Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T17:02:01.405Z Has data issue: false hasContentIssue false

Section 1: - Basic Introduction

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bostan, AC, Strick, PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci 2018;19(6):338350.CrossRefGoogle Scholar
Fahn, S, Jankovic, J, Hallett, M. Principles and Practice of Movement Disorders. 2nd ed. Philadelphia: Elsevier Saunders; 2011.Google Scholar
Errante, A, Ziccarelli, S, Mingolla, G, Fogassi, L. Grasping and manipulation: neural bases and anatomical circuitry in humans. Neuroscience 2021;458:203212.CrossRefGoogle ScholarPubMed
Grafton, ST, Volz, LJ. From ideas to action: the prefrontal–premotor connections that shape motor behavior. Handb Clin Neurol 2019;163:237255.CrossRefGoogle ScholarPubMed
Hunt, LT. Frontal circuit specialisations for decision making. Eur J Neurosci 2021;53(11):36543671.CrossRefGoogle ScholarPubMed
Hallett, M. Physiology of free will. Ann Neurol 2016;80(1):512.CrossRefGoogle ScholarPubMed
Nahab, FB, Kundu, P, Gallea, C, et al. The neural processes underlying self-agency. Cereb Cortex 2011;21(1):4855.CrossRefGoogle ScholarPubMed
Kranick, SM, Hallett, M. Neurology of volition. Exp Brain Res 2013;229(3):313327.CrossRefGoogle ScholarPubMed
Wheaton, LA, Hallett, M. Ideomotor apraxia: a review. J Neurol Sci 2007;260(1–2):110.CrossRefGoogle ScholarPubMed
Park, JE. Apraxia: review and update. J Clin Neurol 2017;13(4):317324.CrossRefGoogle Scholar
Bohlhalter, S, Hattori, N, Wheaton, L, et al. Gesture subtype-dependent left lateralization of praxis planning: an event-related fMRI study. Cereb Cortex 2009;19(6):12561262.CrossRefGoogle ScholarPubMed
Wu, T, Chan, P, Hallett, M. Modifications of the interactions in the motor networks when a movement becomes automatic. J Physiol 2008;586(Pt 17):42954304.CrossRefGoogle Scholar
Horovitz, SG, Gallea, C, Najee-Ullah, M, Hallett, M. Functional anatomy of writing with the dominant hand. PLoS One 2013;8(7):e67931.CrossRefGoogle ScholarPubMed
Gallea, C, Horovitz, SG, Ali Najee-Ullah, M, Hallett, M. Impairment of a parieto-premotor network specialized for handwriting in writer’s cramp. Hum Brain Mapp 2016;37:43634375.CrossRefGoogle ScholarPubMed
Graybiel, AM. Habits, rituals, and the evaluative brain. Annu Rev Neurosci 2008;31:359387.CrossRefGoogle ScholarPubMed
Belluscio, BA, Jin, L, Watters, V, Lee, TH, Hallett, M. Sensory sensitivity to external stimuli in Tourette syndrome patients. Mov Disord 2011;26(14):25382543.CrossRefGoogle ScholarPubMed
Berman, BD, Horovitz, SG, Morel, B, Hallett, M. Neural correlates of blink suppression and the buildup of a natural bodily urge. Neuroimage 2012;59(2):1441-1450.CrossRefGoogle ScholarPubMed
Bohlhalter, S, Goldfine, A, Matteson, S, et al. Neural correlates of tic generation in Tourette syndrome: an event-related functional MRI study. Brain 2006;129(Pt 8):20292037.CrossRefGoogle ScholarPubMed
Lerner, A, Bagic, A, Boudreau, EA, et al. Neuroimaging of neuronal circuits involved in tic generation in patients with Tourette syndrome. Neurology 2007;68(23):19791987.CrossRefGoogle ScholarPubMed
Shibasaki, H. Cortical activities associated with voluntary movements and involuntary movements. Clin Neurophysiol 2012;123(2):229243.CrossRefGoogle ScholarPubMed
Shibasaki, H, Hallett, M. What is the Bereitschaftspotential? Clin Neurophysiol 2006;117(11):23412356.CrossRefGoogle Scholar
