Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T06:28:58.719Z Has data issue: false hasContentIssue false

3 - Atmosphere–Ocean Interactions

Published online by Cambridge University Press:  13 January 2021

Carlos R. Mechoso
Affiliation:
University of California, Los Angeles
Get access

Summary

This chapter presents a conceptual discussion on how ocean–atmosphere interactions are key to outstanding aspects of climate variability. The principal goal is to describe the mechanisms by which the atmosphere and ocean interact, and their perturbation feedback on each other, as well as how these interactions can lead to a new breed of modes in the coupled ocean–atmosphere system. The realization of such local interactions can project onto basin scales, and subsequently to the other basins.

Type
Chapter
Information
Interacting Climates of Ocean Basins
Observations, Mechanisms, Predictability, and Impacts
, pp. 89 - 119
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, M., Vimont, D. J., Chang, P., Scott, J. D. (2010). The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. Journal of Climate, 23, 28852901.Google Scholar
Allen, R. J., Sherwood, S. C. (2008). Warming maximum in the tropical upper troposphere deduced from thermal winds. Nature Geoscience, 1(6), 399403.CrossRefGoogle Scholar
Amaya, D., DeFlorio, M. J., Miller, A. J., Xie, S.-P. (2017). WES feedback and the Atlantic Meridional Mode: Observations and CMIP5 comparisons. Climate Dynamics, 49, 16651679.Google Scholar
Arnold, L. (1998). Random Dynamical Systems. Heidelberg: Springer Verlag.CrossRefGoogle Scholar
Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., Gombos, D. (2011). A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bulletin of the American Meteorological Society, 92(2), 157174.Google Scholar
Barsugli, J. J., Battisti, D. S. (1998). The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. Journal of the Atmospheric Sciences, 55(4), 477493.Google Scholar
Battisti, D., Hirst, A. (1988). The dynamics and thermodynamics of a warming event in a coupled tropical ocean/atmosphere model. Journal of the Atmospheric Sciences, 45, 28892919.Google Scholar
Bellenger, H., Guilyardi, É., Leloup, J., Lengaigne, M., Vialard, J. (2014). ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dynamics, 42(7–8), 19992018.Google Scholar
Bellomo, K., Clement, A., Mauritsen, T., Rädel, G., Stevens, B. (2014). Simulating the role of subtropical stratocumulus clouds in driving Pacific climate variability. Journal of Climate, 27(13), 51195131, doi.org/10.1175/JCLI-D-13-00548.1.Google Scholar
Bellomo, K., Clement, A., Mauritsen, T., Rädel, G., Stevens, B. (2015). The influence of cloud feedbacks on equatorial Atlantic variability. Journal of Climate, 28(7), 27252744, doi.org/10.1175/JCLI-D-14-00495.1.Google Scholar
Bellomo, K., Clement, A. C., Murphy, L. N., Polvani, L., Cane, M. A. (2016). New observational evidence for a positive cloud feedback that amplifies the Atlantic multidecadal oscillation. Geophysical Research Letters, 43, 98529859, doi.org/10.1002/2016GL069961.CrossRefGoogle Scholar
Bishop, S. P., Small, R. J., Bryan, F. O., Tomas, R. A. (2017). Scale dependence of midlatitude air–sea interaction. Journal of Climate, 30, 82078221.Google Scholar
Bjerknes, J. (1966). A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18(4), 820829.Google Scholar
Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Journal of Physical Oceanography, 97(3), 163172.Google Scholar
Bony, S., Lau, K. M., Sud, Y. C. (1997). Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing. Journal of Climate, 10(8), 20552077.2.0.CO;2>CrossRefGoogle Scholar
Bony, S., Dufresne, J. L. (2005). Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophysical Research Letters, 32(20), L20806, doi:10.1029/2005GL023851.Google Scholar
