Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:17:54.027Z Has data issue: false hasContentIssue false

Chapter 2 - The Intertidal Zone of the North-East Atlantic Region

Pattern and Process

Published online by Cambridge University Press:  07 September 2019

Stephen J. Hawkins
Affiliation:
Marine Biological Association of the United Kingdom, Plymouth
Katrin Bohn
Affiliation:
Natural England
Louise B. Firth
Affiliation:
University of Plymouth
Gray A. Williams
Affiliation:
The University of Hong Kong
Get access

Summary

The rocky shores of the north-east Atlantic have been long studied. Our focus is from Gibraltar to Norway plus the Azores and Iceland. Phylogeographic processes shape biogeographic patterns of biodiversity. Long-term and broadscale studies have shown the responses of biota to past climate fluctuations and more recent anthropogenic climate change. Inter- and intra-specific species interactions along sharp local environmental gradients shape distributions and community structure and hence ecosystem functioning. Shifts in domination by fucoids in shelter to barnacles/mussels in exposure are mediated by grazing by patellid limpets. Further south fucoids become increasingly rare, with species disappearing or restricted to estuarine refuges, caused by greater desiccation and grazing pressure. Mesoscale processes influence bottom-up nutrient forcing and larval supply, hence affecting species abundance and distribution, and can be proximate factors setting range edges (e.g., the English Channel, the Iberian Peninsula). Impacts of invasive non-native species are reviewed. Knowledge gaps such as the work on rockpools and host–parasite dynamics are also outlined.

Type
Chapter
Information
Interactions in the Marine Benthos
Global Patterns and Processes
, pp. 7 - 46
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åberg, P. (1992). Size based demography of the seaweed Ascophyllum nodosum in stochastic environments. Ecology, 73, 1488–501.Google Scholar
Åberg, P. and Pavia, H. (1997). Temporal and multiple scale spatial variation in juvenile and adult abundance of the brown alga Ascophyllum nodosum. Marine Ecology Progress Series, 158, 111–19.Google Scholar
Alvarez, I., Gomez-Gesteira, M., deCastro, M., Lorenzo, M. N., Crespo, A. J. C. and Dias, J. M. (2011). Comparative analysis of upwelling influence between the western and northern coast of the Iberian Peninsula. Continental Shelf Research, 31, 388–99.Google Scholar
Anadon, N. (1981). Contribution to the knowledge of the benthic fauna bentonica de Ria de Vigo III. Study of the reefs of Sabellaria alveolata (L.) (Polchaeta, Sedentaria). Scientia Marina, 45, 105–22.Google Scholar
Araújo, R., Sousa-Pinto, I., Bárbara, I. and Quintino, V. (2006). Macroalgal communities of intertidal rockpools in the northwest coast of Portugal. Acta Oecologica, 30, 192202.Google Scholar
Araújo, R. M., Assis, J., Aguillar, R. et al. (2016). Status, trends and drivers of kelp forests in Europe: an expert assessment. Biodiversity and Conservation, 25, 1319–48.Google Scholar
Ardré, F. (1969). Contribution a l’étude des algues marines du Portugal: I. La flore. Instituto Botânico de Faculdade de Ciências, Lissabon.Google Scholar
Ardré, F. (1971). Contribution a l’étude des algues marines du Portugal: II. Ecologie et chorologie. Centre d’Etudes et de Recherches Scientifiques, Biarritz.Google Scholar
Arenas, F., Rey, F. and Pinto, I. S. (2009). Diversity effects beyond species richness: evidence from intertidal macroalgal assemblages. Marine Ecology Progress Series, 381, 99108.Google Scholar
Arrontes, J. (1993). Nature of the distributional boundary of Fucus serratus on the north shore of Spain. Marine Ecology Progress Series, 93, 183–93.CrossRefGoogle Scholar
Arrontes, J., Arenas, F., Fernandez, C. et al. (2004). Effect of grazing by limpets on mid-shore species assemblages in northern Spain. Marine Ecology Progress Series, 277, 117–33.Google Scholar
Audouin, J. V. and Edwards, H. M. (1833). Classification des Annélides, et Description de celles qui habitent les côtes de la France. Annales des sciences naturelles: comprenant La physiologie animale et végétale, l’anatomie comparée des deux règnes, la zoologie, la botanique, la minéralogie et la géologie, 28, 187247.Google Scholar
Ávila, S. P., Madeira, P., Rebelo, A. C. et al. (2015). Phorcus sauciatus (Koch, 1845) (Gastropoda: Trochidae) in Santa Maria, Azores archipelago: the onset of a biological invasion. Journal of Molluscan Studies, 81, 516–21.Google Scholar
Ayata, S.-D., Ellien, C., Dumas, F., Dubois, S. and Thiébaut, E. (2009). Modelling larval dispersal and settlement of the reef-building polychaete Sabellaria alveolata: role of hydroclimatic processes on the sustainability of biogenic reefs. Continental Shelf Research, 29, 1605–23.Google Scholar
Bakun, A. (1990). Global climate change and intensification of coastal ocean upwelling. Science, 247, 198201.Google Scholar
Ballantine, W. J. (1961). A biologically defined exposure scale for the comparative description of rocky shores. Field Studies, 1, 119.Google Scholar
Barnes, H. and Barnes, M. (1963). Elminius modestus Darwin: further European records. Progress in Oceanography, 3, 2330.Google Scholar
Barnes, H. and Powell, H. T. (1950). The development, general morphology and subsequent elimination of barnacle populations, Balanus crenatus and B. balanoides, after a heavy initial settlement. Journal of Animal Ecology, 19, 175–9.Google Scholar
Barnes, M. (1996). Pedunculate cirripedes of the genus Pollicipes. Oceanography and Marine Biology: An Annual Review, 34, 303–94.Google Scholar
Barnett, B. E. (1979). A laboratory study of predation by the dog-whelk Nucella lapillus on the barnacles Elminius modestus and Balanus balanoides. Journal of the Marine Biological Association of the United Kingdom, 59, 299306.CrossRefGoogle Scholar
Benedetti-Cecchi, L. and Cinelli, F. (1995). Habitat heterogeneity, sea urchin grazing and the distribution of algae in littoral rockpools on the west coast of Italy (western Mediterranean). Marine Ecology Progress Series, 126, 203–12.CrossRefGoogle Scholar
Bennell, S. J. (1981). Some observations on the littoral barnacle populations of North Wales. Marine Environmental Research, 5, 227–40.CrossRefGoogle Scholar
Bertocci, I., Badalamenti, F., Lo Brutto, S. et al. (2017). Reducing the data-deficiency of threatened European habitats: spatial variation of sabellariid worm reefs and associated fauna in the Sicily Channel, Mediterranean Sea. Marine Environmental Research, 130, 325–37.CrossRefGoogle ScholarPubMed
Birchenough, S. N. R., Reiss, H., Degraer, S. et al. (2015). Climate change and marine benthos: a review of existing research and future directions in the North Atlantic. Wiley Interdisciplinary Reviews: Climate Change, 6, 203–23.Google Scholar
Blanton, J. O., Tenore, K. R., Castillejo, F., Atkinson, L. P., Schwing, F. B. and Lavin, A. (1987). The relationship of upwelling to mussel production in the rias on the western coast of Spain. Journal of Marine Research, 45, 497511.CrossRefGoogle Scholar
Boaventura, D., Alexander, M., Della Santina, P. et al. (2002a). The effects of grazing on the distribution and composition of low-shore algal communities on the central coast of Portugal and on the southern coast of Britain. Journal of Experimental Marine Biology and Ecology, 267, 185206.Google Scholar
Boaventura, D., Da Fonseca, L. C. and Hawkins, S. J. (2003). Size matters: competition within populations of the limpet Patella depressa. Journal of Animal Ecology, 72, 435–46.CrossRefGoogle Scholar
Boaventura, D., , P., Cancela da Fonseca, L. and Hawkins, S. J. (2002b). Intertidal rocky shore communities of the continental Portuguese coast: analysis of distribution patterns. Marine Ecology, 23, 6990.Google Scholar
Boaventura, D. M., Cancela da Fonseca, L. and Hawkins, S. J. (2002c). Analysis of competetive interactions between the limpets Patella depressa Pennant and Patella vulgata L. in the northern coast of Portugal. Journal of Experimental Marine Biology and Ecology, 271, 171–88.Google Scholar
Borges, C. D. G., Doncaster, C. P., MacLean, M. A. and Hawkins, S. J. (2015). Broad-scale patterns of sex ratios in Patella spp.: a comparison of range edge and central range populations in the British Isles and Portugal. Journal of the Marine Biological Association of the United Kingdom, 95, 1141–53.CrossRefGoogle Scholar
Borges, C. D. G., Hawkins, S. J., Crowe, T. P. and Doncaster, C. P. (2016). The influence of simulated exploitation on Patella vulgata populations: protandric sex change is size-dependent. Ecology and Evolution, 2, 514–31.Google Scholar
Børgesen, F. (1908). The Algae-Vegetation of the Faeröese Coasts. In Botany of the Faeroes, vol. 3. Nordisk Forlag, Copenhagen, pp. 339532.Google Scholar
Børgesen, F. S. and Jónsson, H. (1908). The Distribution of the Marine Algae of the Arctic Sea, and of the Northernmost Part of the Atlantic. In Warming, E., ed. Botany of the Faeroes, vol. 3. Nordisk Forlag, Copenhagen, pp. 128.Google Scholar
Boudouresque, C. F. and Verlaque, M. (2007). Ecology of Paracentrotus lividus. In Lawrence, J. M., ed. Edible Sea Urchins: Biology and Ecology, Elsevier, Amsterdam, pp. 243–85Google Scholar
Bowman, R. S. and Lewis, J. R. (1977). Annual fluctuations in the recruitment of Patella vulgata L. Journal of the Marine Biological Association of the United Kingdom, 57, 793815.Google Scholar
Bracewell, S. A., Robinson, L. A., Firth, L. B. and Knights, A. M. (2013). Predicting free-space occupancy on novel artificial structures by an invasive intertidal barnacle using a removal experiment. PLoS ONE, 8, e74457.Google Scholar
Bracewell, S. A., Spencer, M., Marrs, R. H., Iles, M. and Robinson, L. A. (2012). Cleft, crevice, or the inner thigh: ‘another place’ for the establishment of the invasive barnacle Austrominius modestus (Darwin, 1854). PLoS ONE, 7, e48863.Google Scholar
Breeman, A. M. (1988). Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgoländer Meeresuntersuchungen, 42, 199241.Google Scholar
Broitman, B. R., Mieszkowska, N., Helmuth, B. and Blanchette, C. A. (2008). Climate and recruitment of rocky shore intertidal invertebrates in the Eastern North Atlantic. Ecology, 89, S81S90.Google Scholar
Browne, M. A. and Chapman, M. G. (2011). Ecologically informed engineering reduces loss of intertidal biodiversity on artificial shorelines. Environmental Science & Technology, 45, 8204–207.Google Scholar
Browne, M. A. and Chapman, M. G. (2014). Mitigating against the loss of species by adding artificial intertidal pools to existing seawalls. Marine Ecology Progress Series, 497, 119–29.CrossRefGoogle Scholar
Burrows, E. M. and Lodge, S. (1951). Autecology and the species problem in Fucus. Journal of the Marine Biological Association of the United Kingdom, 30, 161–76.Google Scholar
Burrows, M. T. and Hawkins, S. J. (1998). Modelling patch dynamics on rocky shores using deterministic cellular automata. Marine Ecology Progress Series, 167, 113.CrossRefGoogle Scholar
Burrows, M. T., Hawkins, S. J. and Southward, A. J. (1992). A comparison of reproduction in co-occurring chthamalid barnacles, Chthamalus stellatus (Poli) and Chthamalus montagui Southward. Journal of Experimental Marine Biology and Ecology, 160, 229–49.Google Scholar
Burrows, M. T., Hawkins, S. J. and Southward, A. J. (1999). Larval development of the intertidal barnacles Chthamalus stellatus and Chthamalus montagui. Journal of the Marine Biological Association of the United Kingdom, 79, 93101.Google Scholar