van der Salm, SM, Tijssen, MA, Koelman, JH, van Rootselaar, AF. The bereitschaftspotential in jerky movement disorders. J Neurol Neurosurg Psychiatry 2012;83(12):11621167.CrossRefGoogle ScholarPubMed
Drane, DL, Fani, N, Hallett, M, A framework for understanding the pathophysiology of functional neurological disorder. CNS Spectr 2020:1–7.CrossRefGoogle Scholar
Perez, DL, Aybek, S, Popkirov, S, et al. A review and expert opinion on the neuropsychiatric assessment of motor functional neurological disorders. J Neuropsychiatr Clin Neurosci 2021;33(1):1426.CrossRefGoogle ScholarPubMed
Perez, DL, Edwards, MJ, Nielsen, G, et al. Decade of progress in motor functional neurological disorder: continuing the momentum. J Neurol Neurosurg Psychiatry 2021.CrossRefGoogle Scholar
Baizabal-Carvallo, JF, Hallett, M, Jankovic, J. Pathogenesis and pathophysiology of functional (psychogenic) movement disorders. Neurobiol Dis 2019;127:3244.CrossRefGoogle ScholarPubMed
Hallett, M. Neurophysiologic studies of functional neurologic disorders. In: Hallett, M, Stone, J, Carson, A, eds. Functional Neurologic Disorders Handbook of Clinical Neurology, Vol 139. Handbook of Clinical Neurology. 139. Amsterdam: Elsevier; 2016: 6171.CrossRefGoogle Scholar
Voon, V, Brezing, C, Gallea, C, et al. Emotional stimuli and motor conversion disorder. Brain 2010;133(Pt 5):15261536.CrossRefGoogle ScholarPubMed
Voon, V, Gallea, C, Hattori, N, et al. The involuntary nature of conversion disorder. Neurology 2010;74:223228.CrossRefGoogle ScholarPubMed
Baird, AD, Scheffer, IE, Wilson, SJ. Mirror neuron system involvement in empathy: a critical look at the evidence. Social Neurosci 2011;6(4):327335.CrossRefGoogle Scholar
Rizzolatti, G, Sinigaglia, C. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 2010;11(4):264274.CrossRefGoogle ScholarPubMed
Bologna, M, Paparella, G, Fasano, A, Hallett, M, Berardelli, A. Evolving concepts on bradykinesia. Brain 2020;143(3):727-750.CrossRefGoogle ScholarPubMed
Hallett, M. Bradykinesia: why do Parkinson’s patients have it and what trouble does it cause? Mov Disord 2011;26(9):15791581.CrossRefGoogle ScholarPubMed
Ling, H, Massey, LA, Lees, AJ, Brown, P, Day, BL. Hypokinesia without decrement distinguishes progressive supranuclear palsy from Parkinson’s disease. Brain 2012;135(Pt 4):11411153.CrossRefGoogle ScholarPubMed
Kang, SY, Wasaka, T, Shamim, EA, et al. Characteristics of the sequence effect in Parkinson’s disease. Mov Disord 2010;25(13):21482155.CrossRefGoogle ScholarPubMed
Weintraub, D, Mamikonyan, E. The neuropsychiatry of Parkinson disease: a perfect storm. Am J Geriatr Psychiatry 2019;27(9):9981018.CrossRefGoogle ScholarPubMed
Hallett, M. Physiology of behaviour. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement disorders. Amsterdam: VU University Press; 2014.Google Scholar

References

Nieuwenhuys, R, Voogd, J, Van Huijzen, Ch. The Human Central Nervous System. A Synopis and Atlas. 4th revised ed. Heidelberg: Springer Verlag; 2008.CrossRefGoogle Scholar
Sakamoto, N, Pearson, J, Shinoda, K, et al. The human basal forebrain. Part I. In: Bloom, FE, Björklund, A, Hökfelt, T, eds. Handbook of Chemical Neuroanatomy, Vol. 15. The Primate Nervous System. Part III. Amsterdam: Elsevier; 1999: 155.Google Scholar
Heimer, L, de Olmos, JS, Alheid, GF, et al. The human basal forebrain. Part II. In: Bloom, FE, Björklund, A, Hökfelt, T, eds. Handbook of Chemical Neuroanatomy, Vol. 15. The Primate Nervous System. Part III. Amsterdam: Elsevier; 1999: 57226.CrossRefGoogle Scholar