Bretherton, C. S., Blossey, P. N., Jones, C. R. (2013). Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. Journal of Advances in Modeling Earth Systems, 5(2), 316337, doi.org/10.1002/ jame.20019.Google Scholar
Brown, P. T., Lozier, M. S., Zhang, R., Li, W. (2016). The necessity of cloud feedback for a basin-scale Atlantic Multidecadal Oscillation. Geophysical Research Letters, 43 , 39553963, doi.org/10.1002/2016GL068303.CrossRefGoogle Scholar
Bryan, F. O., Tomas, R., Dennis, J. M., Chelton, D. B., Loeb, N. G., McClean, J. L. (2010). Frontal scale air–sea interaction in high-resolution coupled climate models. Journal of Climate, 23(23), 62776291.Google Scholar
Burgers, G. (1999). The El Nino Stochastic Oscillator. Climate Dynamics, 15, 352375.Google Scholar
Burgman, R. J., Clement, A. C., Mitas, C. M., Chen, J., Esslinger, K. (2008). Evidence for atmospheric variability over the Pacific on decadal timescales. Geophysical Research Letters, 35(1), doi:10.1029/2007GL031830.Google Scholar
Burgman, R. J., Kirtman, B. P., Clement, A. C., Vazquez, H. (2017). Model evidence for low-level cloud feedback driving persistent changes in atmospheric circulation and regional hydroclimate. Geophysical Research Letters, 44, 428437, doi.org/10.1002/ 2016GL071978.Google Scholar
Burmeister, K., Brandt, P., Lübbecke, J. F. (2016). Revisiting the cause of the eastern equatorial Atlantic cold event in 2009. Journal of Geophysical Research, 121, 40564076.Google Scholar
Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., Timmermann, Axel, Santoso, A,, Mcphaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., Jin, F. F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4(2), 111116.Google Scholar
Cai, W., Wang, G., Santoso, A., McPhaden, M. J., Wu, L., Jin, F. F., England, M. H. (2015). Increased frequency of extreme La Niña events under greenhouse warming. Nature Climate Change, 5(2), 132137.Google Scholar
Cane, M. A., Moore, D. W. (1981). A note on low-frequency equatorial basin modes. Journal of Physical Oceanography, 11, 15781584.Google Scholar
Chang, P., Philander, S. G. H. (1994). A coupled ocean–atmosphere instability of relevance to the seasonal cycle. Journal of Atmospheric Sciences, 51, 36273648.Google Scholar
Chang, P., Ji, L., Li, H. (1997). A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, b, 385, 516518.Google Scholar
Chang, P., Penland, C., Ji, L., Li, H., Matrasova, L. (1998). Predicting decadal sea surface temperature variability in the Tropical Atlantic Ocean, Geophysical Research Letters, 25, 11931196.Google Scholar
Chang, P., Saravanan, R., Ji, L., Hegerl, G. C. (2000). The effect of local sea surface temperatures on atmospheric circulation over the tropical Atlantic sector. Journal of Climate, 13, 21952216.Google Scholar
Chang, P., Ji, L., Saravanan, R. (2001). A hybrid coupled model study of tropical Atlantic variability. Journal of Climate, 14, 361390.Google Scholar
Chang, P., Fang, Y., Saravanan, R., Ji, L., Seidel, H. (2006). The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324328.Google Scholar
Chang, P., Zhang, L., Saravanan, R., Vimont, J. D., Chiang, J. C. H., Ji, L., Seidel, H., Tippett, M. K. (2007). Pacific Meridional Mode and El Niño-Southern Oscillation, Geophysical Research Letters, 34, L16608, doi:10.1029/2007GL030302.Google Scholar
Chelton, D. B., Schlax, M. G. (2003). The accuracies of smoothed sea surface height fields constructed from tandem altimeter datasets. Journal of Atmospheric and Oceanic Technology, 20, 12761302.Google Scholar
Chelton, D. B., Xie, S.-P. (2010). Coupled ocean–atmosphere interaction at oceanic mesoscales. Oceanography, 23, 5269.Google Scholar
Chelton, D. (2013). Ocean-atmosphere coupling: Mesoscale eddy effects. Nature Geoscience, 6(8), 594595.Google Scholar
