Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T04:45:12.592Z Has data issue: false hasContentIssue false

3 - Mass Transfer

Published online by Cambridge University Press:  12 May 2020

Laurence R. Weatherley
Affiliation:
University of Kansas
Get access

Summary

Enhancement of mass transfer is one the most important factors in the intensification of liquid–liquid processes. The fundamentals of interphase mass transfer for single drops are reviewed, with summary of the important correlations developed to date. The cases of single oscillating drops and of droplets experiencing circulation are discussed with presentation of important correlations for mass-transfer coefficients. The discussion of single drops is extended to describe a quantitative approach to describing mass-transfer rates for liquid–liquid systems based on solution of the Navier–Stokes equations, continuity equations, and Fick’s law. The phenomena of time-dependent mass transfer, the role of interfacial instability, and Marangoni convection are described with presentation of the controlling equations. Comparisons between experimental mass-transfer data and predictions are shown. More complex cases involving swarming drops are considered, with a review of correlations for the calculation of mass-transfer rates in various continuous column contactors, including spray columns, pulsed packed columns, pulsed plate columns, and rotating disk columns.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agble, D. and Mendes-Tatsis, M. A.(2000). The effect of surfactants on interfacial mass transfer in binary liquid–liquid systems. International Journal of Heat and Mass Transfer, 43(6), 10251034.Google Scholar
Agble, D. and Mendes-Tatsis, M. A. (2001). The prediction of Marangoni convection in binary liquid–liquid systems with added surfactants. International Journal of Heat and Mass Transfer, 44, 14391449.Google Scholar
Albernaz, D. L., Do-Quang, M., Hermanson, J. C., and Amberg, G. (2017). Droplet deformation and heat transfer in isotropic turbulence. Journal of Fluid Mechanics, 820, 6185.CrossRefGoogle Scholar
Amanabadi, M., Bahmanyar, H., Zarkeshan, Z., and Mousavian, M. A. (2009). Prediction of effective diffusion coefficient in rotating disc columns and application in design. Chinese Journal of Chemical Engineering, 17(3), 366372.Google Scholar
Angelo, J. B., Lightfoot, E. N., and Howard, D. W. (1966). Generalisation of the penetration theory for surface stretch: application to forming and oscillating drops. American Institute of Chemical Engineers Journal, 12(4), 751760.Google Scholar
Bakker, C. A., van Buytenen, B., and Beek, W. J. (1966). Interfacial phenomena and mass transfer. Chemical Engineering Science, 21, 10391046.Google Scholar
Bozzi, L. A., Feng, J. Q., Scott, T. C., and Pearlstein, A. J. (1997). Steady axisymmetric motion of deformable drops falling or rising through a homoviscous fluid in a tube at intermediate Reynolds number. Journal of Fluid Mechanics, 336, 132.Google Scholar
Brackbill, J. U., Kothe, D. B., Zemach, C., (1992). A continuum method for modeling surface tension. Journal of Computational Physics 100(2), 335354.CrossRefGoogle Scholar
Brauer, H. (1971). Stoffaustausch einschliesslich chemischer Reaktionen. Aarau, Switzerland: Verlag Sauerlander.Google Scholar
Brodkorb, M.J., Bosse, D., von Reden, C., Gorak, A., and Slater, M.J. (2003). Single drop mass transfer in ternary and quaternary liquid/liquid extraction systems. Chemical Engineering and Processing, 42, 825-840.Google Scholar
Chen, J., Wang, Z., Yang, C. and Mao, Z. (2015). Numerical simulation of the solute-induced Marangoni effect with the semi-Lagrangian advection scheme. Chemical Engineering and Technology, 38(1), 155163.CrossRefGoogle Scholar
Clift, R., Grace, J. R. and Weber, M. E., (1978). Bubbles, Drops and Particles. New York: Academic Press.Google Scholar