Heimer, L, Harlan, RE, Alheid, GF, Garcia, MM, de Olmos, J. Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 1997;76:9571006.CrossRefGoogle ScholarPubMed
Parent, A, Cote, PY, Lavoie, B. Chemical anatomy of primate basal ganglia. Prog Neurobiol 1995;46:131197.CrossRefGoogle ScholarPubMed
Parent, A, Hazrati, L-N. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia–thalamo-cortical loop. Brain Res Rev 1995;20:91127.CrossRefGoogle ScholarPubMed
Wise, SP, Murray, EA, Gerfen, CR. The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol 1996;10:317356.CrossRefGoogle ScholarPubMed
Gerfen, CR, Bolam, JP. The neuroanatomical organization of the basal ganglia. In: Steiner, H, Tseng, KY, eds. Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 24. Amsterdam: Elsevier; 2016: 332.Google Scholar
Haynes, WIA, Haber, SN. The organization of prefrontal–subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. J Neurosci 2013;33:48044814.CrossRefGoogle ScholarPubMed
Bevan, M. The subthalamic nucleus. In: Steiner, H, Tseng, KY, eds. Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 24. Amsterdam: Elsevier; 2016: 277291.Google Scholar
Haber, SN. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience 2014;282:248–57.CrossRefGoogle ScholarPubMed
Smith, AD, Bolam, JP. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 1990;13:259265.CrossRefGoogle Scholar
Tepper, JM, Koos, T, Wilson, CJ. GABAergic microcircuits in the neostriatum. Trends Neurosci 2004;27:662669.CrossRefGoogle ScholarPubMed
Cragg, SJ. Meaningful silences: how dopamine listens to the Ach pause. Trends Neurosci 2006;29:125131.CrossRefGoogle Scholar
Schultz, W. Neuronal reward and decision signals: from theorries to data. Physiol Rev 2015;95:853951.CrossRefGoogle ScholarPubMed
Plenz, D, Wickens, JR.The striatal skeleton: medium spiny projection neurons and their lateral connections. In: Steiner, H, Tseng, KY, eds. Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 24. Amsterdam: Elsevier; 2016: 121136.Google Scholar
Houk, JC. Information processing in modular circuits linking basal ganglia and cerbral cortex. In: Houk, JC, Davis, JL, Beiser, DG, eds. Models of Information Processing in the Basal Ganglia. Cambridge, MA: MIT Press; 1995: 39.Google Scholar
Haber, SN, Fudge, JL, McFarland, NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 2000;20:23692382.CrossRefGoogle ScholarPubMed
Groenewegen, HJ, Voorn, P, Scheel-Krüger, . Limbic basal ganglia circuits parallel and integrative aspects. In: Soghomonian, J-J, ed. The Basal Ganglia. Novel Perspectives on Motor and Cognitive Functions. New York: Springer; 2016: 1145.CrossRefGoogle Scholar
Berridge, CW, Stratford, TL, Foote, SL, Kelley, AE. Distribution of dopamine beta-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens. Synapse 1997;27:230241.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Feekes, JA, Cassell, MD. The vascular supply of the functional compartments of the human striatum. Brain 2006;129:21892201.CrossRefGoogle ScholarPubMed
Kita, H, Jaeger, D. Organization of the globus pallidus. In: Steiner, H, Tseng, KY, eds. Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 24. Amsterdam: Elsevier; 2016: 259276.Google Scholar
Mink, JW, Thach, WT. Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters. J Neurophysiol 1991;65:301329.CrossRefGoogle ScholarPubMed
Zahm, DS, Brog, JS. On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 1992;50:751767.CrossRefGoogle ScholarPubMed
