the chapter. First, what is a morally ‘acceptable’ nuclear energy production method, if we consider the existing and possible new technologies? Second, provided a new tendency to consider nuclear waste disposal with several countries, what would be the new ethical and governance challenges of these multinational collaborations? Third, how should we deal with the (safety) challenges of the new geographic distribution of nuclear energy, tilting towards emerging economies with less experience with nuclear technology? Fourth, nuclear energy projects engender highly emotional controversies. Neither ignoring the emotions of the public nor taking them as a reason to prohibit or restrict a technology – we call them technocratic populist pitfalls respectively – seem to be able to guide responsible policy making.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asveld, L., and Roeser, S., eds. 2009. The Ethics of Technological Risk. London: Earthscan.Google Scholar
Bergen, J. P. 2016. ‘Irreversibility and Reversibility of Nuclear Energy Production Technologies: A Framework and Three Cases’. Ethics, Policy and Environment 19 (1): 3759.Google Scholar
Bertell, R. 1991. ‘Ethics of Nuclear Option in the 1990s’. In Nuclear Energy and Ethics, edited by Shrader-Frechette, K. S., 161–81. Geneva: World Council of Churches Publications.Google Scholar
Blix, Hans. 1986. ‘The Influence of the Accident at Chernobyl. Lecture Delivered at Round Table No. 7, on “The Future for Nuclear Power” at the 13th Congress of the World Energy Conference’. Cannes, France: International Atomic Energy Agency, Division of Public Information.Google Scholar
Boutellier, C., McCombie, C., and Mele, I.. 2006. ‘Multinational Repositories: Ethical, Legal and Political/Public Aspects’. International Journal of Nuclear Law 1 (1): 3648.Google Scholar
Damasio, A. 1994. Descartes’ Error. New York: Putnam.Google Scholar
Downer, J. 2015. ‘The Unknowable Ceiling of Safety: Three Ways That Nuclear Accidents Escape the Calculus of Risk Assessments’. In The Ethics of Nuclear Energy: Risk, Justice and Democracy in the Post-Fukushima Era, edited by Taebi, B. and Roeser, S., 3552. Cambridge: Cambridge University Press.Google Scholar
DoyleII, T. E. 2010. ‘Reviving Nuclear Ethics: A Renewed Research Agenda for the Twenty First Century’. Ethics & International Affairs 24 (3): 287308.Google Scholar
Frijda, N. 1987. The Emotions. Cambridge: Cambridge University Press.Google Scholar
Gosseries, A. 2008. ‘Radiological Protection and Intergenerational Justice’. In Ethics and Radiological Protection, edited by Eggermont, G. and Feltz, B., 167–95. Louvain-la-Neuve: Academia-Bruylant.Google Scholar
Hollyday, J. 1991. ‘In The Valley of the Shadow of Three Miles Island’. In Nuclear Energy and Ethics, edited by Shrader-Frechette, K. S., 136–60. Geneva: World Council of Churches Publications.Google Scholar
IAEA. 1997. ‘Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Information Circular)’. Vienna: IAEA.Google Scholar
IAEA. 1998. ‘Technical, Institutional and Economic Factors Important for Developing a Multinational Radioactive Waste Repository’. Vienna: IAEA.Google Scholar
IAEA, Euratom, FAO, IAEA, ILO, IMO, OECD-NEA, PAHO, UNEP, and WHO. 2006. ‘Fundamental Safety Principles’. IAEA Safety Standards Series No. SF1. Vienna: A joint publication of Euratom, FAO, IAEA, ILO, IMO, OECD-NEA, PAHO, UNEP, WHO.Google Scholar
ICRP. 1977. ‘Recommendations of the International Commission on Radiological Protection’. Publication 26. Vol. 1 (3). Ann. ICRP. Oxford: Pergamon Press.Google Scholar
ICRP. 2007. The 2007 Recommendations of the International Commission on Radiological Protection. Publication 103. Vol. 37 (2–4). Ann. ICRP. Oxford: Elsevier.Google Scholar
KASAM. 1988. ‘Ethical Aspects of Nuclear Waste’. Report No. 29. Stockholm: National Council for Nuclear Waste (KASAM-SKN), Sweden.Google Scholar
KASAM. 2005. ‘Nuclear Waste State-of-the-Art Reports 2004’. SOU 2004:67. Stockholm: National Council for Nuclear Waste (KASAM), Sweden.Google Scholar
KASAM. 2007. ‘Nuclear Waste State-of-the-Art Report 2007 – Responsibility of Current Generation, Freedom of Future Generations’. SOU 2004:67. Stockholm: National Council for Nuclear Waste (KASAM), Sweden.Google Scholar
Kermisch, C. 2016. ‘Specifying the Concept of Future Generations for Addressing Issues Related to High-Level Radioactive Waste’. Science and Engineering Ethics 22 (6): 17971811.CrossRefGoogle ScholarPubMed
Kermisch, C., Depaus, C., and Labeau, P. E. A.. 2016. ‘A Contribution to the Analysis of Equity Associated with High-Level Radioactive Waste Management’. Progress in Nuclear Energy, no. 92: 4047.Google Scholar
Kermisch, C., and Taebi, B.. 2017. ‘Sustainability, Ethics and Nuclear Energy: Escaping the Dichotomy’. Sustainability 9 (3): 446.Google Scholar
Kneese, A. V. 1973. ‘The Faustian Bargain’. Resources 44: 15.Google Scholar
Krimsky, S., and Golding, D., eds. 1992. Social Theories of Risk. Westport: Praeger Publishers.Google Scholar
Löfquist, L. 2008. ‘Ethics beyond Finitude, Responsibilities towards Future Generations and Nuclear Waste Management’ (PhD diss.). Uppsala: Uppsala University.Google Scholar
Möller, N. 2012. ‘The Concepts of Risk and Safety’. In Handbook of Risk Theory. Epistemology, Decision Theory, Ethics and Social Implications of Risk, edited by Roeser, S., Hillerbrand, R, Sandin, P, and Peterson, M, 5585. Dordrecht: Springer.Google Scholar
NEA-OECD. 1995. ‘The Environmental and Ethical Basis of Geological Disposal of Long-Lived Radioactive Wastes: A Collective Opinion of the Radioactive Waste Management Committee of the Nuclear Energy Agency’. Paris: Nuclear Energy Agency, Organisation for Economic Co-operation and Development.Google Scholar
Nihlén Fahlquist, J., and Roeser, S.. 2015. ‘Nuclear Energy, Responsible Risk Communication and Moral Emotions: A Three Level Framework’. Journal of Risk Research 18 (3): 333–46. https://doi.org/10.1080/13669877.2014.940594.Google Scholar
Nussbaum, M. 2001. Upheavals of Thought. Cambridge: Cambridge University Press.Google Scholar
NWMO. 2005. ‘Choosing a Way Forward; The Future Management of Canada’s Used Nuclear Fuel (Final Study)’. Ottawa (Ontario), Canada: Nuclear Waste Management Organization. www.nwmo.ca/studyreport.Google Scholar
Oughton, D., and Hansson, S. O.. 2013. Social and Ethical Aspects of Radiation Risk Management. Amsterdam: Elsevier.Google Scholar
Roberts, R. C. 2003. Emotions: An Essay in Aid of Moral Psychology. Cambridge: Cambridge University Press.Google Scholar
Roeser, S. 2006. ‘The Role of Emotions in Judging the Moral Acceptability of Risks’. Safety Science 44 (8): 689700. https://doi.org/10.1016/j.ssci.2006.02.001.Google Scholar
Roeser, S. 2007. ‘Ethical Intuitions about Risk’. Safety Science Monitor 11 (3): 130.Google Scholar
Roeser, S. 2011a. Moral Emotions and Intuitions. Basingstoke: Palgrave Macmillan.Google Scholar
Roeser, S. 2011b. ‘Nuclear Energy, Risk, and Emotions’. Philosophy & Technology 24: 197201.Google Scholar