Chen, L., Yu, Y., Sun, D. Z. (2013). Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? Journal of Climate, 26 (14), 49474961.Google Scholar
Chiang, J. C. H., Zebiak, S. E., Cane, M. A. (2001). Relative roles of elevated heating and surface temperature gradients in driving anomalous surface winds over tropical oceans. Journal of Atmospheric Sciences, 58, 13711394.Google Scholar
Chiang, J. C. H., Vimont, D. J. (2004). Analogous Pacific and Atlantic Meridional Modes of Tropical Atmosphere–Ocean Variability. Journal of Climate, 17, 41434158.Google Scholar
Clement, A. C., Burgman, R., Norris, J. R. (2009). Observational and model evidence for positive low-level cloud feedback. Science, 325(5939), 460464.Google Scholar
Collins, M., An, S. I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F.-F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi, G., Wittenberg, A. (2010). The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geoscience, 3(6), 391397.Google Scholar
Czaja, A. van der Vaart, P., Marshall, J. (2002). A diagnostic study of the role of remote forcing in tropical Atlantic variability. Journal of Climate, 15, 32803290.Google Scholar
Deppenmeier, A. L., Haarsma, R. J., Hazeleger, W. (2016). The Bjerknes feedback in the tropical Atlantic in CMIP5 models. Climate Dynamics, 47, 26912707.Google Scholar
Deser, C., Phillips, A. S., Hurrell, J. W. (2004). Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. Journal of Climate, 17(16), 31093124.Google Scholar
Di Lorenzo, E., Mantua, N. (2016). Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nature Climate Change, 6, 10421047.Google Scholar
Ding, H., Keenlyside, N. S., Latif, M., M. (2012). Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Climate Dynamics, 38, 19651972.CrossRefGoogle Scholar
Dommenget, D., Latif, M. (2000). Interannual to decadal variability in the tropical Atlantic. Journal of Climate, 13, 777792.Google Scholar
Enfield, D. B., Mayer, D. A. (1997). Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. Journal of Geophysical Research, 102, 929945.Google Scholar
Evan, A. T., Allen, R. J., Bennartz, R., Vimont, D. J. (2013). The modification of sea surface temperature anomaly linear damping time scales by stratocumulus clouds. Journal of Climate, 26(11), 36193630.Google Scholar
Falkena, S., Quinn, C., Sieber, J., Frank, J., Dijkstra, H. A. (2018). Derivation of delay equation climate models using the Mori-Zwanzig formalism. Proceedings of the Royal Society A, doi:10.1098/rspa.2019.0075.Google Scholar
Fedorov, A. V., Philander, S. G. H. (2000). Is El Niño changing? Science, 288, 19972002.Google Scholar
Ferrett, S., Collins, M., Ren, H. L. (2018). Diagnosing relationships between mean state biases and El Niño shortwave feedback in CMIP5 models. Journal of Climate, 31(4), 13151335.Google Scholar
Foltz, G. R., McPhaden, M. J. (2010). Interaction between the Atlantic meridional and Niño modes. Geophysical Research Letters, 37, 15, doi.org/10.1029/2010GL044001Google Scholar
Frankignoul, C., Hasselmann, K. (1977). Stochastic climate models. Part 2. Application to sea-surface temperature variability and thermocline variability. Tellus, 29, 284305.Google Scholar
Frankignoul, C. (1985). Sea surface temperature anomalies, planetary waves, and air‐sea feedback in the middle latitudes. Reviews of Geophysics, 23(4), 357390.Google Scholar
Frenger, I., Gruber, N., Knutti, R., Münnich, M. (2013). Imprint of Southern Ocean eddies on winds, clouds and rainfall, Nature Geoscience, 6, 608612, doi: 10.1038/ngeo1863.Google Scholar
Gill, A. E. (1980). Some simple solutions for heat-induced tropical circulation. Quarterly Journal of the Royal Meteorological Society, 106, 447462.Google Scholar
Guckenheimer, J., Holmes, P. (1990). Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, 2nd edn. Heidelberg: Springer-Verlag.Google Scholar