Shink, E, Bevan, MD, Bolam, JP, Smith, Y. The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 1996;73:335357.CrossRefGoogle ScholarPubMed
Mink, JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 1996;50:381425.CrossRefGoogle ScholarPubMed
Zahm, DS. The rostromedial tegmental nucleus: connections with the basal ganglia. In: Steiner, H, Tseng, KY, eds. Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 24. Amsterdam: Elsevier; 2016: 513534.Google Scholar
Temel, Y, Blokland, A, Steinbusch, HW, Visser-Vandewalle, V. The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 2005;76:393413.CrossRefGoogle ScholarPubMed
Coizet, V, Graham, JH, Moss, J, et al. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J Neurosci 2009;29:57015709.CrossRefGoogle Scholar
Deniau, JM, Chevalier, G. The lamellar organization of the rat substantia nigra pars reticulata: distribution of projection neurons. Neuroscience 1992;46:361377.CrossRefGoogle ScholarPubMed
Domburg, PH, ten Donkelaar, HJ. The human substantia nigra and ventral tegmental area. A neuroanatomical study with notes on aging and aging diseases. Adv Anat Embryol Cell Biol 1991;121:1132.Google ScholarPubMed
Carr, DB, Sesack, SR. GABA-containing neurons in the ventral tegmental area project to the prefrontal cortex. Synapse 2000;38:114123.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Chuhma, N, Zhang, H, Masson, J, et al. Dopamine neurons mediate fast excitatory signal via their glutamatergic synapses. J Neurosci 2004;24:972981.CrossRefGoogle ScholarPubMed
Eblen, F, Graybiel, AM. Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J Neurosci 1995;15:59996013.CrossRefGoogle ScholarPubMed
Berendse, HW, Galis-de Graaf, Y, Groenewegen, HJ. Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 1992;316:314347.CrossRefGoogle ScholarPubMed
Mena-Segovia, J, Bolam, JP, Magill, PJ. Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 2004;27:585588.CrossRefGoogle ScholarPubMed
Comoli, E, Coizet, V, Boyes, J, et al. A direct projection from superior colliculus to substantia nigra for detecting salient visual signals. Nat Neurosci 2003;6:974980.CrossRefGoogle Scholar
Schultz, W. Reward functions of the basal ganglia. J Neural Transm (Vienna) 2016;123:679693.CrossRefGoogle ScholarPubMed
Schultz, W. Recent advances in understanding the role of phasic dopamine activity. F1000Res 2019;8(F1000 Faculty Rev):1680.CrossRefGoogle ScholarPubMed
Benarroch, EE. Pedunculopontine nucleus. Functional organization and clinical implications. Neurology 2013;80:11481155.CrossRefGoogle ScholarPubMed
Winn, P. How to best consider the structure and function of the pedunculopontine tegmental nucleus: evidence from animal studies. J Neurol Sci 2006;248:234250.CrossRefGoogle ScholarPubMed
Garcia-Rill, E, Saper, CB, Rye, DB, et al. Focus on the pedunculopontine nucleus. Consensus review from the May 2018 brainstem society meeting in Washington, DC, USA. Clin Neurophysiol 2019;130:925940.CrossRefGoogle ScholarPubMed
Barrot, M, Georges, F, Veinante, P. The tail of the ventral tegmental area/rostromedial tegmental nucleus: a modulator of midbrain dopamine systems. In: Steiner, H, Tseng, KY, eds. Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 24. Amsterdam: Elsevier; 2016: 495511.Google Scholar
Heimer, L, Wilson, RD. The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Santini, M, ed. Golgi Centennial Symposium: Perspectives in Neurobiology. New York: Raven Press; 1975: 177193.Google Scholar