Burrows, M. T. and Hughes, R. N. (1989). Natural foraging of the dogwhelk, Nucella lapillus (Linnaeus); the weather and whether to feed. Journal of Molluscan Studies, 55, 286–95.Google Scholar
Burrows, M. T., Jenkins, S. R., Robb, L. and Harvey, R. (2010). Spatial variation in size and density of adult and post-settlement Semibalanus balanoides: effects of oceanographic and local conditions. Marine Ecology Progress Series, 398, 207–19.Google Scholar
Burrows, E. and Lodge, S. (1950). A note on the inter-relationships of Patella, Balanus and Fucus on a semi-exposed coast. Reports of the Port Erin Marine Biological Station, 62, 30–4.Google Scholar
Burrows, M. T., Schoeman, D. S., Buckley, L. B. et al. (2011). The pace of shifting climate in marine and terrestrial ecosystems. Science, 334, 652–5.Google Scholar
Bussell, J. A., Lucas, I. A. N. and Seed, R. (2007). Patterns in the invertebrate assemblage associated with Corallina officinalis in tide pools. Journal of the Marine Biological Association of the United Kingdom, 87, 383–8.Google Scholar
Carrol, H., Montgomery, W. I. and Hanna, R. E. B. (1990). Dispersion and abundance of Maritrema arenaria in Semibalanus balanoides in North-East Ireland. Journal of Helminthology, 64, 151.CrossRefGoogle Scholar
Castric-Fey, A., Beaupoil, C., Bouchain, J., Pradier, E. and L’Hardy-Halos, M. T. (1999). The introduced alga Undaria pinnatifida (Laminariales, Alariaceae) in the rocky shore ecosystem of the St Malo area: growth rate and longevity of the sporophyte. Botanica Marina 42, 7182.Google Scholar
Castric-Fey, A., Girard, A. and L’Hardy-Halos, M. T. (1993). The distribution of Undaria pinnatifida (Phaeophyceae, Laminariales) on the Coast of St. Malo (Brittany, France). Botanica Marina 36, 351–8.Google Scholar
Cervin, G., Åberg, P. and Jenkins, S. R. (2005). Small-scale disturbance in a stable canopy dominated community: implications for macroalgal recruitment and growth. Marine Ecology Progress Series, 305, 3140.Google Scholar
Chan, B. K. K. (2000). Diurnal physico-chemical variations in Hong Kong rockpools. Asian Marine Biology, 17, 4354.Google Scholar
Chapman, A. R. O. (1995). Functional ecology of fucoid algae: twenty-three years of progress. Phycologia, 34(1), 132.Google Scholar
Chapman, M. G. and Blockley, D. J. (2009). Engineering novel habitats on urban infrastructure to increase intertidal biodiversity. Oecologia, 161, 625–35.Google Scholar
Chapman, M. G. and Underwood, A. J. (2011). Evaluation of ecological engineering of “armoured” shorelines to improve their value as habitat. Journal of Experimental Marine Biology and Ecology, 400(1–2), 302–13.Google Scholar
Coleman, R. A., Goss-Custard, J. D., Durell, S. and Hawkins, S. J. (1999). Limpet Patella spp. consumption by oystercatchers Haematopus ostralegus: a preference for solitary prey items. Marine Ecology Progress Series, 183, 253–61.Google Scholar
Coleman, R. A., Salmon, N. and Hawkins, S. (2003). Sub-dispersive human disturbance of foraging oystercatchers Haematopus ostralegus. Ardea, 91, 263–8.Google Scholar
Coleman, R. A., Underwood, A. J., Benedetti-Cecchi, L. et al. (2006). A continental scale evaluation of the role of limpet grazing on rocky shores. Oecologia, 147, 556–64.Google Scholar
Connell, J. H. (1961a). Effects of competition, predation by Thais lapillus, and other factors on natural populations of the barnacle Balanus balanoides. Ecological Monographs, 31, 61104.CrossRefGoogle Scholar
Connell, J. H. (1961b). The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology, 42, 710–23.Google Scholar
Connolly, S. R., Menge, B. A. and Roughgarden, J. (2001). A latitudinal gradient in recruitment of intertidal invertebrates in the northeast Pacific Ocean. Ecology, 82, 1799–813.Google Scholar
Connolly, S. R. and Roughgarden, J. (1998). A latitudinal gradient in Northeast Pacific intertidal community structure: evidence for an oceanographically based synthesis of marine community theory. The American Naturalist, 151, 311–26.CrossRefGoogle ScholarPubMed
Conway, E. (1946). Browsing of Patella. Nature, 158, 752–2.CrossRefGoogle Scholar
Copeland, M. R., Montgomery, W. I. and Hanna, R. E. B. (1987). Ecology of a digenean infection, Cercaria patellae in Patella vulgata near Portavogie Harbour, Northern Ireland. Journal of Helminthology, 61, 315.Google Scholar
Côrte-Real, H. B. S. M., Hawkins, S. J. and Thorpe, J. P. (1996). Population differentiation and taxonomic status of the exploited limpet Patella candei in the Macaronesian islands (Azores, Madeira, Canaries). Marine Biology, 125, 141–52.Google Scholar
Cremades, J., Freire, O. and Peteiro, C. (2006). Biología, distribución e integración del alga alóctona Undaria pinnatifida (Laminariales, Phaeophyta) en las comunidades bentónicas de las costas de Galicia (NW de la Península Ibérica). Anales del Jardín Botánico de Madrid, 63.Google Scholar
Crewe, W. (1951). The occurrence of Cercaria patellae lebour (Trematoda) and its effects on the host; with notes on some other helminth parasites of british limpets. Parasitology, 41, 15.Google Scholar
Crickenberger, S. and Wethey, D. S. (2017). Reproductive physiology, temperature and biogeography: the role of fertilization in determining the distribution of the barnacle Semibalanus balanoides. Journal of the Marine Biological Association of the United Kingdom, 98, 1411–24.Google Scholar
Crisp, D. J. (1955). The behaviour of barnacle cyprids in relation to water movement over a surface. The Journal of Experimental Biology, 32, 569–90.Google Scholar
Crisp, D. J. (1956). The Intertidal Zoology of Rockall. In Fischer-Piette, E., ed. Rockall. Geoffrey Bles, London, pp. 177–9.Google Scholar
Crisp, D. J. (1958). The spread of Elminius Modestus Darwin in North-West Europe. Journal of the Marine Biological Association of the United Kingdom, 37, 483.Google Scholar
Crisp, D. J. and Fischer-Piette, E. (1959). Repartition des principales especes interastidales de la Cote Atlantique Francaise en 1954–1955. Annales de l’Institut Océanographique, Monaco, 36, 276381.Google Scholar
Crisp, D. J. and Knight-Jones, E. W. (1953). The mechanism of aggregation in barnacle populations. Journal of Animal Ecology, 22, 360–2.Google Scholar
Crisp, D. J. and Southward, A. J. (1958). The distribution of intertidal organisms along the coasts of the English Channel. Journal of the Marine Biological Association of the United Kingdom, 37, 157203.Google Scholar
Critchley, A. T., Farnham, W. F. and Morrell, S. L. (1983). A chronology of new European sites of attachment for the invasive brown alga, Sargassum muticum, 1973–1981. Journal of the Marine Biological Association of the United Kingdom, 63, 799.Google Scholar
Crowe, T., Frost, N. and Hawkins, S. (2011). Interactive effects of losing key grazers and ecosystem engineers vary with environmental context. Marine Ecology Progress Series, 430, 223–34.Google Scholar
Cruz, T. (1999). Settlement patterns of Chthamalus spp. at Praia da Oliveirinha (SW Portugal). Acta Oecologica, 20, 285–7.Google Scholar
Cruz, T., Castro, J. J., Delany, J. et al. (2005). Tidal rates of settlement of the intertidal barnacles Chthamalus stellatus and Chthamalus montagui in Western Europe: the influence of the night/day cycle. Journal of Experimental Marine Biology and Ecology, 318, 5160.CrossRefGoogle Scholar
Culloty, S. C., Cronin, M. A. and Mulcahy, M. F. (2001). An investigation into the relative resistance of Irish flat oysters Ostrea edulis L. to the parasite Bonamia ostreae. Aquaculture, 199, 229–44.CrossRefGoogle Scholar
Culloty, S. C., Cronin, M. A. and Mulcahy, M. F. (2004). Potential resistance of a number of populations of the oyster Ostrea edulis to the parasite Bonamia ostreae. Aquaculture, 237, 4158.Google Scholar
Culloty, S. C., Novoa, B., Pernas, M. et al. (1999). Susceptibility of a number of bivalve species to the protozoan parasite Bonamia ostreae and their ability to act as vectors for this parasite. Diseases of Aquatic Organisms, 37, 7380.Google Scholar
Cunningham, P. N., Hawkins, S. J., Jones, H. D. and Burrows, M. T. (1984). The Geographical Distribution of Sabellaria alveolata (L.) in England, Wales and Scotland, with investigations into the community structure of, and the effects of trampling on Sabellaria alveolata colonies, Nature Conservancy Council, Peterborough.Google Scholar
Davies, A. J. and Johnson, M. P. (2006). Coastline configuration disrupts the effects of large-scale climatic forcing, leading to divergent temporal trends in wave exposure. Estuarine, Coastal and Shelf Science, 69, 643-8.Google Scholar
Davies, M. S. and Blackwell, J. (2007). Energy saving through trail following in a marine snail. Proceedings of the Royal Society Series B: Biological Sciences, 274, 1233–6.Google Scholar
Davies, M. S., Hawkins, S. J. and Jones, H. D. (1990). Mucus production and physiological energetics in Patella vulgata L. Journal of Molluscan Studies, 56, 499503.Google Scholar
Davies, M. S., Hawkins, S. J. and Jones, H. D. (1992). Pedal mucus and its influence on the microbial food supply of two intertidal gastropods, Patella vulgata L. and Littorina littorea L. Journal of Experimental Marine Biology and Ecology, 161, 5777.CrossRefGoogle Scholar
Davies, M. S. and Knowles, A. J. (2001). Effects of trematode parasitism on the behaviour and ecology of a common marine snail (Littorina littorea (L.)). Journal of Experimental Marine Biology and Ecology, 260, 155–67.Google Scholar
Davies, P. S. (1969). Physiological ecology of Patella. III. Desiccation effects. Journal of the Marine Biological Association of the United Kingdom, 49, 291.Google Scholar
De Leij, R., Epstein, G., Brown, M. P. and Smale, D. A. (2017). The influence of native macroalgal canopies on the distribution and abundance of the non-native kelp Undaria pinnatifida in natural reef habitats. Marine Biology, 164, 156.Google Scholar
Delany, J., Myers, A. and McGrath, D. (2002). A Comparison of the Interactions of the Limpets Patella vulgata and Patella ulyssiponensis with Crustose Coralline Algae, Royal Irish Academy, Dublin.Google Scholar
Delany, J., Myers, A. A. and McGrath, D. (1998). Recruitment, immigration and population structure of two coexisting limpet species in mid-shore tidepools, on the West Coast of Ireland. Journal of Experimental Marine Biology and Ecology, 221, 221–30.CrossRefGoogle Scholar
Dias, M., Roma, J., Fonseca, C. et al. (2016). Intertidal pools as alternative nursery habitats for coastal fishes. Marine Biology Research, 12, 331–44.Google Scholar
Diederich, S. (2005). Differential recruitment of introduced Pacific oysters and native mussels at the North Sea coast: coexistence possible? Journal of Sea Research, 53, 269–81.Google Scholar
Donald, K. M., Preston, J., Williams, S. T. et al. (2012). Phylogenetic relationships elucidate colonization patterns in the intertidal grazers Osilinus philippi, 1847 and Phorcus risso, 1826 (Gastropoda: Trochidae) in the northeastern Atlantic Ocean and Mediterranean Sea. Molecular Phylogenetics and Evolution, 62, 3545.Google Scholar
Duarte, L., Viejo, R. M., Martínez, B., deCastro, M., Gómez-Gesteira, M. and Gallardo, T. (2013). Recent and historical range shifts of two canopy-forming seaweeds in North Spain and the link with trends in sea surface temperature. Acta Oecologica, 51, 110.Google Scholar
Dubois, S., Commito, J. A., Olivier, F. and Retière, C. (2006). Effects of epibionts on Sabellaria alveolata (L.) biogenic reefs and their associated fauna in the Bay of Mont Saint-Michel. Estuarine, Coastal and Shelf Science, 68, 635–46.Google Scholar