Guilyardi, E., Bellenger, H., Collins, M., Ferrett, S., Cai, W., Wittenberg, A. (2012). A first look at ENSO in CMIP5. CLIVAR Exchanges, 58, 3032.Google Scholar
Ham, Y. G., Kug, J. S., Park, J. Y. (2013). Two distinct roles of Atlantic SSTs in ENSO variability: North tropical Atlantic SST and Atlantic Niño. Geophysical Research Letters, 40(15), 40124017.Google Scholar
Hasselmann, K. (1976). Stochastic climate models part I. Theory. Tellus, 28(6), 473485.Google Scholar
Hastenrath, S., Heller, L. (1977). Dynamics of climatic hazards in north-east Brazil. Quarterly Journal of the Royal Meteorological Society, 103, 7792.Google Scholar
Hirst, A. C. (1986). Unstable and damped equatorial modes in simple coupled ocean-atmosphere models. Journal of Atmospheric Sciences, 43, 606630.Google Scholar
Hirst, A. C. (1988). Slow instabilities in tropical ocean basin-global atmosphere models. Journal of the Atmospheric Sciences, 45, 830852.Google Scholar
Huang, B., Hu, Z.‐Z. (2007). Cloud‐SST feedback in southeastern tropical Atlantic anomalous events, Journal of Geophysical Research, 112, C03015, doi:10.1029/2006JC003626.Google Scholar
Jin, F.-F. (1997a). An equatorial recharge paradigm for ENSO. I: Conceptual Model. Journal of the Atmospheric Sciences, 54, 811829.Google Scholar
Jin, F.-F. (1997b). An equatorial recharge paradigm for ENSO. II: A stripped-down coupled model. Journal of the Atmospheric Sciences, 54, 8308847.2.0.CO;2>CrossRefGoogle Scholar
Jin, F.-F., Neelin, J. (1993a). Modes of interannual tropical ocean atmosphere interaction– A unified view. I: Numerical results. Journal of the Atmospheric Sciences, 50, 34773503.Google Scholar
Jin, F.-F., Neelin, J. (1993b). Modes of interannual tropical ocean–atmosphere interaction– A unified view. Part III: Analytical results in fully coupled cases. Journal of Atmospheric Sciences, 50, 35233540.Google Scholar
Jin, F.-F., Neelin, J., Ghil, M. (1996). El Niño/Southern oscillation and the annual cycle: Subharmonic frequency-locking and aperiodicity. Physica D-Nonlinear Phenomena, 98, 442465.Google Scholar
Johnson, N. C., Xie, S.-P. (2010). Changes in the sea surface temperature threshold for tropical convection. Nature Geoscience, 3(12), 842845.Google Scholar
Kato, S., Loeb, N. G., Rose, F. G., Doelling, D. R., Rutan, D. R., Caldwell, T. E., Yu, L., Weller, R. A. (2013). Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. Journal of Climate, 26(9), 27192740, doi.org/10.1175/JCLI-D-12-00436.1.Google Scholar
Keenlyside, N. S., Latif, M. (2007). Understanding equatorial Atlantic interannual variability. Journal of Climate, 20, 131142.Google Scholar
Kelly, K. A., Small, R. J., Samelson, R. M., Qiu, B., Joyce, T. M., Kwon, Y. O., Cronin, M. F. (2010). Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. Journal of Climate, 23(21), 56445667.Google Scholar
Kirtman, B. P., Fan, Y., Schneider, E. K. (2002). The COLA global coupled and anomaly coupled ocean–atmosphere GCM. Journal of Climate, 15(17), 23012320.Google Scholar
Klein, S. A., Hartmann, D. L. (1993). The seasonal cycle of low stratiform clouds. Journal of Climate, 6 (8), 15871606, doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.Google Scholar
Klein, S. A., Hall, A., Norris, J. R., Pincus, R. (2017). Low-cloud feedbacks from cloud-controlling factors: A review. Surveys in Geophysics, 1–23.Google Scholar
Kwon, Y. O., Alexander, M. A., Bond, N. A., Frankignoul, C., Nakamura, H., Qiu, B., Thompson, L. A. (2010). Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. Journal of Climate, 23(12), 32493281.Google Scholar
Kushnir, Y., Robinson, W. A., Bladé, I., Hall, N. M. J., Peng, S., Sutton, R. (2002). Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. Journal of Climate, 15(16), 22332256.Google Scholar
Lamb, P. J. (1978). Large-scale tropical Atlantic surface circulation patterns associated with Subsaharan weather anomalies. Tellus, 30A, 240251.Google Scholar