Alexander, GE, DeLong, MR, Strick, PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986;9:357381.CrossRefGoogle ScholarPubMed
Voorn, P, Vanderschuren, LJ, Groenewegen, HJ, Robbins, TW, Pennartz, CM. Putting a spin on the dorsal–ventral divide of the striatum. Trends Neurosci 2004;27:468474.CrossRefGoogle ScholarPubMed
Fudge, JL, Haber, SN. Defining the caudal ventral striatum in primates: cellular and histochemical features. J Neurosci 2002;22:1007810082.CrossRefGoogle ScholarPubMed
Zaborszky, L, Alheid, GF, Beinfeld, MC, et al. Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience 1985;4:427453.CrossRefGoogle Scholar
Meredith, GE, Pattiselanno, A, Groenewegen, HJ, Haber, SN. Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28k. J Comp Neurol 1996;365:628639.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Voorn, P, Brady, LS, Berendse, HW, Richfield, EK. Densitometrical analysis of opioid receptor ligand binding in the human striatum – I. Distribution of mu opioid receptor defines shell and core of the ventral striatum. Neuroscience 1996;75:777792.CrossRefGoogle ScholarPubMed
Berendse, HW, Richfield, EK. Heterogeneous distribution of dopamine D1 and D2 receptors in the human ventral striatum. Neurosci Lett 1993;150:7579.CrossRefGoogle ScholarPubMed
Joyce, JN, Gurevich, EV. D3 receptors and the actions of neuroleptics in the ventral striatopallidal system of schizophrenics. Ann N Y Acad Sci 1999;877:595613.CrossRefGoogle ScholarPubMed
Haber, SN, Wolfe, DP, Groenewegen, HJ. The relationship between ventral striatal efferent fibers and the distribution of peptide-positive woolly fibers in the forebrain of the rhesus monkey. Neuroscience 1990;39:323338.CrossRefGoogle ScholarPubMed
Deniau, JM, Menetrey, A, Thierry, AM. Indirect nucleus accumbens input to the prefrontal cortex via the substantia nigra pars reticulata: a combined anatomical and electrophysiological study in the rat. Neuroscience 1994;61:533545.CrossRefGoogle Scholar
Groenewegen, HJ, Berendse, HW. Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat. J Comp Neurol 1990;294:607622.CrossRefGoogle ScholarPubMed
Ferry, AT, Ongur, D, An, X, Price, JL. Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol 2000;425:447470.3.0.CO;2-V>CrossRefGoogle Scholar
Mogenson, GJ, Jones, DL, Yim, CY. From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 1980;14:6997.CrossRefGoogle ScholarPubMed
Humphries, MD, Prescott, TJ. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 2010;90:385417.CrossRefGoogle ScholarPubMed
Kelley, AE. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobeh Rev 2004;27:765776.CrossRefGoogle ScholarPubMed
Reynolds, SM, Berridge, KC. Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. J Neurosci 2002;22:73087320.CrossRefGoogle Scholar
Cardinal, RN, Parkinson, JA, Hall, J, Everitt, BJ. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobeh Rev 2002;26:321352.CrossRefGoogle ScholarPubMed
Parkinson, JA, Olmstead, MC, Burns, LH, Robbins, TW, Everitt, BJ. Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by d-amphetamine. J Neurosci 1999;9:24012411.CrossRefGoogle Scholar
Corbit, LH, Muir, JL, Balleine, BW. The role of the nucleus accumbens in instrumental conditioning: evidence of a functional dissociation between accumbens core and shell. J Neurosci 2001;21:32513260.CrossRefGoogle ScholarPubMed
Di Chiara, G. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 2002;137:75114.CrossRefGoogle ScholarPubMed