Dubois, S., Jean-Louis, B., Bertrand, B. and Lefebvre, S. (2007a). Isotope trophic-step fractionation of suspension-feeding species: implications for food partitioning in coastal ecosystems. Journal of Experimental Marine Biology and Ecology, 351, 121–8.Google Scholar
Dubois, S., Marin-Léal, J. C., Ropert, M. and Lefebvre, S. (2007b). Effects of oyster farming on macrofaunal assemblages associated with Lanice conchilega tubeworm populations: a trophic analysis using natural stable isotopes. Aquaculture, 271, 336–49.Google Scholar
Dubois, S., Orvain, F., Marin-Léal, J. C., Ropert, M. and Lefebvre, S. (2007c). Small-scale spatial variability of food partitioning between cultivated oysters and associated suspension-feeding species, as revealed by stable isotopes. Marine Ecology Progress Series, 336, 151–60.CrossRefGoogle Scholar
Dubois, S., Retière, C. and Olivier, F. (2002). Biodiversity associated with Sabellaria alveolata (Polychaeta: Sabellariidae) reefs: effects of human disturbances. Journal of the Marine Biological Association of the United Kingdom, 82, 817–26.Google Scholar
Ebling, F. J., Sloane, J. F., Kitching, J. A. and Davies, H. M. (1962). The ecology of Lough Ine: XII. The distribution and characteristics of Patella species. Journal of Animal Ecology, 31, 457–70.CrossRefGoogle Scholar
Elner, R. W. and Raffaelli, D. G. (1980). Interactions between two marine snails, Littorina rudis Maton and Littorina nigrolineata Gray, a predator, Carcinus maenas (L.), and a parasite, Microphallus similis Jägerskiold. Journal of Experimental Marine Biology and Ecology, 43, 151–60.Google Scholar
Emery, K. O. and Kuhn, G. G. (1982). Sea cliffs: their processes, profiles, and classification. Geological Society of America Bulletin, 93, 644.Google Scholar
Engelen, A. H., Serebryakova, A., Ang, P. et al. (2015). Circumglobal invasion by the brown seaweed Sargassum muticum. Oceanography and Marine Biology: An Annual Review, 53, 81126.Google Scholar
Epstein, G. and Smale, D. A. (2017). Undaria pinnatifida: a case study to highlight challenges in marine invasion ecology and management. Ecology and Evolution, 7, 8624–42.Google Scholar
Evans, A. J., Firth, L. B., Hawkins, S. J., Morris, E. S., Goudge, H. and Moore, P. J. (2016). Drill-cored rockpools: an effective method of ecological enhancement on artificial structures. Marine and Freshwater Research, 67, 123.Google Scholar
Evans, A. J., Garrod, B., Firth, L. B. et al. (2017). Stakeholder priorities for multi-functional coastal defence developments and steps to effective implementation. Marine Policy, 75, 143–55.CrossRefGoogle Scholar
Faria, J., Martins, G. M., Pita, A. et al. (2017). Disentangling the genetic and morphological structure of Patella candei complex in Macaronesia (NE Atlantic). Ecology and Evolution, 7, 6125–40.Google Scholar
Faria, J., Pita, A., Martins, G. M. et al. (2018). Inbreeding in the exploited limpet Patella aspera across the Macaronesia archipelagos (NE Atlantic): implications for conservation. Fisheries Research, 198, 180–8.Google Scholar
Farrell, P. (2003). A Study of the Recently Introduced Macroalga Undaria pinnatifida (Harvey) Suringar (Phaeophyceae Laminariales) in the British Isles, University of Portsmouth, Portsmouth.Google Scholar
Farrell, P. and Fletcher, R. L. (2006). An investigation of dispersal of the introduced brown alga Undaria pinnatifida (Harvey) Suringar and its competition with some species on the man-made structures of Torquay Marina (Devon, UK). Journal of Experimental Marine Biology and Ecology, 334, 236–43.Google Scholar
Ferreira, J. G., Arenas, F., Martínez, B., Hawkins, S. J. and Jenkins, S. R. (2014). Physiological response of fucoid algae to environmental stress: comparing range centre and southern populations. New Phytologist, 202, 1157–72.Google Scholar
Ferreira, J. G., Hawkins, S. and Jenkins, S. R. (2015a). Physical and biological control of fucoid recruitment in range edge and range centre populations. Marine Ecology Progress Series, 518, 8594.Google Scholar
Ferreira, J. G., Hawkins, S. J. and Jenkins, S. R. (2015b). Patterns of reproductive traits of fucoid species in core and marginal populations. European Journal of Phycology, 50, 457–68.Google Scholar
Fey, F., Dankers, N., Steenbergen, J. and Goudswaard, K. (2010). Development and distribution of the non-indigenous Pacific oyster (Crassostrea gigas) in the Dutch Wadden Sea. Aquaculture International, 18, 4559.CrossRefGoogle Scholar
Figueiras, F. G., Labarta, U. and Fernández Reiriz, M. J. (2002). Coastal upwelling, primary production and mussel growth in the Rías Baixas of Galicia. Hydrobiologia, 484, 121–31.Google Scholar
Firth, L. B. and Crowe, T. P. (2008). Large-scale coexistence and small-scale segregation of key species on rocky shores. Hydrobiologia, 614, 233–41.Google Scholar
Firth, L. B. and Crowe, T. P. (2010). Competition and habitat suitability: small-scale segregation underpins large-scale coexistence of key species on temperate rocky shores. Oecologia, 162, 163–74.Google Scholar
Firth, L. B., Crowe, T. P., Moore, P., Thompson, R. C. and Hawkins, S. J. (2009). Predicting impacts of climate-induced range expansion: an experimental framework and a test involving key grazers on temperate rocky shores. Global Change Biology, 15, 1413–22.CrossRefGoogle Scholar
Firth, L. B., Grant, L. M., Crowe, T. P. et al. (2017). Factors affecting the prevalence of the trematode parasite Echinostephilla patellae (Lebour, 1911) in the limpet Patella vulgata (L.). Journal of Experimental Marine Biology and Ecology, 492, 99104.Google Scholar
Firth, L. B., Mieszkowska, N., Grant, L. M. et al. (2015). Historical comparisons reveal multiple drivers of decadal change of an ecosystem engineer at the range edge. Ecology and Evolution, 5, 3210–22.CrossRefGoogle ScholarPubMed
Firth, L. B., Mieszkowska, N., Thompson, R. C. and Hawkins, S. J. (2013a). Climate change and adaptational impacts in coastal systems: the case of sea defences. Environmental Science: Processes & Impacts, 15, 1665.Google Scholar
Firth, L. B., Thompson, R. C., White, R. et al. (2013b). Promoting biodiversity on artificial structures: can natural habitats be replicated? Diversity and Distributions 19, 1275–83.Google Scholar
Firth, L. B., Schofield, M., White, F. J., Skov, M. W. and Hawkins, S. J. (2014a). Biodiversity in intertidal rockpools: informing engineering criteria for artificial habitat enhancement in the built environment. Marine Environmental Research, 102, 122–30.CrossRefGoogle Scholar
Firth, L. B., Thompson, R. C., Bohn, K. et al. (2014b). Between a rock and a hard place: environmental and engineering considerations when designing coastal defence structures. Coastal Engineering, 87, 122–35.Google Scholar
Firth, L. B., Knights, A. M., Bridger, D. et al. (2016a). Ocean Sprawl: Challenges and Opportunities for Biodiversity Management in a Changing World. In Oceanography and Marine Biology. CRC Press, Boca Raton, FL, 54, pp. 201–78.Google Scholar
Firth, L. B., White, F. J., Schofield, M. et al. (2016b). Facing the future: the importance of substratum features for ecological engineering of artificial habitats in the rocky intertidal. Marine and Freshwater Research, 67, 131.Google Scholar
Firth, L. B., Browne, K. A., Knights, A. M., Hawkins, S. J. and Nash, R. (2016c). Eco-engineered rockpools: a concrete solution to biodiversity loss and urban sprawl in the marine environment. Environmental Research Letters, 11, 094015.Google Scholar
Firth, L. B. and Williams, G. A. (2009). The influence of multiple environmental stressors on the limpet Cellana toreuma during the summer monsoon season in Hong Kong. Journal of Experimental Marine Biology and Ecology, 375, 70–5.Google Scholar
Fischer-Piette, E. (1929). Recherches de bionomie et d’océanographie littorales sur la Rance et le littoral de la Manche. Annales de l’Institut Océanographique, Monaco, 5, 201429.Google Scholar
Fischer-Piette, E. (1936). Études sur la biogéographie intercotidale des deux rives de la Manche. Journal of the Linnean Society of London, Zoology, 40, 181272.CrossRefGoogle Scholar
Fischer-Piette, E. (1948). Sur les éléments de prospérité des Patelles et sur leur spécificité. Journal de Conchyliologie, 88, 4596.Google Scholar
Fischer-Piette, E. (1955). Repartition, le long des cotes septentrionales de l’Espagne, des principales especes peuplant les rochers intercotidaux. Annual Insitutional Ocenaographique Monaco, 31, 37124.Google Scholar
Fischer-Piette, E. (1957). Sur des déplacements de frontièrs biogéographies, observés au long des côtes ibériques dans le domaine intercotidal. Publicaciones del Instituto de Biologia Aplicada, XXVI, 3540.Google Scholar
Fischer-Piette, E. (1958). Sur l’écologie intercotidale oust-ibérique. Comptes Rendus de l’Académie des Sciences, 246, 1301–303.Google Scholar
Fischer-Piette, E. (1963). La distribution des principaux organismes intercotidaux Nord- Ibériques en 1954–55. Annales de l’Intitut Océangraphique, Mónaco, XL, 165312.Google Scholar
Fischer-Piette, E. and Prenant, M. (1957). Quelques données ecologiques sur les cirripedes intercotidaux du Portugal, de l’Espagne du sud et du nord du Maroc. Bulletin du Centre d’Etudes et Recherches Scientifiques, Biarritz, 1, 361–8.Google Scholar
Fletcher, R. L. and Farrell, P. (1999) Introduced brown algae in the North East Atlantic, with particular respect to Undaria pinnatifida (Harvey) Suringar. Helgolander Meeresuntersuchungen, 52, 259–75.Google Scholar
Floc’h, J.-Y., Pajot, R. and Mouret, V. (1996). Undaria pinnatifida (Laminariales, Phaeophyta) 12 years after its introduction into the Atlantic Ocean. Hydrobiologia, 326, 217–22.Google Scholar
Floc’h, J. Y., Pajot, R. and Wallentinus, I. (1991). The Japanese brown alga Undaria pinnatifida on the coast of France and its possible establishment in European waters. ICES Journal of Marine Science, 47, 379–90.Google Scholar
Forbes, E. (1858). The distribution of marine life, illustrated chiefly by fishes and molluscs and radiata. In Johnston, A. K., ed. Physical Atlas. William Blackwood & Sons, Edinburgh, pp. 99101.Google Scholar
Foster, B. A. (1971). Desiccation as a factor in the intertidal zonation of barnacles. Marine Biology, 8, 1229.Google Scholar
Fraga, F. (1981). Upwelling off the Galician coast, Northwest Spain. In Richards, F. A., ed. Coastal Upwelling, American Geophysical Union, Washington, DC, pp. 176–82.Google Scholar
Franco, J. N., Wernberg, T., Bertocci, I. et al. (2015). Herbivory drives kelp recruits into ‘hiding’ in a warm ocean climate. Marine Ecology Progress Series, 536, 1-9.Google Scholar
Fretter, V. and Graham, A. (1976). The prosobranch molluscs of Britain and Denmark I: Pleurotamariacea, Fissurellacea and Patellacea. Journal of Molluscan Studies, (Suppl. 1), 1–37.Google Scholar
Gallagher, M. C., Culloty, S., McAllen, R. and O’Riordan, R. (2016). Room for one more? Coexistence of native and non-indigenous barnacle species. Biological Invasions, 18, 3033–46.Google Scholar
Gianni, F., Bartolini, F., Pey, A. et al. (2017). Threats to large brown algal forests in temperate seas: the overlooked role of native herbivorous fish. Scientific Reports, 7, 6012.Google Scholar
Giménez, L. and Jenkins, S. R. (2013). Combining traits and density to model recruitment of sessile organisms. PLoS ONE, 8, e57849.Google Scholar
Giménez, L., Torres, G., Pettersen, A., Burrows, M., Estevez, A. and Jenkins, S. R. (2017). Scale-dependent natural variation in larval nutritional reserves in a marine invertebrate: implications for recruitment and cross-ecosystem coupling. Marine Ecology Progress Series, 570, 141–55.CrossRefGoogle Scholar