Roeser, S. 2018. Risk, Technology, and Moral Emotions. London: Routledge.Google Scholar
Roeser, S., Hillerbrand, R., Sandin, P, and Peterson, M, eds. 2012. Handbook of Risk Theory. Epistemology, Decision Theory, Ethics and Social Implications of Risk. Dordrecht: Springer.CrossRefGoogle Scholar
Routley, R., and Routley, V.. 1979. ‘Against the Inevitability of Human Chauvinism’. In Ethics and Problems of the 21st Century, edited by Goodpaster, K. E. and Sayre, K. M., 3659. Notre Dame, IN: University of Notre Dame Press.Google Scholar
Salzer, P., Pritrsky, J., Mrskova, A, and Richardson, P. 2012. ‘The Status of Multinational Waste Management Solutions’. Deliverable 3.3. of the IPPA (Implementing Public Participation Approaches in Radioactive Waste Disposal).Google Scholar
Scarce, K. 2016. ‘Nuclear Fuel Cycle Royal Commission Report’. Adelaide: Government of South Australia. http://nuclear.yoursay.sa.gov.au/system/NFCRC_Final_Report_Web.pdf.Google Scholar
Shrader-Frechette, K. 1980. Nuclear Power and Public Policy: The Social and Ethical Problems of Fission Technology. Dordrecht, Netherlands: D. Reidel Publishing Company.Google Scholar
Shrader-Frechette, K., ed. 1991. Nuclear Energy and Ethics. Geneva: World Council of Churches Publications.Google Scholar
Shrader-Frechette, K. 1993. Burying Uncertainty: Risk and the Case against Geological Disposal of Nuclear Waste. Berkeley: University of California Press.Google Scholar
Shrader-Frechette, K. 1994. ‘Equity and Nuclear Waste Disposal’. Journal of Agricultural and Environmental Ethics 7 (2): 133–56.Google Scholar
Shrader-Frechette, K. 2000. ‘Duties to Future Generations, Proxy Consent, Intra- and Inter-generational Equity: The Case of Nuclear Waste’. Risk Analysis 20 (6): 771–8.CrossRefGoogle Scholar
Shrader-Frechette, K. 2011. What Will Work: Fighting Climate Change with Renewable Energy, Not Nuclear Power. Oxford: Oxford University Press.CrossRefGoogle Scholar
Slovic, P. 2000. The Perception of Risk. London: Earthscan.Google Scholar
Slovic, P. 2010. The Feeling of Risk: New Perspectives on Risk Perception. London: Earthscan.Google Scholar
Sunstein, C. R. 2005. ‘Cost Benefit Analysis and the Environment’. Ethics 115: 351–85.Google Scholar
Taebi, B. 2010. Nuclear Power and Justice between Generations. A Moral Analysis of Fuel Cycles (PhD diss.). Vol. V. Simon Stevin Series in the Ethics of Technology. Delft: Delft University of Technology.Google Scholar
Taebi, B. 2011. ‘The Morally Desirable Option for Nuclear Power Production’. Philosophy & Technology 24 (2): 169–92.Google Scholar
Taebi, B. 2012. ‘Multinational Nuclear Waste Repositories and Their Complex Issues of Justice’. Ethics, Policy & Environment 15 (1): 5762.Google Scholar
Taebi, B. 2017. ‘Bridging the Gap between Social Acceptance and Ethical Acceptability’. Risk Analysis 37 (10): 1817–27.Google Scholar
Taebi, B., and Kloosterman, J. L. 2008. ‘To Recycle or Not to Recycle? An Intergenerational Approach to Nuclear Fuel Cycles’. Science and Engineering Ethics 14 (2): 177200.Google Scholar
Taebi, B, and Kloosterman, J L 2015. ‘Design for Values in Nuclear Technology’. In Handbook of Ethics, Values, and Technological Design: Sources, Theory, Values and Application Domains, edited by Van den Hoven, J., Vermaas, P., and Van de Poel, I., 805–29. Dordrecht: Springer.Google Scholar
Taebi, B., and Mayer, M. 2017. ‘By Accident or by Design? Pushing Global Governance of Nuclear Safety’. Progress in Nuclear Energy 99: 1925.Google Scholar
Taebi, B., and Roeser, S. 2015a. ‘The Ethics of Nuclear Energy: An Introduction’. In The Ethics of Nuclear Energy: Risk, Justice and Democracy in the Post-Fukushima Era, edited by Taebi, B and Roeser, S, 114. Cambridge: Cambridge University Press.Google Scholar
Taebi, B, and Roeser, Seds. 2015b. The Ethics of Nuclear Energy: Risk, Justice and Democracy in the Post-Fukushima Era. Cambridge: Cambridge University Press.Google Scholar
Taebi, B., Roeser, S and Van de Poel, I. 2012. ‘The Ethics of Nuclear Power: Social Experiments, Intergenerational Justice, and Emotions’. Energy Policy, no. 51: 202–6.Google Scholar
Taebi, B., and Van de Poel, I., eds. 2015. ‘Socio-Technical Challenges of Nuclear Power Production and Waste Disposal in the Post-Fukushima Era: Editors’. Overview 18 (3): 267–72.Google Scholar
Wigley, D., C. and Shrader-Frechette, K. 1996. ‘Environmental Justice: A Louisiana Case Study’. Journal of Agricultural and Environmental Ethics 9 (1): 6182.Google Scholar
Wilson, L. 2000. Nuclear Waste: Exploring the Ethical Dilemmas. Toronto: United Church Publishing House.Google Scholar
Anderson, K., Peters, G., 2016. ‘The trouble with negative emissions’. Science 354, 182183.Google Scholar
Beckerman, W., 1956. ‘The Economist as a Modern MissionaryEcon. J. 66, 108. https://doi.org/10.2307/2227407Google Scholar
Fuss, S., Canadell, J.G., Peters, G.P., Tavoni, M., Andrew, R.M., Ciais, P., Jackson, R.B., Jones, C.D., Kraxner, F., Nakicenovic, N., Others, , 2014. ‘Betting on negative emissions’. Nat. Clim. Change 4, 850853.Google Scholar
MacKay, J.C., 2009. Sustainable Energy – Without the Hot Air. UIT Cambridge Ltd.Google Scholar
Taebi, B., Kloosterman, J.L., 2015. Design for Values in Nuclear Technology, in: Van den, Hoven, J., Vermaas, P., Van de, Poel, I. (Eds.), Handbook of Ethics, Values, and Technological Design: Sources, Theory, Values and Application Domains. Springer, Dordrecht, 805829.Google Scholar
BP Statistical Review of World Energy June 2014: www.bp.com/statisticalreviewGoogle Scholar
Regeringskansliet (2017a) Fossilfria transporter och resor: Regeringens arbete för att minska transporternas klimatpåverkan (Fossil-free transportation and travels: the governments work to reduce climate impact from transports). 7 Feb 2017. www.regeringen.se/regeringens-politik/regeringens-prioriteringar/sverige-som-foregangsland-for-minskade-klimatutslapp/fossilfria-transporter-och-resor-regeringens-arbete-for-att-minska-transporternas-klimatpaverkan/Google Scholar
Regeringskansliet (2017b) Det klimatpolitiska ramverket (The climate policy framework). 12 June 2017. www.regeringen.se/artiklar/2017/06/det-klimatpolitiska-ramverket/Google Scholar
TT, Tidningarnas Telegrambyrå, 1990–03-07 Koldioxidmålet klaras inte säger Statens Energiverk i ny rapport [The Carbon Dioxide Goal not to be Reached Claims Swedish Energy Authority in New Report]Google Scholar
Acar, S. and Lindmark, M. (2016), ‘Periods of Converging Carbon Dioxide Emissions from Oil Combustion in a Pre-Kyoto Context’, Environmental Development 19: 19.Google Scholar
Acemoglu, D., Aghion, P., Bursztyn, L. and Hemous, D. (2012), ‘The Environment and Directed Technical Change’, American Economic Review 102: 131166.Google Scholar
Ahlström, G., Carlsson, B. (2009), ‘Superdevalveringen 1982: Sverige under IMF-luppen’ [The super devaluation of 1982: Sweden under the IMF microscope], Ekonomisk Debatt 37 (5): 515.Google Scholar
Alvén, H. (1975), Kärnkraft och atombomber, Stockholm: Aldus.Google Scholar