Dandy, D. S. and Leal, L. G. (1989). Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds numbers. Journal of Fluid Mechanics, 208(1), 161192.Google Scholar
Elzinga, E. R. and Banchero, J. T. (1959). Film coefficients for heat transfer to liquid drops. Chemical Engineering Progress Symposium Series, 55(29), 149161.Google Scholar
Foote, G. B. (1969). On the internal circulation and shape of large rain drops. Journal of Atmospheric Science, 26, 179181.2.0.CO;2>CrossRefGoogle Scholar
Gangu, A. S. (2013). Towards in situ extraction of fine chemicals and bio-renewable fuels from fermentation broths using Ionic liquids and the intensification of contacting by the application of electric fields. Ph.D. thesis, University of Kansas.Google Scholar
Garner, F. H. and Skelland, A. H. P. (1955). Some factors affecting droplet behavior in liquid–liquid systems. Chemical Engineering Science, 4(4), 149157.Google Scholar
Garner, F. H. and Tayeban, M. (1960). The importance of the wake in mass transfer from both continuous and dispersed phase systems, I. Anales de la Real Sociedad Española de Química, 56, 479490.Google Scholar
Garner, F. H., Foord, A., and Tayeban, M. (1959). Mass transfer from circulating drops. Journal of Applied Chemistry, 9, 315323.Google Scholar
Ghalehchian, J. S. and Slater, M. J. (1999). A possible approach to improving rotating disc contactor design, accounting for drop breakage and mass transfer with contamination. The Chemical Engineering Journal, 75(2), 131144.Google Scholar
Golovin, A. A.(1990). The onset of the interracial instability of drops during extraction. Institution of Chemical Engineers Symposium Series, 119, 327.Google Scholar
Golovin, A. A. (1991). Models of mass transfer in the presence of inter-phase mass transfer. Theoretical Foundations of Chemical Engineering, 24(5), 388403.Google Scholar
Grace, J. R., Wairegi, T., and Nguyen, T. H. (1976). Shapes and velocities of single drops and bubbles moving freely through immiscible liquids. Transactions of the Institution of Chemical Engineers, 54, 167.Google Scholar
Grober, H. (1925). Die Erwarmung und Abkuhlung einfacher geometrischer Korper (The heating and cooling of simpler, geometric matters). Zeitschrift Des Vereines Deutscher Ingenieure, 69, 705711.Google Scholar
Hadamard, J. (1911). Mouvement permanent lent d’une sphe`re liquide et visqueuse dans un liquide visqueux. Comptes Rendus de l'Académie des Sciences, 152, 17351738.Google Scholar
Handlos, A. E. and Baron, T. (1957). Mass and heat transfer from drops in liquid–liquid extraction. American Institute of Chemical Engineers Journal, 3, 127136.Google Scholar
Haywood, R. J., Renksizbulut, M., and Raithby, G. D. (1994). Transient deformation and evaporation of droplets at intermediate Reynolds numbers. International Journal of Heat and Mass Transfer, 37, 14011409.Google Scholar
Heertjes, P. M., Holve, W. A., and Talsma, H. (1954). Mass transfer between isobutanol and water in a spray column. Chemical Engineering Science, 3, 122142.Google Scholar
Hemmati, A. R., Torab-Mostaedi, M., and Asadollahzadeh, M. (2015). Mass transfer coefficients in a Kühni extraction column. Chemical Engineering Research and Design, 93, 747754.CrossRefGoogle Scholar
Hemmati, A. R., Shirvani, M., Torab-Mostaedi, M., and Ghaemi, A. (2016). Mass transfer coefficients in a perforated rotating disc contactor (PRDC). Chemical Engineering and Processing, 100, 1925.Google Scholar
Hu, S. and Kintner, R. C. (1955). The fall of single drops through water. American Institute of Chemical Engineers Journal, 1(1), 4248.CrossRefGoogle Scholar
Ihme, F., Schmidtt, H., and Brauer, H. (1972). Theoretical investigation of the flow around and mass transfer to spheres. Chemie Ingenieur Technik, 44(5), 306313.Google Scholar
Johnson, A. I. and Hamielec, A. E. (1960). Mass transfer inside drops. American Institute of Chemical Engineers Journal, 6(1), 145149.CrossRefGoogle Scholar