González-Lorenzo, G., Mesa Hernández, E., Pérez-Dionis, G., Brito Hernández, A., Galván Santos, B. and Barquín Diez, J. (2015). Ineffective conservation threatens Patella candei, an endangered limpet endemic to the Macaronesian islands. Biological Conservation, 192, 428–35.Google Scholar
Gordon, J. M. and Knights, A. M. (2017). Revisiting Connell: competition but not as we know it. Journal of the Marine Biological Association of the United Kingdom, 98, 19.Google Scholar
Goss-Custard, S., Jones, J., Kitching, J. A. and Norton, T. A. (1979). Tide pools of Carrigathorna and Barloge Creek. Philosophical Transactions of the Royal Society B: Biological Sciences, 287, 144.Google Scholar
Griffin, J., Noël, L., Crowe, T. et al. (2010). Consumer effects on ecosystem functioning in rockpools: roles of species richness and composition. Marine Ecology Progress Series, 420, 4556.Google Scholar
Griffin, J. N., de la Haye, K. L., Hawkins, S. J., Thompson, R. C. and Jenkins, S. R. (2008). Predator diversity and ecosystem functioning: density modifies the effect of resource partitioning. Ecology, 89, 298305.Google Scholar
Griffin, J. N., Jenkins, S. R., Gamfeldt, L., Jones, D., Hawkins, S. J. and Thompson, R. C. (2009). Spatial heterogeneity increases the importance of species richness for an ecosystem process. Oikos, 118, 1335–42.Google Scholar
Gruet, Y. (1986). Spatio-temporal changes of sabellarian reefs built by the sedentary polychaete Sabellaria alveolata (Linné). Marine Ecology, 7, 303–19.Google Scholar
Guallart, J., Calvo, M., Acevedo, I. and Templado, J. (2013). Two-way sex change in the endangered limpet Patella ferruginea (Mollusca, Gastropoda). Invertebrate Reproduction and Development, 57, 247–53.Google Scholar
Hartnoll, R. G. and Hawkins, S. J. (1980). Monitoring rocky-shore communities: a critical look at spatial and temporal variation. Helgoländer Meeresuntersuchungen, 33, 484–94.Google Scholar
Hartnoll, R. G. and Hawkins, S. J. (1985). Patchiness and fluctuations on moderately exposed rocky shores. Ophelia, 24, 5363.Google Scholar
Hatton, H. (1938). Essais de bionomie explicative sur quelques espkces intercotidales d’algues et d’animaux. Annales de l’Institut Océanographique, Monaco, 17, 241348.Google Scholar
Hatton, H. and Fischer-Piette, E. (1932). Observations et experiences sur le peuplement des cotes rocheuses par les Cirripedes. Bulletin de l’Institut océanographique, Monaco, 592, 15.Google Scholar
Hawkins, S. J. (1981a). The influence of Patella grazing on the fucoid-barnacle mosaic on moderately exposed rocky shores. Kieler Meeresforsch, 33, 537–43.Google Scholar
Hawkins, S. J. (1981b). The influence of season and barnacles on the algal colonization of Patella vulgata exclusion areas. Journal of the Marine Biological Association of the United Kingdom, 61, 1.Google Scholar
Hawkins, S. J. (1983). Interactions of Patella and macroalgae with settling Semibalanus balanoides (L.). Journal of Experimental Marine Biology and Ecology, 71, 5572.Google Scholar
Hawkins, S. J. (2017) Editorial: ecological processes are not bound by borders: Implications for marine conservation in a post-Brexit world. Aquatic Conservation, 27, 904–08.Google Scholar
Hawkins, S. J., Burnay, L. P., Neto, A. I., Tristao da Cunha, R. and Frias Martins, A. M. (1990). A description of the zonation patterns of molluscs and other important biota on the south coast of Sao Miguel, Azores. Acoreana, 1990 supplement, 21–38.Google Scholar
Hawkins, S. J., Corte-Real, H. B. S. M., Pannacciulli, F. G., Weber, L. C. and Bishop, J. D. D. (2000). Thoughts on the ecology and evolution of the intertidal biota of the Azores and other Atlantic islands. Hydrobiologia, 440, 317.Google Scholar
Hawkins, S. J., Evans, A., Firth, L. B. et al. (2016a). Impacts and Effects of Ocean Warming on Intertidal Rocky Habitats. In Laffoley, D. and Baxter, J. M., eds. Explaining Ocean Warming: Causes, Scale, Effects and Consequences, Full report, ICUN, Gland, CH, pp. 147–76.Google Scholar
Hawkins, S. J., Evans, A. J., Mieszkowska, N. et al. (2017). Distinguishing globally-driven changes from regional- and local-scale impacts: the case for long-term and broad-scale studies of recovery from pollution. Marine Pollution Bulletin, 124, 573–86.Google Scholar
Hawkins, S. J., Firth, L. B., McHugh, M. et al. (2013). Data rescue and re-use: recycling old information to address new policy concerns. Marine Policy, 42, 91–8.Google Scholar
Hawkins, S. J. and Harkin, E. (1985). Preliminary canopy removal in algal dominated communities low on the shore and in the shallow subtidal. Botanica Marina, 28, 223–30.Google Scholar
Hawkins, S. J. and Hartnoll, R. (1985). Factors determining the upper limits of intertidal canopy-forming algae. Marine Ecology Progress Series, 20, 265–71.Google Scholar
Hawkins, S. J. and Hartnoll, R. G. (1982a). The influence of barnacle cover on the numbers, growth and behaviour of Patella vulgata on a vertical pier. Journal of the Marine Biological Association of the United Kingdom, 62, 855.Google Scholar
Hawkins, S. J. and Hartnoll, R. G. (1982b). Settlement patterns of Semibalanus balanoides (L.) in the Isle of Man (1977–1981). Journal of Experimental Marine Biology and Ecology, 62, 271–83.Google Scholar
Hawkins, S. J. and Hartnoll, R. G. (1983a). Changes in a rocky shore community: an evaluation of monitoring. Marine Environmental Research, 9, 131–81.Google Scholar
Hawkins, S. J. and Hartnoll, R. G. (1983b). Grazing of intertidal algae by marine invertebrates. Oceanography and Marine Biology: An Annual Review, 21, 195282.Google Scholar
Hawkins, S. J., Hartnoll, R. G., Kain, J. M. and Norton, T. A. (1992). Plant–Animal Interactions on Hard Substrata in the Northeast Atlantic. In John, D. M., Hawkins, S. J. and Price, J. H., eds. Plant–Animal Interactions in the Marine Benthos, Oxford University Press, Oxford, pp. 132.Google Scholar
Hawkins, S. J. and Hiscock, K. (1983). Anomalies in the abundance of common eulittoral gastropods with planktonic larvae on Lundy Island, Bristol Channel. Journal of Molluscan Studies, 49, 86–8.Google Scholar
Hawkins, S. J., Mieszkowska, N., Firth, L. B. et al. (2016b). Looking backwards to look forwards: the role of natural history in temperate reef ecology. Marine and Freshwater Research, 67, 113.Google Scholar
Hawkins, S. J., Moore, P. J., Burrows, M. T. et al. (2008). Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change. Climate Research, 37, 123–33.Google Scholar
Hawkins, S. J., Proud, S. V., Spence, S. K. and Southward, A. J. (1994). From the Individual to the Community and Beyond: Water Quality, Stress Indicators and Key Species in Coastal Ecosystems. In Sutcliffe, D. W., ed. Water Quality and Stress Indicators in Marine and Freshwater Ecosystems: Linking Levels of Organisation Individuals, Populations, Communities, Freshwater Biological Association, Ambleside, pp. 3562.Google Scholar
Hawkins, S. J. and Southward, A. J. (1992). The Torrey Canyon oil spill: recovery of rocky shore communities. In Restoring the Nation’s Marine Environment. Maryland: Proceedings of the Symposium on Marine Habitat Restoration, Sea Grant Publication, National Oceanic and Atmospheric Administration, Maryland Sea Grant College, 584631.Google Scholar
Hawkins, S. J., Southward, A. J. and Barrett, R. L. (1983). Population structure of Patella vulgata during succession on rocky shores in South-west England. Oceanologica Acta, Special, 103–07.Google Scholar
Hawkins, S. J., Sugden, H. E., Mieszkowska, N. et al. (2009). Consequences of climate-driven biodiversity changes for ecosystem functioning of North European rocky shores. Marine Ecology Progress Series, 396, 245–59.Google Scholar
Heiser, S., Hall-Spencer, J. M. and Hiscock, K. (2014). Assessing the extent of establishment of Undaria pinnatifida in Plymouth Sound Special Area of Conservation, UK. Marine Biodiversity Records, 7, e93.Google Scholar
Herbert, R. J. H. and Hawkins, S. J. (2006). Effect of rock type on the recruitment and early mortality of the barnacle Chthamalus montagui. Journal of Experimental Marine Biology and Ecology, 334, 96108.Google Scholar
Herbert, R. J. H., Hawkins, S. J., Sheader, M. and Southward, A. J. (2003). Range extension and reproduction of the barnacle Balanus perforatus in the eastern English Channel. Journal of the Marine Biological Association of the United Kingdom, 83, 7382.Google Scholar
Herbert, R. J. H., Humphreys, J., Davies, C. J., Roberts, C., Fletcher, S. and Crowe, T. P. (2016). Ecological impacts of non-native Pacific oysters (Crassostrea gigas) and management measures for protected areas in Europe. Biodiversity and Conservation, 25, 2835–65.CrossRefGoogle Scholar
Herbert, R. J. H., Southward, A. J., Clarke, R. T. Sheader, M. and Hawkins, S. J. (2009). Persistent border, an analysis of the geographic boundary of an intertidal species. Marine Ecology Progress Series, 379, 135–50.Google Scholar
Herbert, R. J. H., Southward, A. J., Sheader, M. and Hawkins, S. J. (2007). Influence of recruitment and temperature on distribution of intertidal barnacles in the English Channel. Journal of the Marine Biological Association of the United Kingdom, 87, 487.Google Scholar
Hill, A. S. and Hawkins, S. J. (1990). An investigation of methods for sampling microbial films on rocky shores. Journal of the Marine Biological Association of the United Kingdom, 70, 7788.Google Scholar
Hill, A. S. and Hawkins, S. J. (1991). Seasonal and spatial variation of epilithic microalgae distribution and abundance and its ingestion by Patella vulgata on a moderately exposed rocky shore. Journal of the Marine Biological Association of the United Kingdom, 71, 403–23.Google Scholar
Hills, J. M. and Thomason, J. C. (2003). The ‘ghost of settlement past’ determines mortality and fecundity in the barnacle, Semibalanus balanoides. Oikos, 101, 529–38.Google Scholar
Hiscock, K., Southward, A., Tittley, I. and Hawkins, S. (2004). Effects of changing temperature on benthic marine life in Britain and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems, 14, 333–62.Google Scholar
Holm, M. W., Davids, J. K., Dolmer, P., Holmes, E. and Nielsen, T. (2016). Coexistence of Pacific oyster Crassostrea gigas (Thunberg, 1793) and blue mussels Mytilus edulis Linnaeus, 1758 on a sheltered intertidal bivalve bed? Aquatic Invasions, 11, 155–65.Google Scholar
Holmes, J. M. C. and Minchin, D. (1995). Two exotic copepods imported into Ireland with the Pacific oyster Crassostrea gigas (Thunberg). The Irish Naturalists’ Journal, 25, 1720.Google Scholar
Hyder, K., Åberg, P., Johnson, M. P. and Hawkins, S. J. (2001). Models of open populations with space-limited recruitment: extension of theory and application to the barnacle Chthamalus montagui: Modelling barnacle populations. Journal of Animal Ecology, 70, 853–63.Google Scholar
Hyder, K., Johnson, M. P., Hawkins, S. J. and Gurney, W. S. (1998). Barnacle demography: evidence for an existing model and spatial scales of variation. Marine Ecology Progress Series, 174, 8999.Google Scholar
Ingólfsson, A. (2006). The intertidal seashore of Iceland and its animal communities. Zoology of Iceland I, 7, 185.Google Scholar
Ingólfsson, A. and Hawkins, S. J. (2008). Slow recovery from disturbance: a 20 year study of Ascophyllum canopy clearances. Journal of the Marine Biological Association of the United Kingdom, 88, 689–91.Google Scholar
Jacinto, D. and Cruz, T. (2008). Tidal settlement of the intertidal barnacles Chthamalus spp. in SW portugal: interaction between diel and semi-lunar cycles. Marine Ecology Progress Series, 366, 129–35.Google Scholar