Andersson-Skog, L. (2009), Revisiting Railway History: The Case of Institutiuonal Change and Path Dependency, in Magnusson, Lars and Ottosson, Jan (Eds.) The Evolution of Path Dependence, Cheltenham (UK): Edward Elgar, 7086.Google Scholar
Bergek, A. and Berggren, C. (2014), ‘The Impact of Environmental Policy Instruments on Innovation: A Review of Energy and Automotive Industry Studies’, Ecological Economics 106: 112123.Google Scholar
Bergman, L. (2014), De svenska energimarknaderna – en samhällsekonomisk analys. Bilaga till SOU 2014:37.Google Scholar
Bergquist, A.-K. and Söderholm, K. (2014), ‘Industry Strategies for Energy Transition in the Wake of the Oil Crisis’, Business and Economic History 12: 118.Google Scholar
Bergquist, A.-K., Söderholm, K., Kinneryd, H., Lindmark, M. and Söderholm, P. (2013), ‘Environmental Compliance and Technological Change in Swedish Industry 1970–1990’, Ecological Economics 85: 619.Google Scholar
Bladh, M. (2012), ‘Energy Consumption and Stocks of Energy Converting Artefacts’, Energy Policy 43: 381386.Google Scholar
Boden, T.A., Marland, G. and Andres, R.J. (2013), Global, Regional and National Fossil-Fuel CO2 Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, OakRidge, Tenn., USA (available at http://cdiac.ornl.gov/trends/emis/meth_reg.html).Google Scholar
Brännlund, R. and Lundgren, T. (2009a), ‘Environmental Policy without Costs? A Review of the Porter Hypothesis’, SIRP WP 09–01.Google Scholar
Brännlund, R. and Lundgren, T. (2009b), ‘Environmental Policy without Costs? A Review of the Porter Hypothesis’, International Review of Environmental and Resource Economics 3: 75117.Google Scholar
Brockwell, E. (2014), ‘State and Industrial Actions to Influence Consumer Behavior’ (diss.), Umeå economic studies 894, Department of Economics, Umeå University.Google Scholar
Carlsnäs, W. (1988), Energy Vulnerability and National Security, London: Pinter Publishers.Google Scholar
Dahmén, E. (1968), Sätt pris på miljön, Stockholm: SNS.Google Scholar
Dahmén, E. (1987), ‘Miljön och marknaden’, Svensk Tidskrift 1987: 391397.Google Scholar
Edvinsson, R., Jacobson, T. and Waldenström, D. (2010), Exchange Rates, Prices and Wages, 1277–2008, Stockholm: Ekerlid: Sveriges Riksbank.Google Scholar
Eriksson, K. (2009), ‘Introduction and Development of the Swedish District Heating Systems - Critical Factors and Lessons Learned’. D5 of WP2 from the RES-H Policy project, Lund.Google Scholar
Feldt, K.-O. (1991), Alla dessa dagar … I regeringen 1982–1990. [All these days … In the government 1982–1990] Stockholm: Norstedts.Google Scholar
Grönkvist, S. and Sandberg, P. (2006), ‘Driving Forces and Obstacles with regard to Co-operation between Municipal Energy Companies and Process Industries in Sweden’, Energy Policy 34: 15081519.Google Scholar
Johansson, B. (2001), ‘Economic Instruments in Practice: Carbon Taxes in Sweden’, Naturvårdsverket rapport 8, Stockholm: SNV.Google Scholar
Johansson, P.O. and Kriström, B. (2007), ‘On a Clear Day You Might See an Environmental Kuznets Curve’, Environmental and Resource Economics 37: 7790.Google Scholar
Jonter, T. (2010), ‘The Swedish Plans to Acquire Nuclear Weapons, 1945–1968: An Analysis of the Technical Preparations’, Science & Global Security 18: 6186.Google Scholar
Kall, A.-S. (2011), Förnyelse med förhinder: Den riksdagspolitiska debatten om omställningen av energisystemet 1980–2010 (diss.), Linköping Studies in Arts and Science.Google Scholar
Kander, A. (2002), ‘Economic Growth, Energy Consumption and CO2 Emissions in Sweden 1800–2000’ (diss.), Lund Studies in Economic History 19, Lund, Almqvist & Wicksell International.Google Scholar
Larsson, K.-E. (1987), Kärnkraftens historia i Sverige, Kosmos 64: 125126.Google Scholar
Levin, M. (2014), Att elda för kråkorna? Hushållens energianvändning inom bostadssektorn i Sverige 1913–2008 (diss.) Umeå studies in Economic History 46, Umeå University.Google Scholar
Lindblad, H. (2013), Kärlek, tbc och liberalism: en biografi om Sven Wedén [Love, TB and Liberalism: a biography of Sven Wedén], Stockholm: Ekerlid.Google Scholar
Lindmark, M. (2002), ‘An EKC-Pattern in Historical Perspective: Carbon Dioxide Emissions, Technology, Fuel Prices and Growth in Sweden 1870–1997’, Ecological Economics 42: 333347.Google Scholar
Lindmark, M. and Acar, S. (2015), ‘Periods of Converging Carbon Dioxide Emissions from Oil Combustion 1973–2004’. CERE WP 2015-1, Umeå University.Google Scholar
Lindmark, M. and Andersson, L.-F. (2010), ‘Unintentional Climate Policy: Swedish Experiences of Carbon Dioxide Emissions and Economic Growth 1950–2005’. CERE WP #14/2010, Umeå University.Google Scholar
Lindmark, M., Bergqvist, A.-K. and Andersson, L.-F. (2013), ‘Energy Transition, CO2 Reduction and Output Growth in the Swedish Pulp and Paper Industry: 1973–2006’, Energy Policy 39: 54495456.Google Scholar
Liparito, K. (2003), ‘Picturephone and the Information Age. The Social Meaning of Failure’, Technology and Culture 44: 5081.CrossRefGoogle Scholar
Newell, R., Jaffe, A. and Stavins, R. (1999), ‘The Induced Innovation Hypothesis and Energy-Saving Technological Change’, The Quarterly Journal of Economics 114: 941975.Google Scholar
Nilsson, M. (1970), Striden om Vindelälven: makten, människorna och verkligheten kring ett beslut (The Fight over the Vindel River: The power, the people and the realities of a decision) Stockholm: Bonnier.Google Scholar
Popp, D. (2002), ‘Induced Innovation and Energy Price’, American Economic Review 92: 160180.Google Scholar
Porter, M. and van der Linde, C. (1995), ‘Toward a New Conception of the Environment Competitiveness Relationship’, Journal of Economic Perspectives 9: 97118.Google Scholar
Radetzki, M. (2004), Svensk energipolitik under tre decennier: en studie i politikermisslyckanden, Stockholm: SNS Förlag.Google Scholar
Rezai, A. and van der Plough, F. (2013), ‘Abandoning Fossil Fuel: How Fast and How Much?’ OxCarre Research Paper 123.Google Scholar
Sandén, B.A. and Azar, C. (2005), ‘Near-Term Technology Policy for Long-Term Climate Targets. Economy Wide versus Technology Specific Approaches’, Energy Policy 33: 15571576.Google Scholar
Schipper, L., Murtishaw, S., Khrushch, M., Ting, M., Karbuz, S. and Unander, F. (2001), ‘Carbon Emissions from Manufacturing Energy Use in 13 IEA Countries: Long-Term Trends through 1995’, Energy Policy 29: 667688.Google Scholar
Schön, L. (2011), Sweden’s Road to Modernity: An Economic History, Stockholm: SNS Förlag.Google Scholar
Schön, L. and Krantz, O. (2012), ‘Swedish Historical National Accounts 1560–2010’, Lund Papers in Economic History 123, Department of Economic History, Lund University.Google Scholar
Scrimgeour, F., Oxley, L. and Fatai, K. (2005), ‘Reducing Carbon Emissions? The Relative Effectiveness of Different Types of Environmental Tax: The Case of New Zealand’, Environmental Modelling & Software, 11: 14391448.Google Scholar
SIND (1979), Utvärdering av statsbidragen till energibesparande åtgärder i näringslivet, Utredning från Statens industriverk, SIND 1979: 1, Stockholm: LiberFörlag.Google Scholar