Larson, S. M., Kirtman, B. P. (2013). The Pacific meridional mode as a trigger for ENSO in a high-resolution coupled model. Geophysical Research Letter, 40, 31893194.Google Scholar
Liu, X., Chang, P., Kurian, J., Saravanan, R., Lin, X. (2018). Satellite observed precipitation response to ocean mesoscale eddies. Journal of Climate, 31, 68796895.Google Scholar
Lindzen, R. S., Nigam, S. (1987). On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. Journal of Atmospheric Science, 44, 24182436.Google Scholar
Lloyd, J., Guilyardi, E., Weller, H. (2012). The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: The shortwave flux feedback. Journal of Climate, 25(12), 42754293.Google Scholar
Loeb, N. G., Thorsen, T. J., Norris, J. R., Wang, H., Su, W. (2018). Changes in earth’s energy budget during and after the “pause” in global warming: An observational perspective. Climate, 6(3), 62. https://doi.org/10.3390/cli6030062.Google Scholar
Lübbecke, J. F., McPhaden, M. J. (2012). On the inconsistent relationship between Pacific and Atlantic Niños. Journal of Climate, 25, 42944303.Google Scholar
Lübbecke, J. F., McPhaden, M. J. (2017). Symmetry of the Atlantic Niño mode. Geophysical Research Letters, 44, 965973.Google Scholar
Ma, C. C., Mechoso, C. R., Robertson, A. W., Arakawa, A. (1996). Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean-atmosphere GCM study. Journal of Climate, 9(7), 16351645.Google Scholar
Ma, X., Chang, P., Saravanan, R., Montuoro, R., Hsieh, J. S., Wu, D., Lin, X. Wu, L., Jing, Z. (2015). Distant influence of Kuroshio eddies on North Pacific weather patterns? Scientific Reports, 5, 17785.Google Scholar
Ma, X., Jing, Z., Chang, P., Liu, X., Montuoro, R., Small, R. J., Bryan, F. O., Greatbatch, R. J., Brandt, P., Wu, D., Lin, X., Wu, L. (2016). Western boundary currents regulated by interaction between ocean eddies and the atmosphere, Nature, 535, 533537.Google Scholar
Ma, X., Chang, P., Saravanan, R., Montuoro, R., Nakamura, H., Wu, D., Lin, X., Wu, L. (2017). Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. Journal of Climate, 30(5), 18611880.Google Scholar
Matsuno, T. (1966). Quasi-geostrophic motions in equatorial areas. Journal of the Meteorological Society of Japan, 2, 2543.Google Scholar
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78(6), 10691080.2.0.CO;2>CrossRefGoogle Scholar
Middlemas, E. A., Clement, A. C., Medeiros, B., Kirtman, B. (2019). Cloud radiative feedbacks and El Niño Southern Oscillation. Journal of Climate, doi.org/10.1175/JCLI-D-18-0842.1.Google Scholar
Myers, T. A., Norris, J. R. (2015). On the relationships between subtropical clouds and meteorology in observations and CMIP3 and CMIP5 models. Journal of Climate, 28(8), 29452967.Google Scholar
Myers, T. A., Mechoso, C. R., DeFlorio, M. J. (2018a). Coupling between marine boundary layer clouds and summer-to-summer sea surface temperature variability over the North Atlantic and Pacific. Climate Dynamics, 50(3–4), 955969.Google Scholar
Myers, T. A., Mechoso, C. R., DeFlorio, M. J. (2018b). Importance of positive cloud feedback for tropical Atlantic interhemispheric climate variability. Climate Dynamics, 51 (5–6), 17071717.Google Scholar
Myers, T. A., Mechoso, C. R., Cesana, G. V., DeFlorio, M. J., Waliser, D. E. (2018c). Cloud feedback key to marine heatwave off Baja California. Geophysical Research Letters, 45(9), 43454352.Google Scholar
Neelin, J. D., Battisti, D. S., Hirst, A. C., Jin, F.-F., Wakata, Y., Yamagata, T., Zebiak, S. E. (1998). ENSO theory. Journal of Geophysical Research, 103(C7), 1426114260.Google Scholar
Neelin, J. D., Jin, F.-F. (1993). Modes of interannual tropical ocean-atmosphere interactions: A unified view. II: Analytical results in the weak coupling limit. Journal of the Atmospheric Sciences, 50, 35043522.Google Scholar