Jacinto, D. and Cruz, T. (2012). Paracentrotus lividus (Echinodermata: Echinoidea) attachment force and burrowing behavior in rocky shores of SW Portugal. Zoosymposia, 7, 231–40.Google Scholar
James, B. L. (1968). The occurrence of larval Digenea in ten species of intertidal prosobranch molluscs in Cardigan Bay. Journal of Natural History, 2, 329–43.Google Scholar
Jenkins, S. R., Åberg, P., Cervin, G. et al. (2000). Spatial and temporal variation in settlement and recruitment of the intertidal barnacle Semibalanus balanoides (L.) (Crustacea: Cirripedia) over a European scale. Journal of Experimental Marine Biology and Ecology, 243, 209–25.Google Scholar
Jenkins, S. R., Arenas, F., Arrontes, J. et al. (2001). European-scale analysis of seasonal variability in limpet grazing activity and microalgal abundance. Marine Ecology Progress Series, 211, 193203.Google Scholar
Jenkins, S. R., Coleman, R. A., Santina, P. D., Hawkins, S. J., Burrows, M. T. and Hartnoll, R. G. (2005). Regional scale differences in the determinism of grazing effects in the rocky intertidal. Marine Ecology Progress Series, 287, 7786.Google Scholar
Jenkins, S. R. and Hartnoll, R. G. (2001). Food supply, grazing activity and growth rate in the limpet Patella vulgata L.: a comparison between exposed and sheltered shores. Journal of Experimental Marine Biology and Ecology, 258(1), 123–39.Google Scholar
Jenkins, S. R. and Hawkins, S. J. (2003). Barnacle larval supply to sheltered rocky shores: a limiting factor? Hydrobiologia, 503(1–3), 143–51.Google Scholar
Jenkins, S. R., Hawkins, S. J. and Norton, T. A. (1999a). Direct and indirect effects of a macroalgal canopy and limpet grazing in structuring a sheltered inter-tidal community. Marine Ecology Progress Series, 188, 8192.Google Scholar
Jenkins, S. R., Hawkins, S. J. and Norton, T. A. (1999b). Interaction between a fucoid canopy and limpet grazing in structuring a low shore intertidal community. Journal of Experimental Marine Biology and Ecology, 233, 4163.Google Scholar
Jenkins, S. R., Moore, P., Burrows, M. T. et al. (2008a). Comparative ecology of north Atlantic shores: do differences in players matter for process? Ecology, 89, S3S23.Google Scholar
Jenkins, S. R., Murua, J. and Burrows, M. T. (2008b). Temporal changes in the strength of density-dependent mortality and growth in intertidal barnacles. Journal of Animal Ecology, 77, 573–84.Google Scholar
Jenkins, S. R., Norton, T. A. and Hawkins, S. J. (1999c). Interactions between canopy forming algae in the eulittoral zone of sheltered rocky shores on the Isle of Man. Journal of the Marine Biological Association of the United Kingdom, 79, 341–9.CrossRefGoogle Scholar
Jenkins, S. R., Norton, T. A. and Hawkins, S. J. (1999d). Settlement and post-settlement interactions between Semibalanus balanoides (L.) (Crustacea: Cirripedia) and three species of fucoid canopy algae. Journal of Experimental Marine Biology and Ecology, 236, 4967.Google Scholar
Jenkins, S. R., Norton, T. A. and Hawkins, S. J. (2004). Long term effects of Ascophyllum nodosum canopy removal on mid shore community structure. Journal of the Marine Biological Association of the United Kingdom, 84, 327–9.Google Scholar
Jenkins, S. R. and Uyà, M. (2016). Temporal scale of field experiments in benthic ecology. Marine Ecology Progress Series, 547, 273–86.Google Scholar
Jessopp, M., Mulholland, O., McAllen, R., Johnson, M., Crowe, T. and Allcock, A. (2007). Coastline configuration as a determinant of structure in larval assemblages. Marine Ecology Progress Series, 352, 6775.Google Scholar
Johannesson, K. (1988). The paradox of Rockall: why is a brooding gastropod (Littorina saxatilis) more widespread than one having a planktonic larval dispersal stage (L. littorea)? Marine Biology, 99, 507–13.Google Scholar
Johannesson, K. and Warmoes, T. (1990). Rapid colonization of Belgian breakwaters by the direct developer, Littorina saxatilis (Olivi) (Prosobranchia, Mollusca). Hydrobiologia, 193, 99108.Google Scholar
Johnson, L. E. and Strathmann, R. R. (1989). Settling barnacle larvae avoid substrata previously occupied by a mobile predator. Journal of Experimental Marine Biology and Ecology, 128, 87103.Google Scholar
Johnson, M., Burrows, M., Hartnoll, R. and Hawkins, S. (1997). Spatial structure on moderately exposed rocky shores:patch scales and the interactions between limpets and algae. Marine Ecology Progress Series, 160, 209–15.Google Scholar
Johnson, M., Burrows, M. and Hawkins, S. (1998). Individual based simulations of the direct and indirect effects of limpets on a rocky shore Fucus mosaic. Marine Ecology Progress Series, 169, 179–88.Google Scholar
Johnson, M. P., Frost, N. J., Mosley, M. W. J., Roberts, M. F. and Hawkins, S. J. (2003). The area-independent effects of habitat complexity on biodiversity vary between regions. Ecology Letters, 6, 126–32.Google Scholar
Johnson, M. P., Hanley, M. E., Frost, N. J., Mosley, M. W. J. and Hawkins, S. J. (2008). The persistent spatial patchiness of limpet grazing. Journal of Experimental Marine Biology and Ecology, 365, 136–41.Google Scholar
Jones, N. (1948). Observations and experiments on the biology of Patella vulgata at Port St. Mary, Isle of Man. In Proceedings and Transactions of the Liverpool Biological Society, pp. 60–77.Google Scholar
Jones, N. S. (1946). Browsing of Patella. Nature, 158, 557–8.Google Scholar
Jonsson, P. R., Granhag, L., Moschella, P. S., Åberg, P., Hawkins, S. J. and Thompson, R. C. (2006). Interactions between wave action and grazing control the distribution of intertidal macroalgae. Ecology, 87, 1169–78.Google Scholar
Keith, S. A., Herbert, R. J. H., Norton, P. A., Hawkins, S. J. and Newton, A. C. (2011). Individualistic species limitations of climate-induced range expansions generated by meso-scale dispersal barriers: dispersal barriers limit range expansions. Diversity and Distributions, 17, 275–86.Google Scholar
Kendall, M. A., Bowman, R. S., Williamson, P. and Lewis, J. R. (1985). Annual variation in the recruitment of Semibalanus Balanoides on the north Yorkshire coast 1969–1981. Journal of the Marine Biological Association of the United Kingdom, 65, 1009.Google Scholar
Kendall, M. A., Burrows, M. T., Southward, A. J. and Hawkins, S. J. (2004). Predicting the effects of marine climate change on the invertebrate prey of the birds of rocky shores. IBIS, 146, 40–7.CrossRefGoogle Scholar
King, P. A., Keogh, E. and McGrath, D. (1997). The current status of the exotic barnacle Elminius modestus Darwin in Galway Bay, Ireland. The Irish Naturalists’ Journal, 17, 365–9.Google Scholar
Kitching, J. A. (1987a). Ecological studies at Lough Hyne. Advances in Ecological Research, 17, 115–86.Google Scholar
Kitching, J. A. (1987b). The flora and fauna associated with Himanthalia elongata (L.) S. F. Gray in relation to water current and wave action in the Lough Hyne marine nature reserve. Estuarine, Coastal and Shelf Science, 25, 663–76.Google Scholar
Kitching, J. A. and Ebling, F. J. (1961). The Ecology of Lough Ine. Journal of Animal Ecology, 30, 373–83.Google Scholar
Kitching, J. A. and Ebling, F. J. (1967). Ecological studies at Lough Ine. Advances in Ecological Research, 4, 197291.Google Scholar
Kitching, J. A., Ebling, F. J., Gamble, J. C., Hoare, R., McLeod, A. and Norton, T. A. (1976). The ecology of Lough Ine. XIX. Seasonal changes in the Western Trough. Journal of Animal Ecology, 45, 731–58.Google Scholar
Kitching, J. A., Muntz, L. and Ebling, F. J. (1966). The Ecology of Lough Ine. XV. The ecological significance of shell and body forms in Nucella. Journal of Animal Ecology, 35, 113–26.Google Scholar
Kitching, J. A., Sloane, J. F. and Ebling, F. J. (1959). The Ecology of Lough Ine: VIII. Mussels and Their Predators. Journal of Animal Ecology, 28, 331–41.Google Scholar
Knight-Jones, E. W. (1953). Laboratory experiments on gregariousness during setting in Balanus balanoides and other barnacles. Journal of Experimental Biology, 30, 584–98.Google Scholar
Knights, A., Crowe, T. and Burnell, G. (2006). Mechanisms of larval transport: vertical distribution of bivalve larvae varies with tidal conditions. Marine Ecology Progress Series, 326, 167–74.Google Scholar
Kollien, A. H. (1996). Cercaria patellae Lebour, 1911 developing in Patella vulgata is the cercaria of Echinostephilla patellae (Lebour, 1911) n. comb. (Digenea, Philophthalmidae). Systematic Parasitology, 34, 1125.Google Scholar
Kostylev, V. E., Erlandsson, J., Ming, M. Y. and Williams, G. A. (2005). The relative importance of habitat complexity and surface area in assessing biodiversity: Fractal application on rocky shores. Ecological Complexity, 2, 272–86.Google Scholar
Lawson, G. W. and Norton, T. A. (1971). Some observations on littoral and sublittoral zonation at Teneriffe (Canary Isles). Botanica Marina, 14, 116–20.Google Scholar
Lawson, J., Davenport, J. and Whitaker, A. (2004). Barnacle distribution in Lough Hyne Marine Nature Reserve: a new baseline and an account of invasion by the introduced Australasian species Elminius modestus Darwin. Estuarine, Coastal and Shelf Science, 60, 729–35.Google Scholar
Le Quesne, W. J. F. and Hawkins, S. J. (2006). Direct observations of protandrous sex change in the patellid limpet Patella vulgata. Journal of the Marine Biological Association of the United Kingdom, 86, 161–2.Google Scholar
Lebour, M. V. (1911). A review of the British marine Cercariae. Parasitology, 4, 416.Google Scholar
Lefebvre, S., Marín Leal, J. C., Dubois, S. et al. (2009). Seasonal dynamics of trophic relationships among co-occurring suspension-feeders in two shellfish culture dominated ecosystems. Estuarine, Coastal and Shelf Science, 82, 415–25.Google Scholar
Lejart, M. and Hily, C. (2005). Proliferation of Crassostrea gigas (Thunberg) in the Bay of Brest: First estimations of the stock and its impact on the global functioning of the ecosystem. In 8th International Conference on Shellfish Restoration, Brest.Google Scholar
Lejart, M. and Hily, C. (2011). Differential response of benthic macrofauna to the formation of novel oyster reefs (Crassostrea gigas, Thunberg) on soft and rocky substrate in the intertidal of the Bay of Brest, France. Journal of Sea Research, 65, 8493.Google Scholar
Lemos, R. T. and Pires, H. O. (2004). The upwelling regime off the West Portuguese Coast, 1941–2000. International Journal of Climatology, 24, 511–24.Google Scholar
Lewis, J. R. (1964). The Ecology of the Rocky Shores, English Universities Press, London.Google Scholar
Lewis, J. R. (1976). Long-term ecological surveillance: practical realities in the rocky littoral. Oceanography and Marine Biology: An Annual Review, 14, 371–90.Google Scholar
Lewis, J. R. and Bowman, R. S. (1975). Local habitat-induced variations in the population dynamics of Patella vulgata L. Journal of Experimental Marine Biology and Ecology, 17, 165203.Google Scholar
Lima, F. P., Gomes, F., Seabra, R. et al. (2016). Loss of thermal refugia near equatorial range limits. Global Change Biology, 22, 254–63.Google Scholar
Lima, F. P., Queiroz, N., Ribeiro, P. A., Hawkins, S. J. and Santos, A. M. (2006). Recent changes in the distribution of a marine gastropod, Patella rustica Linnaeus, 1758, and their relationship to unusual climatic events. Journal of Biogeography, 33, 812–22.Google Scholar
Lima, F. P., Queiroz, N., Ribeiro, P. A., Xavier, R., Hawkins, S. J. and Santos, A. M. (2009). First record of Halidrys siliquosa on the Portuguese coast: counter-intuitive range expansion? Marine Biodiversity Records, 2, e1.Google Scholar