Söderholm, K. and Bergquist, A.-K. (2011), ‘Green Innovation Systems in the Swedish Pulp and Paper Industry 1960–2011’, Scandinavian Economic History Review 60: 183211.Google Scholar
STEM (2000), Effektiv energianvändning. En analys av utvecklingen 1970–1998. ER 22:2000.Google Scholar
Svanlund, J. (2010), Svensk och finsk upphinnartillväxt: faktorpris- och produktivitetsutjämning mellan Finland och Sverige 1950–2000 (diss.), Umeå Studies in Economic History, 38, Umeå University.Google Scholar
Vedung, E. (1982), Energipolitiska utvärderingar 1973–81, Stockholm.Google Scholar
Werner, S. (1991), ‘District Heating in Sweden 1948–1990’, Fernwärme International 20: 603616.Google Scholar
Wolfson, D.J. and Koopmans, C.C. (1996), ‘Regulatory Taxation of Fossil Fuels: Theory and Policy’, Ecological Economics 19: 5565.Google Scholar
Ares, E. and Delebarre, J. (2016), ‘The Carbon Price Floor’, House of Commons Library Briefing Paper, No. CBP05927, 23 November 2016.Google Scholar
Chick, M. (2007), Electricity and Energy Policy in Britain, France and the United States since 1945, Cheltenham, UK: Edward Elgar.Google Scholar
Dolphin, G., Pollitt, M. and Newbery, D. (2016), ‘The Political Economy of Carbon Pricing: A Panel Analysis’, EPRG Working Paper No. 1627.Google Scholar
Elgie, S. and McClay, J. (2013), ‘Policy Commentary/Commentaire BC’s Carbon Tax Shift Is Working Well after Four Years (Attention Ottawa)’, Canadian Public Policy 39 (Supplement 2): S1S10.Google Scholar
Joskow, P. L. (1997), ‘Restructuring, Competition and Regulatory Reform in the U.S. Electricity Sector’, Journal of Economic Perspectives, 11(3): 119138.Google Scholar
Keynes, J. M. (1936), The General Theory of Employment, Interest and Money, London: Macmillan.Google Scholar
Pigou, A. C. (1920), The Economics of Welfare, London: Macmillan.Google Scholar
Robson, A. (2014), ‘Australia’s Carbon Tax: An Economic Evaluation’, Economic Affairs, 34: 3545.Google Scholar
Rowthorn, R. E. and Wells, J. R. (1987). De-Industrialization and Foreign Trade, Cambridge: Cambridge University Press.Google Scholar
Aksanli, B., Pettis, E., & Rosing, T. (2013). Architecting efficient peak power shaving using batteries in data centers. In Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), 2013 IEEE 21st International Symposium on (pp. 242253). IEEE.Google Scholar
An Bord Paeleala (ABP). (2016). Inspectors Report. 07.VA0020. www.pleanala.ie/news/245518-VA0020/RVA0020.pdfGoogle Scholar
Andrae, A. S. G. & Elder, T. (2015). On global electricity usage of communication technology: trends to 2030. Challenges, 6(1): 117157.Google Scholar
Ansar, A., Flyvbjerg, B., Budzier, A., & Lunn, D. (2014). Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy, 69 (June): 4356.Google Scholar
Ashenfelter, R., Hodges, K., Luna, A., & Sterman, J. (2014). Final Report for S-Lab Project with Facebook, Inc. MIT Sloan School of Management. 15.915 S-Lab Draft Final Report.Google Scholar
Barroso, L. A., Clidaras, J., & Hölzle, U. (2013). The datacenter as a computer: An introduction to the design of warehouse-scale machines. Synthesis Lectures on Computer Architecture, 8(3): 1154.Google Scholar
Belady, C., Rawson, A., Pfleuger, J., & Cader, T. (2008). Green grid data center power efficiency metrics: PUE and DCIE. Technical report, Green Grid.Google Scholar
Bouton, S., Creyts, J., Kiely, T., Livingston, J., & Nauclér, T. (2010). Energy efficiency: A compelling global resource. McKinsey Sustainability & Resource Productivity.Google Scholar
Buyya, R., Yeo, C. S., & Venugopal, S. (2008). Market-oriented cloud computing: Vision, hype, and reality for delivering it services as computing utilities. In High Performance Computing and Communications, 2008. HPCC’08. 10th IEEE International Conference (pp. 513), IEEE.Google Scholar
Callan, M., Gourinovich, A., & Lynn, T. (2017). The global data center market. RECAP, cloud lightning, and the Irish Centre for Cloud Computing and Commerce.Google Scholar
The Climate Group (2008). SMART 2020: Enabling the low carbon economy in the information age, June 2008.Google Scholar
Cook, G. (2017). Clicking clean: who is winning the race to build a green Internet? Greenpeace International.Google Scholar
Cook, G. & Van Horn, J. (2011). How dirty is your data? A look at the energy choices that power cloud computing. Greenpeace (April).Google Scholar
Copeland, T. & Tufano, P. (2004). A real-world way to manage real options. Harvard Business Review, 82 (3): 9099.Google Scholar
Covas, M. T., Silva, C. A., & Dias, L. C. (2015). Multi-Criteria Assessment of Data Centers Environmental Sustainability. In Evaluation and Decision Models with Multiple Criteria (pp. 283309). Springer.Google Scholar
Dayarathna, M., Wen, Y., & Fan, R. (2016). Data center energy consumption modeling: A survey. IEEE Communications Surveys & Tutorials, 18(1): 732794.Google Scholar
DeepMind. (2016). DeepMind AI reduces Google data centre cooling bill by 40%. Retrieved January 18, 2018, from https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/Google Scholar
Dobbs, R., Oppenheim, J., Thompson, F., Brinkman, M., & Zornes, M. (2011). Resource revolution: Meeting the world’s energy, materials, food, and water needs. McKinsey Global Institute (MGI). www.mckinsey.com/~/media/McKinsey/Business%20Functions/Sustainability%20and%20Resource%20Productivity/Our%20Insights/Resource%20revolution/MGI_Resource_revolution_executive_summary.ashxGoogle Scholar
Economist Intelligence Unit. (2016). The Impact of Cloud. The Economist. Retrieved from http://perspectives.eiu.com/technology-innovation/impact-cloud/white-paper/impact-cloudGoogle Scholar
Forrest, W., Kaplan, J. M., & Kindler, N. (2008). Data centers: How to cut carbon emissions and costs. McKinsey on Business Technology, 14(6): 413.Google Scholar
Gallo, A. (2012). How eBay and Facebook are cleaning up data centers. Harvard Business Review Online. https://hbr.org/2012/07/how-ebay-and-facebook-are-cleaGoogle Scholar
Gao, J. & Jamidar, R. (2014). Machine learning applications for data center optimization. Google White Paper.Google Scholar
Glanz, J. (2012). Power, pollution and the internet. New York Times, September 22.Google Scholar
Govindan, S., Sivasubramaniam, A., & Urgaonkar, B. (2011). Benefits and limitations of tapping into stored energy for datacenters. ACM SIGARCH Computer Architecture News, 39: 341352.Google Scholar
Greenberg, A., Hamilton, J., Maltz, D. A., & Patel, P. (2008). The cost of a cloud: research problems in data center networks. ACM SIGCOMM Computer Communication Review, 39(1): 6873.Google Scholar
The Green Grid. (2012). Breaking New Ground on Data Center Efficiency: How eBay’s ‘Project Mercury’ Used PUE, TCO and DCMM Best Practices to Drive the End-to-End Data Center Ecosystem. Case Study.Google Scholar
Guitart, J. (2017). Toward sustainable data centers: a comprehensive energy management strategy. Computing, 99(6): 597615.Google Scholar