Neelin, J. D., Jin, F.-F., Syu, H.-H. (2000). Variations of ENSO phase locking. Journal of Climate, 13, 25702590.Google Scholar
Nigam, S. (1997). The annual warm to cold phase transition in the eastern equatorial Pacific: Diagnosis of the role of stratus cloud‐top cooling, Journal of Climate, 10, 24472467.2.0.CO;2>CrossRefGoogle Scholar
Norris, J. R., Leovy, C. B. (1994). Interannual variability in stratiform cloudiness and sea surface temperature. Journal of Climate, 7(12), 19151925.Google Scholar
Norris, J. R., Zhang, Y., Wallace, J. M. (1998). Role of low clouds in summertime atmosphere–ocean interactions over the North Pacific. Journal of Climate, 11(10), 24822490.Google Scholar
Okumura, Y., Xie, S.-P., Numaguti, A., Tanimoto, Y. (2001). Tropical Atlantic air-sea interaction and its influence on the NAO. Geophysical Research Letters, 28(8), 15071510.Google Scholar
Okumura, Y., Xie, S.-P. (2004). Interaction of the Atlantic equatorial cold tongue and African monsoon. Journal of Climate, 17, 35883601.Google Scholar
Okumura, Y., Xie, S.-P. (2006). Some overlooked features of tropical Atlantic climate leading to a new Niño-like phenomenon. Journal of Climate, 19, 58595874.Google Scholar
Penland, C., Sardeshmukh, P. D. (1995). The optimal growth of tropical sea surface temperature anomalies. Journal of Climate, 8, 19992024.Google Scholar
Philander, S. G. H., Yamagata, T., Pacanowski, R. C. (1984). Unstable air-sea interactions in the tropics. Journal of the Atmospheric Sciences, 41, 604613.Google Scholar
Philander, S. G. H. (1986). Unusual conditions in the tropical Atlantic in 1984. Nature, 322, 236238.Google Scholar
Philander, S. G. H., Gu, D., Halpern, D. (1996). Why the ITCZ is mostly north of the equator. Journal of Climate, 9, 29582972.Google Scholar
Picot, N., Case, K., Desai, S., Vincent, P. (2003). AVISO and PODAAC User Handbook. Pasadena, CA: JPL D-21352, Jet Propul. Lab.Google Scholar
Plougonven, R., Foussard, A., Lapeyre, G. (2018). Comments on “The Gulf Stream Convergence Zone in the Time-Mean Winds.” Journal of the Atmospheric Sciences, 75(6), 21392149.Google Scholar
Qu, X., Hall, A., Klein, S. A., Caldwell, P. M. (2014). On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Climate Dynamics, 42(9–10), 26032626.Google Scholar
Rädel, G., Mauritsen, T., Stevens, B., Dommenget, D., Matei, D., Bellomo, K., Clement, A. (2016). Amplification of El Niño by cloud longwave coupling to atmospheric circulation. Nature Geoscience, 9(2), 106110.Google Scholar
Ramanathan, V., Collins, W. (1991). Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351(6321), 2732.Google Scholar
Renault, L., Molemaker, M. J. , McWilliams, J. C., Shchepetkin, A. F., Lemarié, F., Chelton, D., Illig, S., Hall, A. (2016). Modulation of wind work by oceanic current interaction with the atmosphere. Journal of Physical Oceanography, 46, 16851704.Google Scholar
Reynolds, R. W. (1988). A real-time global sea surface temperature analysis. Journal of Climate, 1, 7586.Google Scholar
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal of Climate, 15(13), 16091625, doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.Google Scholar
Richter, I., Behera, S. K., Masumoto, Y., Taguchi, B., Sasaki, H., Yamagata, T. (2013). Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean. Nature Geoscience, 6, 4347, doi.org/10.1038/ngeo1660.Google Scholar
Richter, I., Xie, S.-P., Morioka, Y., Doi, T., Taguchi, B., Behera, S. (2017). Phase locking of equatorial Atlantic variability through the seasonal migration of the ITCZ. Climate Dynamics, 48, 36153629.Google Scholar
Richter, I., Doi, T., Behera, S. K., Keenlyside, N. (2018). On the link between mean state biases and prediction skill in the tropics: An atmospheric perspective. Climate Dynamics, 50(9–10), 33553374.Google Scholar