Lima, F. P., Ribeiro, P. A., Queiroz, N., Hawkins, S. J. and Santos, A. M. (2007). Do distributional shifts of northern and southern species of algae match the warming pattern? Global Change Biology, 13, 2592–604.Google Scholar
Little, C., Trowbridge, C. D., Pilling, G. M., Stirling, P., Morritt, D. and Williams, G. A. (2017). Long-term fluctuations in intertidal communities in an Irish sea-lough: Limpet-fucoid cycles. Estuarine, Coastal and Shelf Science, 196, 7082.Google Scholar
Lodge, S. M. (1948). Algal growth in the absence of Patella on an experimental strip of foreshore, Port St Mary, Isle of Man. In Proceedings and Transactions of the Liverpool Biological Society, pp. 78–85.Google Scholar
Lüning, K. (1990). Seaweeds: Their Environment, Biogeography, and Ecophysiology, John Wiley & Sons, Hoboken, NJ.Google Scholar
Maggs, C. A., Castilho, R., Foltz, D. et al. (2008). Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology, 89, S108–22.Google Scholar
Martínez, B., Arenas, F., Rubal, M. et al. (2012). Physical factors driving intertidal macroalgae distribution: physiological stress of a dominant fucoid at its southern limit. Oecologia, 170, 341–53.CrossRefGoogle ScholarPubMed
Martínez, B., Arenas, F., Trilla, A., Viejo, R. M. and Carreño, F. (2015). Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae. Global Change Biology, 21, 1422–33.Google Scholar
Martins, G. M., Arenas, F., Tuya, F., Ramírez, R., Neto, A. I. and Jenkins, S. R. (2018). Successional convergence in experimentally disturbed intertidal communities. Oecologia, 186, 507–16.Google Scholar
Martins, G. M., Hawkins, S. J., Thompson, R. C. and Jenkins, S. R. (2007). Community structure and functioning in intertidal rock pools: effects of pool size and shore height at different successional stages. Marine Ecology Progress Series, 329, 4355.Google Scholar
Martins, G. M., Jenkins, S. R., Hawkins, S. J., Neto, A. I. and Thompson, R. C. (2008). Exploitation of rocky intertidal grazers: population status and potential impacts on community structure and functioning. Aquatic Biology, 3, 110.Google Scholar
Martins, G. M., Thompson, R. C., Neto, A. I., Hawkins, S. J. and Jenkins, S. R. (2010). Enhancing stocks of the exploited limpet Patella candei d’Orbigny via modifications in coastal engineering. Biological Conservation, 143, 203–11.Google Scholar
Martins, G. M., Jenkins, S. R., Neto, A. I., Hawkins, S. J. and Thompson, R. C. (2016). Long-term modifications of coastal defenses enhance marine biodiversity. Environmental Conservation, 43, 109–16.Google Scholar
Marzinelli, E. M., Burrows, M. T., Jackson, A. C. and Mayer-Pinto, M. (2012). Positive and negative effects of habitat-forming algae on survival, growth and intra-specific competition of limpets. PLoS ONE, 7, e51601.Google Scholar
Mayer-Pinto, M., Johnston, E. L., Bugnot, A. B. et al. (2017). Building ‘blue’: an eco-engineering framework for foreshore developments. Journal of Environmental Management, 189, 109–14.Google Scholar
Mieszkowska, N., Burrows, M. T., Pannacciulli, F. G. and Hawkins, S. J. (2014a). Multidecadal signals within co-occurring intertidal barnacles Semibalanus balanoides and Chthamalus spp. linked to the Atlantic multidecadal oscillation. Journal of Marine Systems, 133, 70–6.Google Scholar
Mieszkowska, N., Hawkins, S. J., Burrows, M. T. and Kendall, M. A. (2007). Long-term changes in the geographic distribution and population structures of Osilinus lineatus (Gastropoda: Trochidae) in Britain and Ireland. Journal of the Marine Biological Association of the United Kingdom, 87, 537.Google Scholar
Mieszkowska, N., Kendall, M. A., Hawkins, S. J. et al. (2006). Changes in the range of some common rocky shore species In Britain – a response to climate change? Hydrobiologia, 555, 241–51.Google Scholar
Mieszkowska, N., Leaper, R., Moore, P. et al. (2005). Marine Biodiversity and Climate Change: Assessing and Predicting the Influence of Climatic Change Using Intertidal Rocky Shore Biota, Marine Biological Association of the United Kingdom 20. Occasional Publications, Plymouth.Google Scholar
Mieszkowska, N., Sugden, H., Firth, L. B. and Hawkins, S. J. (2014b). The role of sustained observations in tracking impacts of environmental change on marine biodiversity and ecosystems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372.Google Scholar
Mieszkowska, N. and Sugden, H. E. (2016). Climate-driven range shifts within benthic habitats across a marine biogeographic transition zone. Advances in Ecological Research, 55, 325–69.Google Scholar
Minchin, D. and Nunn, J. (2014). The invasive brown alga Undaria pinnatifida (Harvey) Suringar, 1873 (Laminariales: Alariaceae), spreads northwards in Europe. BioInvasions Records, 3, 5763.Google Scholar
Miranda, P., Alves, J. and Serra, N. (2013). Climate change and upwelling: response of Iberian upwelling to atmospheric forcing in a regional climate scenario. Climate Dynamics, 40, 2813–24.Google Scholar
Mitsch, W. J. (2012). What is ecological engineering? Ecological Engineering, 45, 512.Google Scholar
Moore, P., Hawkins, S. J. and Thompson, R. C. (2007). Role of biological habitat amelioration in altering the relative responses of congeneric species to climate change. Marine Ecology Progress Series, 334, 1119.Google Scholar
Moore, H. B. and Kitching, J. A. (1939). The biology of Chthamalus stellatus (Poli). Journal of the Marine Biological Association of the United Kingdom, 23, 521–41.Google Scholar
Morris, R. L., Chapman, M. G., Firth, L. B. and Coleman, R. A. (2017). Increasing habitat complexity on seawalls: investigating large- and small-scale effects on fish assemblages. Ecology and Evolution, 7(22), 9567–79.Google Scholar
Morris, R. L., Deavin, G., Hemelryk Donald, S. and Coleman, R. A. (2016). Eco-engineering in urbanised coastal systems: consideration of social values. Ecological Management & Restoration, 17, 33–9.Google Scholar
Morris, S. and Taylor, A. C. (1983). Diurnal and seasonal variation in physico-chemical conditions within intertidal rockpools. Estuarine, Coastal and Shelf Science, 17, 339–55.Google Scholar
Moschella, P. S., Abbiati, M., Åberg, P. et al. (2005). Low-crested coastal defence structures as artificial habitats for marine life: using ecological criteria in design. Coastal Engineering, 52, 1053–71.Google Scholar
Munday, P. L., Buston, P. M. and Warner, R. R. (2006). Diversity and flexibility of sex-change strategies in animals. Trends in Ecology & Evolution, 21, 8995.Google Scholar
Narayanaswamy, B. E., Renaud, P. E., Duineveld, G. C. et al. (2010). Biodiversity trends along the western European margin. PLoS ONE, 5, e14295.Google Scholar
Naylor, E. and Slinn, D. J. (1958). Observations on the ecology of some brackish water organisms in pools at Scarlett Point, Isle of Man. The Journal of Animal Ecology, 27, 15.Google Scholar
Newell, R. C. (1979). Biology of Intertidal Organisms, Marine Ecological Surveys, Ltd, Sittingbourne.Google Scholar
Ng, T. P. T., Saltin, S. H., Davies, M. S., Johannesson, K., Stafford, R. and Williams, G. A. (2013). Snails and their trails: the multiple functions of trail-following in gastropods. Biological Reviews, 88, 683700.Google Scholar
Nicastro, K. R., Zardi, G. I., Teixeira, S., Neiva, J., Serrão, E. A. and Pearson, G. A. (2013). Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus. BMC Biology, 11, 6.Google Scholar
Nobre, A. (1940). Fauna malacológica de Portugal, 1: Moluscos marinhos e de águas salobras. A. Nobre, Porto.Google Scholar
Noël, L. M. L. J., Griffin, J. N., Thompson, R. C. et al. (2010). Assessment of a field incubation method estimating primary productivity in rockpool communities. Estuarine, Coastal and Shelf Science, 88, 153–9.Google Scholar
Noël, L. M. L. J., Hawkins, S. J., Jenkins, S. R. and Thompson, R. C. (2009). Grazing dynamics in intertidal rockpools: connectivity of microhabitats. Journal of Experimental Marine Biology and Ecology, 370, 917.Google Scholar
Norton, T. A., Hawkins, S. J., Manley, N. L., Williams, G. A. and Watson, D. C. (1990). Scraping a living: a review of littorinid grazing. Hydrobiologia, 193, 117–38.Google Scholar
Notman, G., McGill, R., Hawkins, S. and Burrows, M. (2016). Macroalgae contribute to the diet of Patella vulgata from contrasting conditions of latitude and wave exposure in the UK. Marine Ecology Progress Series, 549, 113–23.Google Scholar
O’Connor, N. E. and Crowe, T. P. (2005). Biodiversity loss and ecosystem functioning: distinguishing between number and identity of species. Ecology, 86, 1783–96.Google Scholar
O’Connor, N. E. and Crowe, T. P. (2007). Biodiversity among mussels: separating the influence of sizes of mussels from the ages of patches. Journal of the Marine Biological Association of the United Kingdom, 87, 551.Google Scholar
O’Connor, N. E., Crowe, T. P. and McGrath, D. (2006). Effects of epibiotic algae on the survival, biomass and recruitment of mussels, Mytilus L. (Bivalvia: Mollusca). Journal of Experimental Marine Biology and Ecology, 328, 265–76.Google Scholar
O’Riordan, R. M., Arenas, F., Arrontes, J. et al. (2004). Spatial variation in the recruitment of the intertidal barnacles Chthamalus montagui Southward and Chthamalus stellatus (Poli) (Crustacea: Cirripedia) over an European scale. Journal of Experimental Marine Biology and Ecology, 304, 243–64.Google Scholar
O’Riordan, R. M. and Murphy, O. (2000). Variation in the reproductive cycle of Elminius modestus in southern Ireland. Journal of the Marine Biological Association of the United Kingdom, 80, 607–16.Google Scholar
O’Riordan, R. M. and Ramsay, N. F. (1999). The current distribution and abundance of the Australasian barnacle Elminius modestus in Portugal. Journal of the Marine Biological Association of the United Kingdom, 79, 937–9.Google Scholar
Olabarria, C., Rodil, I. F., Incera, M. and Troncoso, J. S. (2009). Limited impact of Sargassum muticum on native algal assemblages from rocky intertidal shores. Marine Environmental Research, 67, 153–8.Google Scholar
Orton, J. H. (1920). Sea-temperature, breeding and distribution in marine animals. Journal of the Marine Biological Association of the United Kingdom, 12, 339.Google Scholar
Orton, J. H. (1929). Observations on Patella vulgata. Part III. Habitat and Habits. Journal of the Marine Biological Association of the United Kingdom, 16, 277.CrossRefGoogle Scholar
OSPAR Commission (2010). Background Document for Azorean Limpet Patella aspera, Biodiversity Series, OSPAR, Paris.Google Scholar
Pannacciulli, F. G., Bishop, J. D. D. and Hawkins, S. J. (1997). Genetic structure of populations of two species of Chthamalus (Crustacea: Cirripedia) in the north-east Atlantic and Mediterranean. Marine Biology, 128, 7382.Google Scholar
Pardo, P. C., Padín, X. A., Gilcoto, M., Farina-Busto, L. and Pérez, F. F. (2011). Evolution of upwelling systems coupled to the long-term variability in sea surface temperature and Ekman transport. Climate Research, 48, 231–46.Google Scholar
Pearson, G., Kautsky, L. and Serrão, E. (2000). Recent evolution in Baltic Fucus vesiculosus: reduced tolerance to emersion stresses compared to intertidal (North Sea) populations. Marine Ecology Progress Series, 202, 6779.Google Scholar
Perez, R., Lee, J. Y. and Juge, C. (1981). Observations sur la biologie de l’algue japonaise Undaria pinnatifida (Harvey) Suringar introduite accidentellement dans l’Etang de Thau. Science et Peche, 325, 112.Google Scholar
Perkol-Finkel, S. and Sella, I. (2015). Harnessing urban coastal infrastructure for ecological enhancement. Proceedings of the Institution of Civil Engineers – Maritime Engineering, 168, 102–10.Google Scholar