Hardy, Q. (2016). Google says it will run entirely on renewable energy in 2017. New York Times, December 6.Google Scholar
International Telecommunications Union (ITC). (2016). Measuring the Information Society Report. www.itu.int/en/ITU-D/Statistics/Documents/publications/misr2016/MISR2016-w4.pdfGoogle Scholar
Jin, X., Zhang, F., Vasilakos, A. V., & Liu, Z. (2016). Green data centers: A survey, perspectives, and future directions. ArXiv Preprint:1608.00687.Google Scholar
Kirby, B. & Hirst, E. (2000). Customer-specific metrics for the regulation and load-following ancillary services. ORNL/CON-474, Oak Ridge National Laboratory, Oak Ridge, TN, January.Google Scholar
Kontorinis, V., Zhang, L. E., Aksanli, B., Sampson, J., Homayoun, H., Pettis, E., … Rosing, T. S. (2012). Managing distributed ups energy for effective power capping in data centers. In Computer Architecture (ISCA), 2012 39th Annual International Symposium on (pp. 488499). IEEE.Google Scholar
Koomey, J. G., Masanet, E. R., Brown, R. E., Shehabi, A., & Nordman, B. (2011). Estimating the energy use and efficiency potential of US data centers. Proceedings of the IEEE, 99(8): 14401453.Google Scholar
Koomey, J., Masanet, E., & Shehabi, A. (2013). Characteristics of low-carbon data centres. Nature Climate Change, 3(7): 627. https://doi.org/10.1038/nclimate1786Google Scholar
Li, C., Qouneh, A., & Li, T. (2012). iSwitch: coordinating and optimizing renewable energy powered server clusters. In Computer Architecture (ISCA), 2012 39th Annual International Symposium (pp. 512523). IEEE.Google Scholar
Lisica, E. (2016). Data center sustainability: the next dimension. Evoswitch White Paper. https://evoswitch.com/wp-content/uploads/2016/12/Whitepaper_DataCenterSustainability.pdfGoogle Scholar
Masanet, E., Shehabi, A., Liang, J., Ramakrishnan, L., Ma, X., Hendrix, V., & Mantha, P. (2013). The energy efficiency potential of cloud-based software: A US case study. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US).Google Scholar
Mena, M., Musilli, J., Austin, E., Lee, J., & Vaccaro, P. (2014). Selecting a Data Center Site: Intel’s Approach. IT@Intel White Paper. http://media14.connectedsocialmedia.com/intel/02/11447/IT_Best_Practices_Data_Center_Site_Selection.pdfGoogle Scholar
Microsoft. (2015). Datacenter Sustainability. (Available from microsoft.com.)Google Scholar
Miller, J., Bird, L., Heeter, J., & Gorham, B. (2015). Renewable electricity use by the US information and communication technology (ICT) industry. National Renewable Energy Laboratory (NREL), Golden, CO (United States).Google Scholar
Miller, R. (2012). U.S. Army to Deploy Clouds, Modular Data Centers. DataCenter Knowledge. 4 April 2012: www.datacenterknowledge.com/archives/2012/04/04/u-s-army-to-deploys-clouds-modular-data-centersGoogle Scholar
Mirabile, M., Marchal, V., & Baron, R. (2017). Technical note on estimates of infrastructure investment needs: background document to the report Investing in Climate, Investing in Growth. OECD. www.oecd.org/env/cc/g20-climate/Technical-note-estimates-of-infrastructure-investment-needs.pdfGoogle Scholar
Moss, T. & Gelave, M. (2013). How much power does power Africa really need? Center for Global Development. www.cgdev.org/blog/how-much-power-does-power-africa-really-needGoogle Scholar
Natural Resource Defense Council (NRDC). (2014). Data center efficiency assessment: scaling up energy efficiency across the data center industry: evaluating key drivers and barriers. Issue Paper August 2014. www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdfGoogle Scholar
PWC. (2017). Surfing the data wave: The surge in Asia Pacific’s data centre market. PWC. Retrieved from www.pwc.com/sg/en/publications/assets/surfing-the-data-wave.pdfGoogle Scholar
Reddy, V. D., Setz, B., Rao, G. S. V., Gangadharan, G. R., & Aiello, M. (2017). Metrics for Sustainable Data Centers. IEEE Transactions on Sustainable Computing, 2(3): 290303.Google Scholar
Ristic, B., Madani, K., & Makuch, Z. (2015). The water footprint of data centers. Sustainability, 7(8): 1126011284.Google Scholar
Shehabi, A., Brown, R. E., Brown, R., Masanet, E., Nordman, B., Tschudi, B., Shehabi, A., & Chan, P. (2007). Report to congress on server and data center energy efficiency: Public law 109–431. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US).Google Scholar
Shehabi, A., Smith, S., Sartor, D., Brown, R., Herrlin, M., Koomey, J., & Lintner, W. (2016). United States Data Center Energy Usage Report. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US).Google Scholar
Stansberry, M. (2017). 2016 Data center industry survey results. Uptime Institute.Google Scholar
Steenburgh, T. J. & Okike, N. D. (2009). Verne Global: Building a green data center in Iceland.Google Scholar
US Department of Energy (DOE) (2016). United States Data Center Energy Usage Report.Google Scholar
US Environmental Protection Agency (EPA) (2007). Report to Congress on server and data center energy efficiency Public Law 109431.Google Scholar
Whitted, W. H. & Ainger, G. (2003). US 7278273B1: Modular Data Center. Google. https://patents.google.com/patent/US7278273B1/enGoogle Scholar
Yao, Y., Huang, L., Sharma, A., Golubchik, L., & Neely, M. (2012). Data centers power reduction: A two time scale approach for delay tolerant workloads. In INFOCOM, 2012 Proceedings IEEE (pp. 14311439). IEEE.Google Scholar
Zik, O. & Schapiro., A. (2016). Coal Computing: How Companies Misunderstand Their Dirty Data Centers. Lux Research, Inc White Paper. http://web.luxresearchinc.com/hubfs/White_Papers/Coal_Computing-_How_Companies_Misunderstand_Their_Dirty_Data_Centers_-_Lux_Research_White_Paper_-_February_2016.pdfGoogle Scholar
Zuckerman, J., Frejova, J., Granoff, I., & Nelson, D. (2016). Investing at Least a Trillion Dollars a Year in Clean Energy. Contributing paper for Seizing the Global Opportunity: Partnerships for Better Growth and a Better Climate. New Climate Economy, London and Washington, DC. Available at: http://newclimateeconomy.report/misc/working-papers.Google Scholar
Boehmer-Christiansen, S. and Skea, J., 1993. Acid Politics: Environmental and Energy Policies in Britain and Germany, John Wiley & Sons Ltd.Google Scholar
Academy, British, 2016. Cultures of Community Energy: International Case Studies, by Neil Simcock, Rebecca Willis and Peter Capener, at https://www.britac.ac.uk/sites/default/files/CoCE_International%20Case%20Studies_online.pdfGoogle Scholar
Hirth, L., 2017. What caused the drop in European electricity prices? A factor decomposition analysis. The Energy Journal, 39(1), 143157.Google Scholar
Agrawal, Arun (2005) Environmentality: Technologies of Government and the Making of Subjects, Durham NC, Duke University Press.Google Scholar
Colchester, Marcus, Pang, Wee Aik, Chuo, Wong Meng and Julong, Thomas (2006), Land is Life: Land Rights and Oil Palm Development in Malaysia, Bogor, West Java and Moreton-in-Marsh, Perkumpulan Sawit Watch and Forest Peoples Programme.Google Scholar
European Commission (2009) Directive (EU) 2009/30/EC of the European Parliament and of the Council of 23 April 2009.Google Scholar