Rieck, M., Nuijens, L., Stevens, B. (2012). Marine boundary layer cloud feedbacks in a constant relative humidity atmosphere. Journal of the Atmospheric Sciences, 69(8), 25382550, doi.org/10.1175/JAS-D-11-0203.1.Google Scholar
Rodríguez-Fonseca, B., Polo, I., García‐Serrano, J., Losada, T., Mohino, E., Mechoso, C. R., Kucharski, F. (2009). Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophysical Research Letters, 36(20), doi:10.1029/2009GL040048.Google Scholar
Saravanan, R., Chang, P. (2018). Midlatitude mesoscale ocean‐atmosphere interaction and its relevance to S2S prediction. In Roberston, A. and Vitart, F. (eds.) The Gap between Weather and Climate Forecasting: Sub-Seasonal to Seasonal Prediction. Amsterdam: Elsevier, 183200.Google Scholar
Schopf, P., Suarez, M. (1988). Vacillations in a coupled ocean–atmosphere model. Journal of the Atmospheric Sciences, 45, 549566.2.0.CO;2>CrossRefGoogle Scholar
Servain, J., Wainer, I., McCreary, J. P. Jr., Dessier, A. (1999). Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic. Geophysical Research Letters, 26, 485488.Google Scholar
Small, R. J., deSzoeke, S. P., Xie, S.-P., ONeill, L., Seo, H., Song, Q., Cornillon, P., Spall, M., Minobe, S. (2008). Air-sea interaction over ocean fronts and eddies, Dynamics of Atmospheres and Oceans, 45, 274319.Google Scholar
Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Reading, MA: Perseus Books.Google Scholar
Taguchi, B., Nakamura, H., Nonaka, M., Komori, N., Kuwano-Yoshida, A., Takaya, K., Goto, A. (2012). Seasonal evolutions of atmospheric response to decadal SST anomalies in the North Pacific subarctic frontal zone: Observations and a coupled model simulation. Journal of Climate, 25 (1), 111139.Google Scholar
Tanimoto, Y., Xie, S.-P. (2002). Inter-hemispheric decadal variations in SST, surface wind, heat flux and cloud cover over the Atlantic Ocean. Journal of the Meteorological Society of Japan. Ser. II, 80(5), 11991219.Google Scholar
Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A., Cobb, K., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Stein, K., Wittenberg, A. T., Yun, K.-S., Bayr, T., Chen, H.-C., Chikamoto, Y., Dewitte, B., Dommenget, D., Grothe, P., Guilyardi, E., Ham, Y.-G., Hayashi, M., Ineson, S., Kang, D., Kim, S., Kim, W., Lee, J.-Y., Li, T., Luo, J.-J., McGregor, S., Planton, Y., Power, S., Rashid, H., Ren, H.-L., Santoso, A., Takahashi, K., Todd, A., Wang, G., Wang, G., Xie, R., Yang, W.-H., Yeh, S. W., Yoon, J., Zeller, E., Zhang, X. (2018). El Nino-Southern Oscillation complexity. Nature, 559, 536545.Google Scholar
van der Dussen, J. J., de Roode, S. R., Gesso, S. D., Siebesma, A. P. (2015). An LES model study of the influence of the free troposphere on the stratocumulus response to a climate perturbation. Journal of Advances in Modeling Earth Systems, 7(2), 670691, doi.org/10.1002/2014MS000380.Google Scholar
Van der Vaart, P. C. F., Dijkstra, H. A., Jin, F.-F. (2000). The Pacific Cold Tongue and the ENSO mode: Unified theory within the Zebiak–Cane model. Journal of the Atmospheric Sciences, 57, 967988.Google Scholar
Vimont, D. J., Battisti, D. S., Hirst, A. C. (2001). Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophysical Research Letters, 28(20), 39233926.Google Scholar
Vimont, D. J., Wallace, J. M., Battisti, D. S. (2003). The seasonal footprinting mechanism in the Pacific: Implications for ENSO. Journal of Climate, 16, 26682675.Google Scholar
Waliser, D. E., Graham, N. E. (1993). Convective cloud systems and warm‐pool sea surface temperatures: Coupled interactions and self‐regulation. Journal of Geophysical Research: Atmospheres, 98(D7), 1288112893.Google Scholar
Wang, C. (2001). A unified oscillator model for the El Nino-Southern Oscillation, Journal of Climate, 14(1), 98115.Google Scholar