Ito, R, Robbins, TW, Everitt, BJ. Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 2004;7:389397.CrossRefGoogle ScholarPubMed
Xu, L, Nan, J, Lan, Y. The nucleus accumbens: a common target in the comorbidity of depression and addiction. Front Neural Circuits 2020;14:37.CrossRefGoogle ScholarPubMed
Wu, H, Hariz, M, Visser-Vandewalle, V, et al. Deep brain stimulation for refractory obsessive-compulsive disorder (OCD): emerging or established therapy? Mol Psychiatr 2021;26:6065.CrossRefGoogle ScholarPubMed
Denys, D, Mantione, M, Figee, M, et al. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry 2010;67:10611068.CrossRefGoogle ScholarPubMed
Nauta, WJH, Mehler, WR. Projections of the lentiform nucleus in the monkey. Brain Res 1966;1:342.CrossRefGoogle ScholarPubMed
Groenewegen, HJ, Berendse, HW, Wolters, JG, Lohman, AHM. The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res 1990;85:95118.CrossRefGoogle ScholarPubMed
Alexander, GE, Crutcher, MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990;13:266271.CrossRefGoogle ScholarPubMed
Haber, SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 2003;26:317330.CrossRefGoogle ScholarPubMed
Greene, DJ, Marek, S, Gordon, EM, et al. Integrative and network-specific connectivity of the basal ganglia and thalamus defined in individuals. Neuron 2020;105:742758.CrossRefGoogle ScholarPubMed
Shipp, S. The functional logic of corticostriatal connections. Brain Struct Funct 2017;222:669706.CrossRefGoogle ScholarPubMed
Wall, NR, De la Parra, M, Callaway, EM, Kreitzer, AC. Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 2013;79:114.CrossRefGoogle ScholarPubMed
Redgrave, P, Prescott, TJ, Gurney, K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 1999;89:10091023.CrossRefGoogle Scholar
Mouroux, M, Hassani, OK, Feger, J. Electrophysiological and Fos immunohistochemical evidence for the excitatory nature of the parafascicular projection to the globus pallidus. Neuroscience 1997;81:387397.CrossRefGoogle ScholarPubMed
Van der Werf, YD, Witter, MP, Groenewegen, HJ. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Rev 2002;39:107140.CrossRefGoogle ScholarPubMed
Smith, Y, Raju, DV, Pare, JF, Sibide, M. The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 2004;27:520527.CrossRefGoogle ScholarPubMed
Galvan, A, Villalba, RM, Wichmann, T, Smith, Y. The thalamostriatal system in normal and disease states. In: Steiner, H, Tseng, KY, eds. Handbook of Basal Ganglia Structure and Function. Handbook of Behavioral Neuroscience, Vol. 24. Amsterdam: Elsevier: 2016: 477493.Google Scholar
McHaffie, JG, Stanford, TR, Stein, BE, Coizet, V, Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci 2005;28:401407.CrossRefGoogle ScholarPubMed
Dhawale, AK, Wolff, SBE, Ko, R, Ölveczky, BP. The basal ganglia control the detailed kinematics of learned motor skills. Nat Neurosci 2021;24:12561269.CrossRefGoogle ScholarPubMed
Joel, D, Weiner, I. The organization of the basal ganglia–thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 1994;63:363379.CrossRefGoogle ScholarPubMed
Corbit, LH, Muir, JL, Balleine, BW. The role of the nucleus accumbens in instrumental conditioning: evidence for a functional dissociation between accumbens core and shell. J Neurosci 2001;21:32513260.CrossRefGoogle ScholarPubMed
Groenewegen, HJ, Berendse, HW, Wouterlood, FG. Organization of the projections from the ventral striatopallidal system to ventral mesencephalic dopaminergic neurons. In: Percheron, G, McKenzie, JS, eds. The Basal Ganglia IV. New York: Plenum Press; 1994: 8193.CrossRefGoogle Scholar