European Commission (2015) Directive (EU) 2015/1513 of the European Parliament and of the Council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources, Official Journal of the European Union L 239/1–29.Google Scholar
European Union Parliament (2017) Report 20 March 2017 on palm oil and deforestation of rainforests 2016/2222(INI).Google Scholar
Greenpeace International (2013) Certifying Destruction: Why Consumer Companies Need to go Beyond the RSPO to Stop Forest Destruction, Amsterdam, Greenpeace International.Google Scholar
Hallmann, Caspar A., Sorg, Martin et al. (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS One, Article e0185809.Google Scholar
Hanbury-Tenison, Robin (2017) Finding Eden: A Journey into the Heart of Borneo, London, I B Tauris.Google Scholar
Hon, Jason and Shibata, Shozo (2013), A Review on Land Use in the Malaysian State of Sarawak, Borneo and Recommendations for Wildlife Conservation Inside Production Forest Environment, Borneo Journal of Resource Science and Technology, 3, 2235.Google Scholar
Hong, Evelyn (1987) Natives of Sarawak: Survival in Borneo’s Vanishing Forests, Pinang, Institut Masyarakat.Google Scholar
Jung, Courtney (2008) The Moral Force of Indigenous Politics: Critical Liberalism and the Zapatistas, Cambridge, Cambridge University Press.Google Scholar
Latour, Bruno (2004) The Politics of Nature: How to Bring the Sciences into Democracy, Cambridge MA, Harvard University Press.Google Scholar
Martinez-Alier, Joan (2003) The Environmentalism of the Poor: A Study of Ecological Conflicts and Valuation, Cheltenham, Edward Elgar.Google Scholar
Noble, David F (1999) The Religion of Technology: The Divinity of Man and the Spirit of Invention, Harmondsworth, Penguin.Google Scholar
Nordhaus, William (2008) A Question of Balance: Weighing the Options on Global Warming Politics. New Haven, Yale University Press.Google Scholar
Northcott, Michael (2007) A Moral Climate: The Ethics of Global Warming London, Darton, Longman and Todd.Google Scholar
Northcott, Michael (2013) A Political Theology of Climate Change Grand Rapids, MI, Eerdmans.Google Scholar
Pesqueira, L and Glasbergen, P (2013) Playing the politics of scale: Oxfam’s intervention in the Roundtable on Sustainable Palm Oil, Geoforum 45, 296304.Google Scholar
Posner, Eric A. and Sunstein, Cass R (2010) ‘Justice and climate change: the unpersuasive case for per capita allocations of emissions rights’ in Aldy, Joseph E. and Stavins, Robert N. (eds.) Post-Kyoto International Climate Policy: International Architectures for Agreement Cambridge, Cambridge University Press, 343371.Google Scholar
Rappaport, Roy (1967) Pigs for the Ancestors: Ritual in the Ecology of a New Guinea People, New Haven, Yale University Press.Google Scholar
Ruysschaert, Denis and Salles, Denis (2014), Towards global voluntary standards: Questioning the effectiveness in attaining conservation goals: The case of the Roundtable on Sustainable Palm Oil (RSPO), Ecological Economics 107, 438467.Google Scholar
Schouten, G and Glasbergen, P (2011), Creating legitimacy in global private governance: The case of the Roundtable on Sustainable Palm Oil, Ecological Economics, 70, 18911899.Google Scholar
Shirani, Fiona, Butler, Catherine, Henwood, Karen, Parkhill, Karen & Pidgeon, Nick (2013), Disconnected futures: exploring notions of ethical responsibility in energy practices, Local Environment 18, 455468.Google Scholar
Straumann, Lukas (2014) Money Logging: On the Trail of the Asian Timber Mafia, Zurich, Bergli Books.Google Scholar
David, Swinbanks (1997), Forest fires cause pollution crisis in Asia, Nature 389: 321.Google Scholar
Transport and the Environment (2016) ‘Cars and trucks burn almost half of palm oil used in Europe’, Briefing by Transport and the Environment, www.transportenvironment.org/sites/te/files/publications/2016_05_TE_EU_vegetable_oil_biodiesel_market_FINAL_0_0.pdfGoogle Scholar
Valin, H., Peters, D., van den Berg, M., Frank, S., Havlík, P., Forsell, N., & Hamelinck, C. (2015). The land use change impact of biofuels consumed in the EU Quantification of area and greenhouse gas impacts. Study commissioned by the European Commission. 261. Utrecht, Netherlands: ECOFYS Netherlands B.V. Retrieved from https://ec.europa. eu/energy/sites/ener/ les/documents/ Final%20Report_GLOBIOM_publication.pdfGoogle Scholar
Wallace, Alfred Russell (1855) On the law which has regulated the introduction of new species. Annals and Magazine of Natural History, 2nd Series, 16, 184196.Google Scholar
Andnerson, Zachary R. et al. (2016) ‘Green growth rhetoric versus reality: Insights. from Indonesia.’ Global Environmental Change 38: 3640.Google Scholar
Aksanli, B., Pettis, E., & Rosing, T. (2013). Architecting efficient peak power shaving using batteries in data centers. In Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), 2013 IEEE 21st International Symposium on (pp. 242253). IEEE.Google Scholar
An Bord Paeleala (ABP). (2016). Inspectors Report. 07.VA0020, www.pleanala.ie/news/245518-VA0020/RVA0020.pdfGoogle Scholar
Andrae, A. S. G., & Elder, T. (2015). On Global Electricity Usage of Communication Technology: Trends to 2030. In Challenges, 6(1), 117157.Google Scholar
Ansar, A., Flyvbjerg, B., Budzier, A, & Lunn, D. (2014). Should We Build More Large Dams? The Actual Costs of Hydropower Megaproject Development. Energy Policy, March, pp. 114, DOI:10.1016/j.enpol.2013.10.069.http://bit.ly/1ekyL7Q.Google Scholar
Ashenfelter, R., Hodges, K., Luna, A., & Sterman, J. (2014). MIT Sloan School of Management.Google Scholar
Barroso, L. A., Clidaras, J., & Hölzle, U. (2013). The datacenter as a computer: An introduction to the design of warehouse-scale machines. Synthesis Lectures on Computer Architecture, 8(3), 1154.Google Scholar
Belady, C., Rawson, A., Pfleuger, J., & Cader, T. (2008). Green grid data center power efficiency metrics: PUE and DCIE. Technical report, Green Grid.Google Scholar
Bouton, S., Creyts, J., Kiely, T., Livingston, J., & Nauclér, T. (2010). Energy efficiency: A compelling global resource. McKinsey Sustainability & Resource Productivity.Google Scholar
Buyya, R., Yeo, C. S., & Venugopal, S. (2008). Market-oriented cloud computing: Vision, hype, and reality for delivering it services as computing utilities. In HPCC’08. 10th IEEE International Conference on High Performance Computing and Communications (pp. 513). IEEE.Google Scholar
Callan, M., Gourinovich, A., & Lynn, T. (2017). The Global Data Center Market. RECAP, Cloud Lightning, and The Irish Centre for Cloud Computing and Commerce.Google Scholar
The Climate Group (2008). SMART 2020: Enabling the low carbon economy in the information age, June 2008.Google Scholar
Cook, G. (2017). Clicking Clean: Who Is Winning The Race To Build A Green Internet? Greenpeace International.Google Scholar
Cook, G. & Van Horn, J. (2011). How dirty is your data? A look at the energy choices that power cloud computing. Greenpeace (April 2011).Google Scholar