Johnson, A. I., Hamielec, A. E., Ward, D., and Golding, A. (1958). End effect corrections in heat and mass transfer studies. The Canadian Journal of Chemical Engineering, October, 221–227.Google Scholar
Klee, A. J. and Treybal, R. E. (1956). Rate of rise or fall of liquid droplets. American Institute of Chemical Engineers Journal, 2(4), 444447.CrossRefGoogle Scholar
Kronig, R. and Brink, J. C. (1950). On the theory of extraction from falling drops. Applied Scientific Research Section A – Mechanics, Heat, Chemical Engineering, Mathematical Methods, 2(2), 142154.Google Scholar
Kumar, A. and Hartland, S. (1999). Correlations for prediction of mass transfer coefficients in single drop systems and liquid–liquid extraction columns. Transactions of the Institution of Chemical Engineers, 77(A), 372384.Google Scholar
Lewis, J. B. and Pratt, H. R. C. (1953). Oscillating droplets. Nature, 171(4365), 11551156.Google Scholar
Linde, H. and Schwarz, E. (1961). Untersuchungen zur Charakteristick der freien Grenzflächenkonvektion beim Stoffübergang an fluiden Grenzflächen. Mber. Deutschen Akademie Wissenschaften Berlin, 3, 554.Google Scholar
Linde, H. and Schwarz, E. (1964). Über großräumige Rollzellen der freien Grenzflächenkonvektion. Mber. Deutschen Akademie Wissenschaften Berlin, 7, 330.Google Scholar
Linde, H. and Shert, B. (1965). Schlierenoptischer Nachweis der Marangoni-Instabilität bei der Tropfenbildung. Mber. Deutschen Akademie Wissenschaften Berlin, 7, 341348.Google Scholar
Lochiel, A. C. and Calderbank, P. H. (1964). Mass transfer in the continuous phase around axisymmetric bodies of revolution. Chemical Engineering Science, 19, 471484.Google Scholar
Marangoni, C. (1869). Sull’espansione delle goccie d’un liquido galleggianti sulla superficie di altro liquido (On the expansion of a droplet of a liquid floating on the surface of another liquid). Tipographia dei fratelli Fusi, Pavia.Google Scholar
Marangoni, C. (1871). Über die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderenAnn. Annalen der Physik (Leipzig), 143, 337354.Google Scholar
Mendes-Tatsis, M. A. and Agble, D. (2000). The effect of surfactants on Marangoni convection in the isobutanol/water system. Journal of Non-Equilibrium Thermodynamics, 25, 239249.Google Scholar
Modigell, M. (1981). Untersuchung der Stoffübertragung zwischen zwei Flussigkeiten unter Berüksichtigung von Gernzflächenphänomener, Dissertation, RWTH Aachen.Google Scholar
Nakache, E., Duperyrat, M., and Vignes-Adler, M. (1983). Experimental and theoretical study of an interfacial instability at some oil-water interfaces involving a surface-active agent: I. Physicochemcial description and outlines for a theoretical approach. Journal of Colloid and Interface Science, 94(1), 187200.Google Scholar
Newman, A. B. (1931). The drying of porous solids: diffusion and surface emission equations. Transactions of the American Institute of Chemical Engineers, 27, 203220.Google Scholar
Orell, A. and Westwater, J. W. (1961). Natural convection cells accompanying liquid–liquid extraction. Chemical Engineering Science, 16, 127.Google Scholar
Orell, A. and Westwater, J. W. (1962). Spontaneous interfacial cellular convection accompanying mass transfer: ethylene glycol-acetic acid-ethyl acetate. American Institute of Chemical Engineers Journal, 8, 350356.Google Scholar
Perez De Ortiz, E. S. and Sawistowski, H. (1973a). Interfacial stability of binary liquid–liquid systems I. Stability analysis. Chemical Engineering Science, 28, 20512062.Google Scholar
Perez De Ortiz, E. S. and Sawistowski, H. (1973b). Interfacial stability of binary liquid–liquid systems II. Stability behaviour of selected systems. Chemical Engineering Science, 28, 20632069.CrossRefGoogle Scholar
Petera, J. and Weatherley, L. R. (2001). Modeling of mass transfer from falling droplets. Chemical Engineering Science, 56, 49294947.Google Scholar