Philippart, C. J. M., Anadón, R., Danovaro, R. et al. (2011). Impacts of climate change on European marine ecosystems: Observations, expectations and indicators. Journal of Experimental Marine Biology and Ecology, 400, 5269.Google Scholar
Pires, A. C., Nolasco, R., Rocha, A., Ramos, A. M. and Dubert, J. (2016). Climate change in the Iberian Upwelling System: a numerical study using GCM downscaling. Climate Dynamics, 47, 451–64.Google Scholar
Pocklington, J. B., Jenkins, S. R., Bellgrove, A. et al. (2017). Disturbance alters ecosystem engineering by a canopy-forming alga. Journal of the Marine Biological Association of the United Kingdom, 98, 687–98.Google Scholar
Poloczanska, E. S., Brown, C. J., Sydeman, W. J. et al. (2013). Global imprint of climate change on marine life. Nature Climate Change, 3, 919–25.Google Scholar
Poloczanska, E. S., Hawkins, S. J., Southward, A. J. and Burrows, M. T. (2008). Modeling the response of populations of competing species to climate change. Ecology, 89, 3138–49.Google Scholar
Powell, A. and Rowley, A. F. (2008). Tissue changes in the shore crab Carcinus maenas as a result of infection by the parasitic barnacle Sacculina carcini. Diseases of Aquatic Organisms, 80, 75–9.Google Scholar
Powell, H. T. (1957). Studies in the genus Fucus L. II: distribution and ecology of forms of Fucus distichus L. Emend Powell in Britain and Ireland. Journal of the Marine Biological Association of the United Kingdom, 36, 663–93.Google Scholar
Powell, H. T. (1963). New records of Fucus distichus subspecies for the Shetland and Orkney islands. British Phycological Bulletin, 2, 247–54.Google Scholar
Prestes, A. C., Cacabelos, E., Neto, A. I. and Martins, G. M. (2017). Temporal stability in macroalgal assemblage standing stock despite high species turnover. Marine Ecology Progress Series, 567, 249–56.Google Scholar
Prinz, K., Kelly, T., O’Riordan, R. and Culloty, S. (2010b). Temporal variation in prevalence and cercarial development of Echinostephilla patellae (Digenea, Philophthalmidae) in the intertidal gastropod Patella vulgata. Acta Parasitologica, 55, 3944.Google Scholar
Prinz, K., Kelly, T. C., O’Riordan, R. M. and Culloty, S. C. (2010a). Occurrence of macroparasites in four common intertidal molluscs on the south coast of Ireland. Marine Biodiversity Records, 3, e89.Google Scholar
Prinz, K., Kelly, T. C., O’Riordan, R. M. and Culloty, S. C. (2011). Factors influencing cercarial emergence and settlement in the digenean trematode Parorchis acanthus (Philophthalmidae). Journal of the Marine Biological Association of the United Kingdom, 91, 1673–9.Google Scholar
Pyefinch, K. A. (1943). The intertidal ecology of Bardsey Island, North Wales, with special reference to the recolonization of rock surfaces, and the rock-pool environment. The Journal of Animal Ecology, 12, 82.Google Scholar
Queiroga, H., Almeida, M. J., Alpuim, T. et al. (2006). Tide and wind control of megalopal supply to estuarine crab populations on the Portuguese west coast. Marine Ecology Progress Series, 307, 2136.Google Scholar
Queiroga, H., Cruz, T., dos Santos, A. et al. (2007). Oceanographic and behavioural processes affecting invertebrate larval dispersal and supply in the western Iberia upwelling ecosystem. Progress in Oceanography, 74, 174–91.Google Scholar
Raffaelli, D. and Hawkins, S. (1996). Intertidal Ecology, Springer Netherlands, Dordrecht.Google Scholar
Rahmstorf, S., Box, J. E., Feulner, G. et al. (2015). Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475–80.Google Scholar
Rayner, N. A. A., Parker, D. E., Horton, E. B. et al. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14).Google Scholar
Reid, D. G. (1996). Systematics and evolution of Littorina, The Ray Society Publications, London.Google Scholar
Ribeiro, P. A., Branco, M., Hawkins, S. J. and Santos, A. M. (2010). Recent changes in the distribution of a marine gastropod, Patella rustica, across the Iberian Atlantic coast did not result in diminished genetic diversity or increased connectivity: Population genetics of Patella rustica. Journal of Biogeography, 37, 1782–96.Google Scholar
Ribeiro, S., Amorim, A., Abrantes, F. and Ellegaard, M. (2016). Environmental change in the Western Iberia upwelling ecosystem since the preindustrial period revealed by dinoflagellate cyst records. The Holocene, 26, 874–89.Google Scholar
Rivera-Ingraham, G. A., Espinosa, F. and García-Gómez, J. C. (2011). Environmentally mediated sex change in the endangered limpet Patella ferruginea (Gastropoda: Patellidae). Journal of Molluscan Studies, 77, 226–31.Google Scholar
Robins, P., Tita, A., King, J. and Jenkins, S. (2017). Predicting the dispersal of wild Pacific oysters Crassostrea gigas (Thunberg, 1793) from an existing frontier population – a numerical study. Aquatic Invasions, 12, 117–31.Google Scholar
Rodil, I. F., Lucena-Moya, P., Olabarria, C. and Arenas, F. (2015a). Alteration of macroalgal subsidies by climate-associated stressors affects behavior of wrack-reliant beach consumers. Ecosystems, 18, 428–40.Google Scholar
Rodil, I. F., Olabarria, C., Lastra, M. and Arenas, F. (2015b). Combined effects of wrack identity and solar radiation on associated beach macrofaunal assemblages. Marine Ecology Progress Series, 531, 167–78.Google Scholar
Rodriguez, S., Martín, A. P., Sousa-Pinto, I. and Arenas, F. (2016). Biodiversity effects on macroalgal productivity: exploring the roles of richness, evenness and species traits. Marine Ecology Progress Series, 562, 7991.Google Scholar
Rognstad, R., Wethey, D. and Hilbish, T. (2014). Connectivity and population repatriation: limitations of climate and input into the larval pool. Marine Ecology Progress Series, 495, 175–83.Google Scholar
Roughgarden, J., Gaines, S. and Possingham, H. (1988). Recruitment dynamics in complex life cycles. Science, 241, 1460–6.Google Scholar
Rueness, J. (1989). Sargassum muticum and other introduced Japanese macroalgae: biological pollution of European coasts. Marine Pollution Bulletin, 20, 173–6.Google Scholar
Russell, B. D., Connell, S. D., Findlay, H. S., Tait, K., Widdicombe, S. and Mieszkowska, N. (2013). Ocean acidification and rising temperatures may increase biofilm primary productivity but decrease grazer consumption. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20120438.Google Scholar
Russell, F. S., Southward, A. J., Boalch, G. T. and Butler, E. I. (1971). Changes in biological conditions in the English Channel off Plymouth during the last half century. Nature, 234, 468–70.Google Scholar
Saldanha, L. (1974). Estudo do povoamento dos horizontes superiores da rocha litoral da costa da Arrábida. Arquivos do Museu Bocage, Segunda Série. 1, 1382.Google Scholar
Santos, F., Gómez-Gesteira, M., deCastro, M. and Álvarez, I. (2011). Upwelling along the western coast of the Iberian Peninsula: dependence of trends on fitting strategy. Climate Research, 48, 213–8.Google Scholar
Santos, R. S., Hawkins, S., Monteiro, L. R., Alves, M. and Isidro, E. J. (1995). Marine research, resources and conservation in the Azores. Aquatic Conservation: Marine and Freshwater Ecosystems, 5(4), 311–54.Google Scholar
Schmidt, P. S., Serrão, E. A., Pearson, G. A. et al. (2008). Ecological genetics in the north Atlantic: environmental gradients and adaptation at specific loci. Ecology, 89, S91S107.Google Scholar
Schonbeck, M. and Norton, T. A. (1978). Factors controlling the upper limits of fucoid algae on the shore. Journal of Experimental Marine Biology and Ecology, 31, 303–13.Google Scholar
Schonbeck, M. W. and Norton, T. A. (1980). Factors controlling the lower limits of fucoid algae on the shore. Journal of Experimental Marine Biology and Ecology, 43, 131–50.Google Scholar
Seabra, R., Wethey, D. S., Santos, A. M. and Lima, F. P. (2011). Side matters: microhabitat influence on intertidal heat stress over a large geographical scale. Journal of Experimental Marine Biology and Ecology, 400, 200–08.Google Scholar
Serrão, E. A., Brawley, S. H., Hedman, J., Kautsky, L. and Samuelsson, G. (1999). Reproductive success of Fucus vesiculosus (Phaeophyceae) in the Baltic Sea. Journal of Phycology, 35, 254–69.Google Scholar
Sherrard, T. R. W., Hawkins, S. J., Barfield, P., Kitou, M., Bray, S. and Osborne, P. E. (2016). Hidden biodiversity in cryptic habitats provided by porous coastal defence structures. Coastal Engineering, 118, 1220.Google Scholar
Silva, A., Hawkins, S., Clarke, K., Boaventura, D. and Thompson, R. (2010). Preferential feeding by the crab Necora puber on differing sizes of the intertidal limpet Patella vulgata. Marine Ecology Progress Series, 416, 179–88.Google Scholar
Silva, A. C. F., Boaventura, D. M., Thompson, R. C. and Hawkins, S. J. (2014). Spatial and temporal patterns of subtidal and intertidal crabs excursions. Journal of Sea Research, 85, 343–8.Google Scholar
Silva, A. C. F., Hawkins, S. J., Boaventura, D. M. and Thompson, R. C. (2008). Predation by small mobile aquatic predators regulates populations of the intertidal limpet Patella vulgata (L.). Journal of Experimental Marine Biology and Ecology, 367, 259–65.Google Scholar
Simkanin, C., Power, A. M., Myers, A. et al. (2005). Using historical data to detect temporal changes in the abundances of intertidal species on Irish shores. Journal of the Marine Biological Association of the United Kingdom, 85, 1329.Google Scholar
Skov, M., Volkelt-Igoe, M., Hawkins, S., Jesus, B., Thompson, R. and Doncaster, C. (2010). Past and present grazing boosts the photo-autotrophic biomass of biofilms. Marine Ecology Progress Series, 401, 101–11.Google Scholar
Skov, M. W., Hawkins, S. J., Volkelt-Igoe, M., Pike, J., Thompson, R. C. and Doncaster, C. P. (2011). Patchiness in resource distribution mitigates habitat loss: insights from high-shore grazers. Ecosphere, 2, art60.Google Scholar
Smaal, A. C., Kater, B. J. and Wijsman, J. (2008). Introduction, establishment and expansion of the Pacific oyster Crassostrea gigas in the Oosterschelde (SW Netherlands). Helgoland Marine Research, 63, 75.Google Scholar
Smale, D. A., Burrows, M. T., Moore, P., O’Connor, N. and Hawkins, S. J. (2013). Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecology and Evolution, 3, 4016–38.Google Scholar
Sousa, L. L., Seabra, R., Wethey, D. S. et al. (2012). Fate of a climate-driven colonisation: demography of newly established populations of the limpet Patella rustica Linnaeus, 1758, in northern Portugal. Journal of Experimental Marine Biology and Ecology, 438, 6875.Google Scholar
Southward, A. J. (1956). The population balance between limpets and seaweeds on wave-beaten rocky shores. Annual Report Marine Biological Station, Port Erin, 68, 20–9.Google Scholar
Southward, A. J. (1958). Note on the temperature tolerances of some intertidal animals in relation to environmental temperatures and geographical distribution. Journal of the Marine Biological Association of the United Kingdom, 37, 49.Google Scholar
Southward, A. J. (1964). Distribution and Ecology of the Hermit Crab Clibanarius erythropus in the Western Channel. In Crisp, D. J., ed. Grazing in Terrestrial and Marine Environments, Blackwell Science, Oxford, pp. 265-73.Google Scholar
Southward, A. J. (1967). Recent changes in abundance of intertidal barnacles in south-west England: a possible effect of climatic deterioration. Journal of the Marine Biological Association of the United Kingdom, 47, 81.Google Scholar
Southward, A. J. (1980). The Western English Channel – an inconstant ecosystem? Nature, 285, 361–6.Google Scholar