Copeland, T. & Tufano, P. (2004). A real-world way to manage real options. Harvard Business Review. 82 (3), 90–9.Google Scholar
Covas, M. T., Silva, C. A., & Dias, L. C. (2015). Multi-Criteria Assessment of Data Centers Environmental Sustainability. In Evaluation and Decision Models with Multiple Criteria (pp. 283309). Springer.Google Scholar
Dayarathna, M., Wen, Y., & Fan, R. (2016). Data center energy consumption modeling: A survey. IEEE Communications Surveys & Tutorials, 18 (1), 732794.Google Scholar
DeepMind. (2016). DeepMind AI Reduces Google Data Centre Cooling Bill by 40%. (n.d.). Retrieved January 18, 2018, from https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/Google Scholar
Dobbs, R., Oppenheim, J., Thompson, F., Brinkman, M., & Zornes, M. (2011). Resource Revolution: Meeting the world’s energy, materials, food, and water needs. McKinsey Global Institute (MGI). www.mckinsey.com/~/media/McKinsey/Business%20Functions/Sustainability%20and%20Resource%20Productivity/Our%20Insights/Resource%20revolution/MGI_Resource_revolution_executive_summary.ashxGoogle Scholar
Economist Intelligence Unit. (2016). The Impact of Cloud. The Economist. Retrieved from http://perspectives.eiu.com/technology-innovation/impact-cloud/white-paper/impact-cloudGoogle Scholar
Final Report for S-Lab Project with Facebook, Inc. MIT Sloan School of Management. 15.915 S-Lab Draft Final Report.Google Scholar
Forrest, W., Kaplan, J. M., & Kindler, N. (2008). Data centers: How to cut carbon emissions and costs. McKinsey on Business Technology, 14(6), 413.Google Scholar
Gallo, A. (2012). How eBay and Facebook are Cleaning Up Data Centers. Harvard Business Review Online. https://hbr.org/2012/07/how-ebay-and-facebook-are-cleaGoogle Scholar
Gao, J. & Jamidar, R. (2014). Machine learning applications for data center optimization. Google White Paper.Google Scholar
Glanz, J. (2012). Power, pollution and the internet. New York Times, 22 September.Google Scholar
Govindan, S., Sivasubramaniam, A., & Urgaonkar, B. (2011). Benefits and limitations of tapping into stored energy for datacenters. In ACM SIGARCH Computer Architecture News (Vol.39, pp. 341352). ACM.Google Scholar
Greenberg, A., Hamilton, J., Maltz, D. A., & Patel, P. (2008). The cost of a cloud: research problems in data center networks. ACM SIGCOMM Computer Communication Review, 39(1), 6873.Google Scholar
The Green Grid. (2012). Breaking New Ground on Data Center Efficiency: How eBay’s ‘Project Mercury’ Used PUE, TCO and DCMM Best Practices to Drive the End-to-End Data Center Ecosystem. Case Study. www.poweranalytics.com/pa_articles/pdf/Case_Study_1-Breaking_New_Ground_on_Data_Center_Efficiency.pdfGoogle Scholar
Guitart, J. (2017). Toward sustainable data centers: a comprehensive energy management strategy. Computing, 99(6), 597615.Google Scholar
Hardy, Q. (2016). Google says it will run entirely on renewable energy in 2017. New York Times. 6 December 2016.Google Scholar
International Telecommunications Union (ITC). (2016). Measuring the Information Society Report. www.itu.int/en/ITU-D/Statistics/Documents/publications/misr2016/MISR2016-w4.pdfGoogle Scholar
Jin, X., Zhang, F., Vasilakos, A. V., & Liu, Z. (2016). Green data centers: A survey, perspectives, and future directions. ArXiv Preprint ArXiv:1608.00687.Google Scholar
Kirby, B. & Hirst, E. (2000). Customer-specific metrics for the regulation and load-following ancillary services. ORNL/CON-474, Oak Ridge National Laboratory, Oak Ridge, TN, January.Google Scholar
Kontorinis, V., Zhang, L. E., Aksanli, B., Sampson, J., Homayoun, H., Pettis, E., … Rosing, T. S. (2012). Managing distributed ups energy for effective power capping in data centers. In Computer Architecture (ISCA), 2012 39th Annual International Symposium on (pp. 488499). IEEE.Google Scholar
Koomey, J. G., Masanet, E. R., Brown, R. E., Shehabi, A., & Nordman, B. (2011). Estimating the energy use and efficiency potential of US data centers. Proceedings of the IEEE, 99(8), 14401453.Google Scholar
Koomey, J., Masanet, E., & Shehabi, A. (2013). Characteristics of low-carbon data centres. Nature Climate Change, 3(7), 627. https://doi.org/10.1038/nclimate1786Google Scholar
Li, C., Qouneh, A., & Li, T. (2012). iSwitch: coordinating and optimizing renewable energy powered server clusters. In 2012 39th Annual International Symposium on Computer Architecture (ISCA) (pp. 512523). IEEE.Google Scholar
Lisica, E. 2016. Data Center Sustainability: The Next Dimension. Evoswitch White Paper. https://evoswitch.com/wp-content/uploads/2016/12/Whitepaper_DataCenterSustainability.pdfGoogle Scholar
Masanet, E., Shehabi, A., Liang, J., Ramakrishnan, L., Ma, X., Hendrix, V., & Mantha, P. (2013). The energy efficiency potential of cloud-based software: A us case study. Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States).Google Scholar
Mena, M., Musilli, J., Austin, E., Lee, J., & Vaccaro, P. (2014). Selecting a Data Center Site: Intel’s Approach. IT@Intel White Paper. http://media14.connectedsocialmedia.com/intel/02/11447/IT_Best_Practices_Data_Center_Site_Selection.pdfGoogle Scholar
Miller, J., Bird, L., Heeter, J., & Gorham, B. (2015). Renewable electricity use by the US information and communication technology (ICT) industry. National Renewable Energy Laboratory (NREL), Golden, CO (United States).Google Scholar
Miller, R. (2012). U.S. Army to Deploy Clouds, Modular Data Centers. DataCenter Knowledge. 4 April 2012: www.datacenterknowledge.com/archives/2012/04/04/u-s-army-to-deploys-clouds-modular-data-centersGoogle Scholar
Mirabile, M., Marchal, V., & Baron, R. (2017). Technical note on estimates of infrastructure investment needs: Background document to the report Investing in Climate, Investing in Growth. OECD. www.oecd.org/env/cc/g20-climate/Technical-note-estimates-of-infrastructure-investment-needs.pdfGoogle Scholar
Moss, T. & Gelave, M. (2013). How Much Power Does Power Africa Really Need? Center for Global Development. www.cgdev.org/blog/how-much-power-does-power-africa-really-needGoogle Scholar
Natural Resource Defense Council (NRDC). (2014). Data Center Efficiency Assessment: Scaling Up Energy Efficiency Across the Data Center Industry: Evaluating Key Drivers and Barrier. Issue Paper August 2014. www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdfGoogle Scholar
Open Compute Project (OCP). (2013). Open Compute Project: Overview. AMD White Paper: AMD Open 3.0. http://contentz.mkt6303.com/lp/17305/85018/OpenComputeOverview-WP-FINAL-051713.pdfGoogle Scholar
PWC. (2017). Surfing the data wave: The surge in Asia Pacific’s data centre market. PWC. Retrieved from www.pwc.com/sg/en/publications/assets/surfing-the-data-wave.pdfGoogle Scholar
Reddy, V. D., Setz, B., Rao, G. S. V., Gangadharan, G. R., & Aiello, M. (2017). Metrics for Sustainable Data Centers. IEEE Transactions on Sustainable Computing.Google Scholar
Ristic, B., Madani, K., & Makuch, Z. (2015). The water footprint of data centers. Sustainability, 7(8), 1126011284.Google Scholar