Maurin, Y, Banrezes, B, Menetrey, A, Mailly, P, Deniau, JM. Three-dimensional distribution of nigrostriatal neurons in the rat: relation to the topography of striatonigral projections. Neuroscience 1999;91:891909.CrossRefGoogle Scholar
Schmahmann, JD, Caplan, D. Cognition, emotion and the cerebellum. Brain 2006;129:290292.CrossRefGoogle ScholarPubMed
Bostan, AC, Strick, PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci 2018;19:338350.CrossRefGoogle Scholar
Milardi, D, Quartarone, A, Bramanti, A, et al. The cortico-basal ganglia–cerebellar network: past, present and future perspectives. Front Syst Neurosci 2019;13:61.CrossRefGoogle ScholarPubMed
Grisot, G, Haber, SN, Yendiki, A. Diffusion MRI and anatomic tracing in the same brain reveal common failure modes of tractography. Neuroimage 2021;239:118300.CrossRefGoogle ScholarPubMed
Haber, SN, Liu, H, Seidlitz, J, Bullmore, E. Prefrontal connectomics: from anatomy to human imaging. Neuropsychopharmacology 2022;47:2040.CrossRefGoogle ScholarPubMed
Sesack, SR, Grace, AA. Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 2010;35:2747.CrossRefGoogle ScholarPubMed
Packard, MG, Knowlton, BJ. Learning and memory functions of the basal ganglia. Annu Rev Neurosci 2002;25:563593.CrossRefGoogle ScholarPubMed
Devan, BD, White, NM. Parallel information processing in the dorsal striatum: relation to hippocampal function. J Neurosci 1999;19:27892798.CrossRefGoogle ScholarPubMed
Robbins, TW, Everitt, BJ. Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 1996;6:228236.CrossRefGoogle ScholarPubMed
Pennartz, CMA, Groenewegen, HJ, Lopes da Silva, FH. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Progr Neurobiol 1994;42:719761.CrossRefGoogle ScholarPubMed
Redgrave, P, Gurney, K. The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci 2006;7:967975.CrossRefGoogle Scholar
Suri, RE, Schultz, W. Learning of sequential movements by neural network model with dopamine-like reinforcement signal. Exp Brain Res 1998;121:350354.CrossRefGoogle ScholarPubMed
Obeso, JA, Rodriguez-Oroz, MC, Rodriguez, M, et al. Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 2000;23(S10):819.CrossRefGoogle ScholarPubMed
Richfield, EK, Maguire-Zeiss, KA, Vonkeman, HE, Voorn, P. Preferential loss of preproenkephalin versus preprotachykinin neurons from the striatum of Huntington’s patients. Ann Neurol 1995;38:852861.CrossRefGoogle Scholar
Bergman, H, Wichmann, T, DeLong, MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 1990;249:14361438.CrossRefGoogle ScholarPubMed
Lozano, C, Tam, J, Lozano, AM. The changing landscape of surgery for Parkinson’s disease. Mov Disord 2018;33:3647.CrossRefGoogle ScholarPubMed
Thevathasan, W, Debu, B, Aziz, T, et al. Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease: a clinical review. Mov Disord 2018;33:1020.CrossRefGoogle ScholarPubMed
Temel, Y, Kessels, A, Tan, S, et al. Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson’s disease: a systematic review. Parkinsonism Relat Disord 2006;12:265272.CrossRefGoogle ScholarPubMed
Groenewegen, HJ. Basal ganglia. In: Wolters, EC, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 4577.Google Scholar

References

Marsden, JF. Cerebellar ataxia. Handb Clin Neurol 2018;159:261281.CrossRefGoogle ScholarPubMed
Schmahmann, JD, Caplan, D. Cognition, emotion and the cerebellum. Brain 2006;129(Pt 2):290292.CrossRefGoogle ScholarPubMed