Southward, A. J. (1991). Forty years of changes in species composition and population density of barnacles on a rocky shore near Plymouth. Journal of the Marine Biological Association of the United Kingdom, 71, 495.Google Scholar
Southward, A. J. and Crisp, D. J. (1954). Recent changes in the distribution of the intertidal barnacles Chthamalus stellatus poli and Balanus balanoides L. in the British Isles. The Journal of Animal Ecology, 23, 163.Google Scholar
Southward, A. J. and Crisp, D. J. (1956). Fluctuations in the distribution and abundance of intertidal barnacles. Journal of the Marine Biological Association of the United Kingdom, 35, 211.Google Scholar
Southward, A. J., Hawkins, S. J. and Burrows, M. T. (1995). Seventy years’ observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. Journal of Thermal Biology, 20, 127–55.Google Scholar
Southward, A. J., Langmead, O., Hardman-Mountford, N. J. et al. (2004). Long-term oceanographic and ecological research in the Western English Channel. Advances in Marine Biology, 47, 1105.Google Scholar
Southward, A. J. and Orton, J. H. (1954). The effects of wave-action on the distribution and numbers of the commoner plants and animals living on the Plymouth breakwater. Journal of the Marine Biological Association of the United Kingdom, 33, 1.Google Scholar
Southward, A. J. and Southward, E. C. (1978). Recolonization of rocky shores in Cornwall after use of toxic dispersants to clean up the Torrey Canyon spill. Journal of the Fisheries Research Board of Canada, 35, 682706.Google Scholar
Stafford, R. and Davies, M. S. (2004). Temperature and desiccation do not affect aggregation behaviour in high shore littorinids in north-east England. Journal of Negative Results: Ecology and Evolutionary Biology, 1, 1620.Google Scholar
Stafford, R. and Davies, M. S. (2005). Spatial patchiness of epilithic biofilm caused by refuge-inhabiting high shore gastropods. Hydrobiologia, 545, 279–87.Google Scholar
Stephenson, T. A. and Stephenson, A. (1949). The universal features of zonation between tide-marks on rocky coasts. The Journal of Ecology, 37, 289305.Google Scholar
Stephenson, T. A. and Stephenson, A. (1972). Life between Tidemarks on Rocky Shores, W. H. Freeman & Co Ltd, New York.Google Scholar
Strain, E. M. A., Alexander, K. A., Kienker, S. et al. (2019). Urban blue: a global analysis of the factors shaping people's perceptions of the marine environment and ecological engineering in harbours. Science of the Total Environment, 658, 1293–305.Google Scholar
Strain, E. M. A., Olabarria, C., Mayer-Pinto, M. et al. (2017). Eco-engineering urban infrastructure for marine and coastal biodiversity: which interventions have the greatest ecological benefit? Journal of Applied Ecology, 55, 426–41.Google Scholar
Sunday, J. M., Bates, A. E. and Dulvy, N. K. (2011). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society of London B: Biological Sciences, 278, 1823–30.Google Scholar
Sunday, J. M., Bates, A. E. and Dulvy, N. K. (2012). Thermal tolerance and the global redistribution of animals. Nature Climate Change, 2, 686–90.Google Scholar
Sutton-Grier, A. E., Wowk, K. and Bamford, H. (2015). Future of our coasts: the potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environmental Science & Policy, 51, 137–48.Google Scholar
Svensson, C. J., Jenkins, S. R., Hawkins, S. J. and Åberg, P. (2005). Population resistance to climate change: modelling the effects of low recruitment in open populations. Oecologia, 142, 117–26.Google Scholar
Svensson, C. J., Johansson, E. and Åberg, P. (2006). Competing species in a changing climate: effects of recruitment disturbances on two interacting barnacle species. Journal of Animal Ecology, 75, 765–76.Google Scholar
Svensson, C. J., Pavia, H. and Åberg, P. (2009). Robustness in life history of the brown seaweed Ascophyllum nodosum (Fucales, Phaeophyceae) across large scales: effects of spatially and temporally induced variability on population growth. Marine Biology, 156, 1139–48.Google Scholar
Teagle, H., Hawkins, S. J., Moore, P. J. and Smale, D. A. (2017). The role of kelp species as biogenic habitat formers in coastal marine ecosystems. Journal of Experimental Marine Biology and Ecology, 492, 8198.Google Scholar
Thomas, M. L. H. (1965). Observations on the occurrence of Cercaria patellae Lebour in Patella vulgata L. on the Inner Farne. Transactions of the Natural History Society of Northumberland, Durham and Newcastle-upon-Tyne, 15, 140–6.Google Scholar
Thompson, G. B. (1980). Distribution and population dynamics of the limpet Patella vulgata L. in Bantry Bay. Journal of Experimental Marine Biology and Ecology, 45, 173217.Google Scholar
Thompson, R. C., Johnson, L. E. and Hawkins, S. J. (1997). A method for spatial and temporal assessment of gastropod grazing intensity in the field: the use of radula scrapes on wax surfaces. Journal of Experimental Marine Biology and Ecology, 218, 6376.Google Scholar
Thompson, R. C., Moschella, P. S., Jenkins, S. R., Norton, T. A. and Hawkins, S. J. (2005). Differences in photosynthetic marine biofilms between sheltered and moderately exposed rocky shores. Marine Ecology Progress Series, 296, 5363.Google Scholar
Thompson, R. C., Norton, T. A. and Hawkins, S. J. (1998). The influence of epilithic microbial films on the settlement of Semibalanus balanoides cyprids – a comparison between laboratory and field experiments. Hydrobiologia, 375, 203–16.Google Scholar
Thompson, R. C., Norton, T. A. and Hawkins, S. J. (2004). Physical stress andbiological regulation control pattern and process in benthic biofilms. Ecology, 85, 1372–82.Google Scholar
Thompson, R. C., Norton, T. A., Roberts, M. F. and Hawkins, S. J. (2000). Feast or famine for intertidalgrazing molluscs: a mis-match between seasonal variations in grazing intensityand the abundance of microbial resources. Hydrobiologia, 440, 357–66.Google Scholar
Thompson, R. C., Wilson, B. J., Tobin, M. L., Hill, A. S. and Hawkins, S. J. (1996). Biologically generated habitat provision and diversity of rocky shore organisms at a hierarchy of spatial scales. Journal of Experimental Marine Biology and Ecology, 202, 7384.Google Scholar
Torres, G., Giménez, L., Pettersen, A., Bue, M., Burrows, M. and Jenkins, Sr. (2016). Persistent and context-dependent effects of the larval feeding environment on post-metamorphic performance through the adult stage. Marine Ecology Progress Series, 545, 147–60.Google Scholar
Trindade, A., Peliz, J., Diaz, J., Lamas, L., Oliveira, P. and Cruz, T. (2016). Cross-shore transport in a daily varying upwelling regime: a case study of barnacle larvae on the southwestern Iberian coast. Continental Shelf Research, 127, 1227.Google Scholar
Underwood, A. J. (1973). Studies on the zonation of intertidal prosobranchs (Gastropoda: Prosobranchia) in the region of Heybrook Bay, Plymouth. Journal of Animal Ecology, 42, 353–72.Google Scholar
Van den Hoek, C. (1984). World-wide latitudinal and longitudinal seaweed distribution patterns and their possible causes, as illustrated by the distribution of Rhodophytan genera. Helgoländer Meeresuntersuchungen, 38, 227–57.Google Scholar
Van den Hoek, C. and Donze, M. (1967). Algal phytogeography of the European Atlantic coasts. Blumea, 15, 6385.Google Scholar
Van Syoc, R. J., Fernandes, J. N., Carrison, D. A. and Grosberg, R. K. (2010). Molecular phylogenetics and biogeography of Pollicipes (Crustacea: Cirripedia), a Tethyan relict. Journal of Experimental Marine Biology and Ecology, 392, 193–9.Google Scholar
Varela, R., Álvarez, I., Santos, F. and Gómez-Gesteira, M. (2015). Has upwelling strengthened along worldwide coasts over 1982-2010? Scientific Reports, 5, 10016.Google Scholar
Vaz‐Pinto, F., Olabarria, C. and Arenas, F. (2014). Ecosystem functioning impacts of the invasive seaweed Sargassum muticum (Fucales, Phaeophyceae). Journal of Phycology, 50, 108–16.Google Scholar
Veiga, P., Torres, A. C., Rubal, M., Troncoso, J. and Sousa-Pinto, I. (2014). The invasive kelp Undaria pinnatifida (Laminariales, Ochrophyta) along the north coast of Portugal: distribution model versus field observations. Marine Pollution Bulletin, 84, 363–5.Google Scholar
Vergés, A., Steinberg, P. D., Hay, M. E. et al. (2014). The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proceedings of the Royal Society B: Biological Sciences, 281, 20140846.Google Scholar
Vieira, R., Pinto, I. S. and Arenas, F. (2017). The role of nutrient enrichment in the invasion process in intertidal rockpools. Hydrobiologia, 797, 183–98.Google Scholar
Viejo, R. M. (1997). The effects of colonization by Sargassum muticum on tidepool macroalgal assemblages. Journal of the Marine Biological Association of the United Kingdom, 77, 325.Google Scholar
Viejo, R. M., Arenas, F., Fernández, C. and Gómez, M. (2008). Mechanisms of succession along the emersion gradient in intertidal rocky shore assemblages. Oikos, 117, 376–89.Google Scholar
Vinagre, C., Mendonça, V., Narciso, L. and Madeira, C. (2015). Food web of the intertidal rocky shore of the west Portuguese coast – determined by stable isotope analysis. Marine Environmental Research, 110, 5360.Google Scholar
Vye, S. R., Emmerson, M. C., Arenas, F., Dick, J. T. A. and O’Connor, N. E. (2014). Stressor intensity determines antagonistic interactions between species invasion and multiple stressor effects on ecosystem functioning. Oikos, 124, 1005–12.Google Scholar
Wangkulankul, K. (2016). Community level effects of variable recruitment of a key species Mytilus edulis L. in the rocky intertidal. PhD, Bangor University.Google Scholar
Wangkulankul, K., Hawkins, S. J. and Jenkins, S. R. (2016). The influence of mussel-modified habitat on Fucus serratus L. a rocky intertidal canopy-forming macroalga. Journal of Experimental Marine Biology and Ecology, 481, 63-70.Google Scholar
Wares, J. P. and Cunningham, C. W. (2001). Phylogeography and historical ecology of the north Atlantic intertidal. Evolution, 55, 2455–69.Google Scholar
Weber, L. I. and Hawkins, S. J. (2002). Evolution of the limpet Patella candei d’Orbigny (Mollusca, Patellidae) in Atlantic archipelagos: human intervention and natural processes. Biological Journal of the Linnean Society, 77, 341–53.Google Scholar
Weber, L. I. and Hawkins, S. J. (2005). Patella aspera and P. ulyssiponensis: genetic evidence of speciation in the North-east Atlantic. Marine Biology, 147, 153–62.Google Scholar
Wethey, D. S. and Woodin, S. A. (2008). Ecological Hindcasting of Biogeographic Responses to Climate Change in the European Intertidal Zone. In Davenport, J., Burnell, G. M., Cross, T., et al., eds. Challenges to Marine Ecosystems: Proceedings of the 41st European Marine Biology Symposium, Springer Netherlands, Dordrecht, pp. 139–51.Google Scholar
Wethey, D. S., Woodin, S. A., Hilbish, T. J., Jones, S. J., Lima, F. P. and Brannock, P. M. (2011). Response of intertidal populations to climate: Effects of extreme events versus long term change. Journal of Experimental Marine Biology and Ecology, 400, 132–44.Google Scholar
Wilson, D. P. (1968). The settlement behaviour of the larvae of Sabellaria alveolata (L.). Journal of the Marine Biological Association of the United Kingdom, 48, 387.Google Scholar
Witte, S., Buschbaum, C., van Beusekom, J. E. E. and Reise, K. (2010). Does climatic warming explain why an introduced barnacle finally takes over after a lag of more than 50 years? Biological Invasions, 12, 3579–89.Google Scholar
Zardi, G. I., Nicastro, K. R., Canovas, F. et al. (2011). Adaptive traits are maintained on steep selective gradients despite gene flow and hybridization in the intertidal zone. PLoS ONE, 6, e19402.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×