Shehabi, A., Brown, R. E., Brown, R., Masanet, E., Nordman, B., Tschudi, B., Shehabi, A., & Chan, P. (2007). Report to congress on server and data center energy efficiency: Public law 109–431. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US).Google Scholar
Shehabi, A., Smith, S., Sartor, D., Brown, R., Herrlin, M., Koomey, J., & Lintner, W. (2016). United States data center energy usage report.Google Scholar
Stansberry, M. (2017). 2016 Data Center Industry Survey Results. Uptime Institute.Google Scholar
Steenburgh, T. J. & Okike, N. D. (2009). Verne Global: Building a Green Data Center in Iceland.Google Scholar
US Department of Energy (DOE). (2016). United States Data Center Energy Usage Report. https://eta.lbl.gov/publications/united-states-data-centerenergy/Google Scholar
Environmental Protection Agency (EPA). (2007). Report to Congress on Server and Data Center Energy Efficiency Public Law 109431.Google Scholar
Whitted, W. H. & Ainger, G. 2003. US 7278273B1: Modular Data Center. Google. https://patents.google.com/patent/US7278273B1/enGoogle Scholar
Yao, Y., Huang, L., Sharma, A., Golubchik, L., & Neely, M. (2012). Data centers power reduction: A two time scale approach for delay tolerant workloads. In INFOCOM, 2012 Proceedings IEEE (pp. 14311439). IEEE.Google Scholar
Zik, O. & Schapiro., A. (2016). Coal Computing: How Companies Misunderstand Their Dirty Data Centers. Lux Research, Inc White Paper. http://web.luxresearchinc.com/hubfs/White_Papers/Coal_Computing-_How_Companies_Misunderstand_Their_Dirty_Data_Centers_-_Lux_Research_White_Paper_-_February_2016.pdfGoogle Scholar
Zuckerman, J., Frejova, J., Granoff, I., & Nelson, D. (2016). Investing at Least a Trillion Dollars a Year in Clean Energy. Contributing paper for Seizing the Global Opportunity: Partnerships for Better Growth and a Better Climate. New Climate Economy, London and Washington, DC. http://newclimateeconomy.report/workingpapers/wp-content/uploads/sites/5/2016/05/NCE_CleanEnergy_financing_final_web-Copy.pdfGoogle Scholar
Asia Sentinel (2010). Sarawak’s White-Haired Rajah, Asia Sentinel, 10 August. https://www.asiasentinel.com/society/sarawaks-white-haired-rajah/Google Scholar
Cuff, M. (2016). Palm oil giant IOI Group regains RSPO sustainability certification, The Guardian, 8 August. https://www.theguardian.com/environment/2016/aug/08/palm-oil-giant-ioi-group-regains-rspo-sustainability-certificationGoogle Scholar
Gomez, E. T., & Jomo, K. S. (1999). Malaysia’s Political Economy: Politics, Patronage and Profits. Cambridge University Press.Google Scholar
Haraway, D. (2015). Anthropocene, Capitalocene, Plantationocene, Chthulucene: Making Kin. Environmental Humanities, 6(1): 159165Google Scholar
Harwell, E., Farah, D., & Blundell, A. (2011). Forests, Fragility, and Conflict: Overview and Case Studies. Washington, DC: World BankGoogle Scholar
Purdy, J. (2015). After Nature: A Politics for the Anthropocene. Harvard University Press.Google Scholar
Robinson, J. A., Torvik, R., & Verdier, T. (2006). Political foundations of the resource curse. Journal of Development Economics, 79(2): 447468.Google Scholar
Ross, M. L. (1999). The political economy of the resource curse. World Politics, 51(2): 297322.Google Scholar
Ross, M. L. (2015). What have we learned about the resource curse? Annual Review of Political Science, 18, 239259.Google Scholar
Runciman, S. The White Rajah: A History of Sarawak from 1841 to 1946. Cambridge University Press, 1960.Google Scholar
Sovacool, B. K., Walter, G., Van de Graaf, T., & Andrews, N. (2016). Energy governance, transnational rules, and the resource curse: exploring the effectiveness of the Extractive Industries Transparency Initiative (EITI). World Development, 83, 179192.Google Scholar
Bruni, Luigino and Zamagni, Stefano (2007). Civil Economy: Efficiency, Equity, Public Happiness. Bern: Peter Lang.Google Scholar
Bush, President George, W. (2006). ‘State of the Union’ address, 31 January 2006, https://georgewbush-whitehouse.archives.gov/stateoftheunion/2006/, accessed 9 October 2017.Google Scholar
Chaplin, Jonathan (2015). ‘Laudato Si’: Structural Causes of the Ecological Crisis’, Comment (24 September and 1 October), www.cardus.ca/comment/article/4697/laudato-si-structural-causes-of-the-ecological-crisis/ and www.cardus.ca/comment/article/4715/laudato-si-structural-causes-of-the-ecological-crisis-part-ii/, accessed 9 October 2017.Google Scholar
GCCM (Global Catholic Climate Movement) (2017). ‘Laudato Si’ Pledge Launched to Mobilize 1 Million Catholics on Climate Change’, https://catholicclimatemovement.global/pr-laudato-si-pledge/, accessed 9 October 2017.Google Scholar
Geary, Ian and Pabst, Adrian (2015). Blue Labour: Forging a New Politics. London: I. B. Tauris.Google Scholar
Guardini, Romano (2001 [1956]). The End of the Modern World. Wilmington, Delaware: ISI Books.Google Scholar
McKibben, Bill (2015). ‘The Pope and the Planet’. New York Review of Books, 13 August, www.nybooks.com/articles/2015/08/13/pope-and-planet/, accessed 9 October 2017.Google Scholar
Pentin, Edward (2015). ‘Full Text and Guidance Map for Pope Francis’ Encyclical ‘Laudato Si’’, National Catholic Register, 17 June, www.ncregister.com/blog/edward-pentin/full-text-of-laudato-si-and-guidance-notes, accessed 9 October 2017.Google Scholar
Polanyi, Karl (2001 [1944]). The Great Transformation: The Political and Economic Origins of Our Times. Boston: Beacon Press.Google Scholar
Francis, Pope (2015). Laudato Si’: On Care for our Common Home, http://w2.vatican.va/content/francesco/en/encyclicals/documents/papa-francesco_20150524_enciclica-laudato-si.html, accessed 15 April 2016.Google Scholar
Paull, Pope John II (2001). General Audience 17 January, http://w2.vatican.va/content/john-paul-ii/en/audiences/2001/documents/hf_jp-ii_aud_20010117.html, accessed 9 October 2017.Google Scholar
Reno, R.R. (2015). ‘The Weakness of Laudato Si’. First Things, 1 July, www.firstthings.com/web-exclusives/2015/07/the-weakness-of-laudato-si, accessed 9 October 2017.Google Scholar
Schuurman, Egbert (1980), Technology and the Future: A Philosophical Challenge. Toronto: Wedge.Google Scholar
Ungerleider, Neal (2017). ‘Inside the Vatican-Blessed Tech Accelerator Tackling Climate Change’, Fast Company, 6 June, www.fastcompany.com/40424655/inside-the-vaticans-tech-accelerator-thats-targeting-climate-change, accessed 9 October 2017.Google Scholar
Wamsley, Laurel (2017). ‘In Surprise TED Talk, Pope Francis Asks the Powerful for “Revolution of Tenderness”’, NPR 17 April, www.npr.org/sections/thetwo-way/2017/04/26/525699847/in-surprise-ted-talk-pope-francis-asks-the-powerful-for-revolution-of-tenderness, accessed 9 October 2017.Google Scholar
Weigel, George (2015). ‘The Pope’s Encyclical, At Heart, Is about Us, Not Trees and Snail Darters’. National Review, 18 June, www.nationalreview.com/article/419933/popes-encyclical-heart-about-us-not-trees-and-snail-darters-george-weigel, accessed 9 October 2017.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×