Petera, J., Weatherley, L. R., Rooney, D., and Kaminski, K. (2009). A finite element model of enzymatically catalyzed hydrolysis in an electrostatic spray reactor. Computers and Chemical Engineering, 33, 144161.Google Scholar
Petrov, A. G. (1988). Internal circulation and deformation of viscous drops. Vestnik Moskovskowo Universiteta Mekhanika, 43, 8588.Google Scholar
Pratt, H. R. C. and Stevens, G. W. (1992). Selection, design, pilot-testing and scale-up of extraction equipment. In Thornton, J. D., ed., Science & Practice of Liquid–Liquid Extraction, Oxford: Clarendon Press, pp. 492591.Google Scholar
Qiu, J. (2010). Intensification of liquid–liquid contacting processes. Ph.D. thesis. University of Kansas.Google Scholar
Quincke, G. H. (1888). Annalen der Physik und Chemie, 7, 35.Google Scholar
Rose, P. M. and Kintner, R. C.(1966). Mass transfer from large oscillating drops. American Institute of Chemical Engineers Journal, 12(3), 530534.Google Scholar
Rybczynski, W. (1911). Uber die fortschreitende Bewegung einer ussigen Kugel in einem za¨hen Medium. Bulletin International de l'Académie des Sciences de Cracovie, Series A, 40–46.Google Scholar
Saboni, A., Gourdon, C., and Chesters, A. (1993). The influence of mass transfer on coalescence in liquid–liquid systems. In: Logsdail, D. H. and Slater, M. J., eds., Solvent Extraction in the Process Industries, Vol. 1. Proceedings of ISEC’93, London: SCI. 506513.Google Scholar
Sawistowski, H. (1971). In Hanson, C., ed., Recent Advances in Liquid–Liquid Extraction, Vol. 1. Oxford: Pergamon Press, pp. 293365.Google Scholar
Sawistowski, H. (1973). Surface-tension-induced interfacial convection and its effect on rates of mass-transfer. Chemie Ingenieur Technik, 45(18), 10931098.CrossRefGoogle Scholar
Sawistowski, H. (1981). Interfacial convection. Berichte der Bunsengesellschaft für Physikalische Chemie., 85, 905909.Google Scholar
Scheele, G. F. and Meister, B. J. (1968). Drop formation at low velocities in liquid–liquid systems: prediction of drop volume. American Institute of Chemical Engineers Journal, 14(1), 915.Google Scholar
Schott, R. and Pfennig, A. (2004). Modelling of mass-transfer induced instabilities at liquid–liquid interfaces based on molecular simulations. Molecular Physics, 102, 331339.CrossRefGoogle Scholar
Schroeder, R. R. and Kintner, R. C. (1965). Oscillations of drops falling in a liquid field. American Institute of Chemical Engineers Journal, 11, 58.Google Scholar
Skelland, A. H. P. and Wellek, R. M. (1964). Resistance to mass transfer inside droplets. AIChE Journal, 10, 491496.Google Scholar
Slater, M. J. (1994). Rate coefficients in liquid–liquid extraction systems. In Godfrey, J. C. and Slater, M. J., eds., Liquid–Liquid Extraction Equipment. Chichester, UK: Wiley, 4594.Google Scholar
Slavtchev, S., Hennenberg, M., Legros, J.-C., and Lebon, G. (1998). Stationary solutal Marangoni instability in a two-layer system. Journal of Colloid and Interface Science, 203, 354368.Google Scholar
Steiner, L. (1986). Mass-transfer rates from single drops and drop swarms. Chemical Engineering Science, 41(8), 19791986.Google Scholar
Sternling, C. V. and Scriven, L. E. (1959). Interfacial turbulence: hydrodynamic instability and the Marangoni effect. American Institute of Chemical Engineers Journal, 5(4), 514523.CrossRefGoogle Scholar
Thomson, J. (1855). On certain curious motions at the surfaces of wine and other alcoholic liquors. Philosophical Magazine (London, Edinburgh, Dublin), 10(67), 330333.Google Scholar
Thorsen, G. and Terjesen, S. G. (1962). On the mechanism of mass transfer in liquid–liquid extraction. Chemical Engineering Science, 17, 137148.Google Scholar
Torab-Mostaedi, M. and Safdari, J. (2009). Prediction of mass transfer coefficients in a pulsed packed extraction column using effective diffusivity. Brazilian Journal of Chemical Engineering, 26(4), 685694.Google Scholar