Wang, F., Chang, P. (2008a). A linear stability analysis of coupled tropical Atlantic variability. Journal of Climate, 21, 24212436.Google Scholar
Wang, F., Chang, P. (2008b). Coupled variability and predictability in a stochastic climate model of tropical Atlantic. Journal of Climate, 21, 62476259.Google Scholar
Webster, P. J., Yang, S. (1992). Monsoon and ENSO: Selectively interactive systems. Quarterly Journal of the Royal Meteorological Society, 118(507), 877926.Google Scholar
Webster, P. J. (1995). The annual cycle and the predictability of the tropical coupled ocean-atmosphere system. Meteorology and Atmospheric Physics, 56(1–2), 3355.Google Scholar
Wang, L., Yu, J. Y., Paek, H. (2016). Enhanced Biennial Variability in the Pacific due to Atlantic Capacitor Effect after the Early 1990s. AGU Fall 2016 Meeting Abstracts.Google Scholar
Xie, R. Jin, F.-F. (2018). Two Leading ENSO Modes and El Nino Types in the Zebiak-Cane Model. Journal of Climate, 31, 19471962.Google Scholar
Xie, S.-P. (1997). Unstable transition of the tropical climate to an equatorially asymmetric state in a coupled ocean-atmosphere model. Monthly Weather Review, 125, 667679.Google Scholar
Xie, S.-P., (1996). Westward propagation of latitudinal asymmetry in a coupled ocean–atmosphere model. Journal of the Atmospheric Sciences, 53, 32363250.Google Scholar
Xie, S.-P., (1999). A dynamic ocean-atmosphere model of the tropical Atlantic decadal variability. Journal of Climate, 12, 6470.Google Scholar
Xie, S.-P. (2004). Satellite observations of cool ocean–atmosphere interaction. Bulletin of the American Meteorological Society, 85(2), 195208.Google Scholar
Xie, S-P., Philander, S. G. H. (1994). A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350.Google Scholar
Yoshida, A. K. and Minobe, S. (2017). Storm-track response to SST fronts in the northwestern Pacific region in an AGCM. Journal of Climate, 30, 10811102.Google Scholar
Yu., J.-Y. Kim, S. T. (2011). Relationships between extratropical sea level pressure variations and the Central-Pacific and Eastern-Pacific types of ENSO. Journal of Climate, 24, 708720, doi: 10.1175/2010JCLI3688.Google Scholar
Yuan, T., Oreopoulos, L., Zelinka, M., Yu, H., Norris, J. R., Chin, M., Platnick, S., Meyer, K., (2016). Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation. Geophysical Research Letters, 43(3), 13491356.Google Scholar
Yuan, T., Oreopoulos, L., Platnick, S. E., Meyer, K. (2018). Observations of local positive low cloud feedback patterns and their role in internal variability and climate sensitivity. Geophysical Research Letters, 45(9), 44384445.Google Scholar
Zebiak, S. E., Cane, M. A. (1987). A model El Nino-Southern Oscillation. Monthly Weather Review, 115, 22622278.Google Scholar
Zebiak, S. E. (1993). Air–sea interaction in the equatorial Atlantic region. Journal of Climate, 6, 15671586.Google Scholar
Zhang, D., McPhaden, M. J. (2006). Decadal variability of the shallow Pacific meridional overturning circulation: Relation to tropical sea surface temperatures in observations and climate change models. Ocean Modeling, 15(3–4), 250273.Google Scholar
Zhang, H., Clement, A., Di Nezio, P. (2014). The South Pacific meridional mode: A mechanism for ENSO-like variability. Journal of Climate, 27(2), 769783.Google Scholar
Zuidema, P., Chang, P., Medeiros, B., Kirtman, B., Mechoso, C. R., Schneider, E., Small, J., Richter, I., Toniazzo, T., Kato, S., Farrar, T., deSzoeke, S., Brandt, P., Wood, R., Bellomo, K., Jung, E., Li, M., Xu, Z., Wang, Z., Patricola, C. (2017). Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific oceans: The U.S. CLIVAR Eastern Tropical Oceans Synthesis Working Group. Bulletin of the American Meteorological Society, 97, 23052328, doi:10.1175/BAMS-D-15-00274.1.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×