Torab-Mostaedi, M., Safdari, J., Moosavian, M. A., and Maragheh, M. G. (2009). Stage efficiency of Hanson mixer-settler extraction column. Chemical Engineering and Processing, 48, 224228.Google Scholar
Torab-Mostaedi, M., Safdari, J., and Ghaemi, A. (2010). Mass transfer coefficients in pulsed perforated-plate extraction columns. Brazilian Journal of Chemical Engineering, 27(2), 243251.Google Scholar
Tsukada, T., Hozawa, M., Imaishi, N., and Fujinawa, K. (1984). Computer simulations of deformation of moving drops and bubbles by use of the finite element method. Journal of Chemical Engineering of Japan, 17(3), 246251.Google Scholar
Tsukada, T., Mikami, H., Hozawa, M., and Imaishi, N. (1990). Theoretical and experimental studies of the deformation of bubbles moving in quiescent Newtonian and non-Newtonian liquids. Journal of Chemical Engineering of Japan, 23(2), 192198.Google Scholar
Walcek, C. J. and Pruppacher, H. R. (1984). On the scavenging of SO2 by cloud and raindrops. Journal of Atmospheric Chemistry, 1, 269289.Google Scholar
Wegener, M. (2014). Numerical parameter study on the impact of Marangoni convection on the mass transfer at buoyancy-driven single droplets. International Journal of Heat and Mass Transfer, 71, 769778.CrossRefGoogle Scholar
Wegener, M. and Paschedag, A. R. (2011). Mass transfer enhancement at deformable droplets due to Marangoni convection. International Journal of Multiphase Flow, 37, 7683.Google Scholar
Wegener, M., Fevre, M., Paschedag, A. R., and Kraume, M. (2009a). Impact of Marangoni instabilities on the fluid dynamic behaviour of organic droplets. International Journal of Heat and Mass Transfer, 52, 25432551.Google Scholar
Wegener, M., Eppinger, T., Baumler, K., et al. (2009b). Transient rise velocity and mass transfer of a single drop with interfacial instabilities. Numerical investigations. Chemical Engineering Science, 64, 48354845.Google Scholar
Wolf, S. and Stichlmair, J. (1996). The influence of the Marangoni-effect on mass transfer, Proceedings of the International Solvent Extraction Conference, Melbourne, Australia. In Shallcross, D. C., Paimin, R., and Prvcic, L. M., eds., Value Adding Through Solvent Extraction. Australia: The University of Melbourne, pp. 5156.Google Scholar
Yamaguchi, M. and Katayama, T. (1977). Experimental studies on mass-transfer in continuous and dispersed phases for single drops moving through liquid field at intermediate Reynolds numbers. Journal of Chemical Engineering of Japan, 10(4), 280286.Google Scholar
Yamaguchi, M., Fujimoto, T., and Katayama, T. (1975). Experimental studies on mass transfer rate in the dispersed phase and moving behavior for single oscillating drops in liquid–liquid systems. Journal of Chemical Engineering of Japan, 8, 361366.Google Scholar
Zhang, X., Davis, R. H., and Ruth, M. F. (1993). Experimental study of two interacting drops in an immiscible fluid. Journal of Fluid Mechanics, 249, 227239.Google Scholar
Zheng, H., Ren, W., Chen, K., et al. (2014). Influence of Marangoni convection on mass transfer in the n-propyl acetate/acetic acid/water system. Chemical Engineering Science, 111, 278285.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Mass Transfer
  • Laurence R. Weatherley, University of Kansas
  • Book: Intensification of Liquid–Liquid Processes
  • Online publication: 12 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108355865.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Mass Transfer
  • Laurence R. Weatherley, University of Kansas
  • Book: Intensification of Liquid–Liquid Processes
  • Online publication: 12 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108355865.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Mass Transfer
  • Laurence R. Weatherley, University of Kansas
  • Book: Intensification of Liquid–Liquid Processes
  • Online publication: 12 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108355865.003
Available formats
×