Dirkx, MF, den Ouden, HE, Aarts, E, et al. Dopamine controls Parkinson’s tremor by inhibiting the cerebellar thalamus. Brain 2017;140(3):721734.Google ScholarPubMed
Helmich, RC, Janssen, MJ, Oyen, WJ, Bloem, BR, Toni, I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol 2011;69(2):269281.CrossRefGoogle ScholarPubMed
Silveri, MC. Contribution of the cerebellum and the basal ganglia to language production: speech, word fluency, and sentence construction – evidence from pathology. Cerebellum 2021;20(2):282294.CrossRefGoogle ScholarPubMed
Bostan, AC, Dum, RP, Strick, PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A 2010;107(18):84528456.CrossRefGoogle ScholarPubMed
Leto, K, Arancillo, M, Becker, EB, et al. Consensus paper: cerebellar development. Cerebellum 2016;15(6):789828.CrossRefGoogle ScholarPubMed
Voogd, J, Ruigrok, TJH. Cerebellum and precerebellar nuclei. In: Mai, JK, Paxinos, G, eds. The Human Nervous System, 3rd ed. Amsterdam: Elsevier; 2012: 471545.CrossRefGoogle Scholar
Bolk, L. Das cerebellum der Saugetiere. Jena: Bohn-Fischer; 1906.Google Scholar
Schmahmann, JD, Doyon, J, McDonald, D, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 1999;10(3 Pt 1):233260.CrossRefGoogle ScholarPubMed
Loukas, M, Pennell, C, Groat, C, Tubbs, RS, Cohen-Gadol, AA. Korbinian Brodmann (1868–1918) and his contributions to mapping the cerebral cortex. Neurosurgery 2011;68(1):611, discussion.CrossRefGoogle ScholarPubMed
Simat, M, Parpan, F, Fritschy, JM. Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum. J Comp Neurol 2007;500(1):7183.CrossRefGoogle ScholarPubMed
Ramón y Cajal, S. Histologie du système nerveux de l’homme et des vertébrés. Paris: Maloine; 1911.Google Scholar
Huang, CC, Sugino, K, Shima, Y, et al. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. Elife 2013;2:e00400.CrossRefGoogle ScholarPubMed
Mathews, PJ, Lee, KH, Peng, Z, Houser, CR, Otis, TS. Effects of climbing fiber driven inhibition on Purkinje neuron spiking. J Neurosci 2012;32(50):1798817997.CrossRefGoogle ScholarPubMed
Szapiro, G, Barbour, B. Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 2007;10(6):735742.CrossRefGoogle ScholarPubMed
Voogd, J, Ruigrok, TJ. The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J Neurocytol 2004;33(1):521.CrossRefGoogle Scholar
Voogd, J, Glickstein, M. The anatomy of the cerebellum. Trends Neurosci 1998;2:305371.Google ScholarPubMed
Pijpers, A, Voogd, J, Ruigrok, TJ. Topography of olivo-cortico-nuclear modules in the intermediate cerebellum of the rat. J Comp Neurol 2005;492(2):193213.CrossRefGoogle ScholarPubMed
Ruigrok, TJ. Ins and outs of cerebellar modules. Cerebellum 2011;10(3):464474.CrossRefGoogle ScholarPubMed
Teune, TM, van der Burg, J, van der Moer, J, Voogd, J, Ruigrok, TJH. Topography of cerebellar nuclear projections to the brain stem in the rat. In: Gerrits, NM, Ruigrok, TJH, De Zeeuw, CI, eds. Cerebellar Modules: Molecules, Morphology and Function. Progress in Brain Research 124. Amsterdam: Elsevier Science B.V.; 2000: 141172.CrossRefGoogle Scholar
Pijpers, A, Apps, R, Pardoe, J, Voogd, J, Ruigrok, TJ. Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones. J Neurosci 2006;26(46):1206712080.CrossRefGoogle ScholarPubMed
Apps, R, Garwicz, M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 2005;6(4):297311.CrossRefGoogle ScholarPubMed
Apps, R, Hawkes, R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 2009;10(9):670681.CrossRefGoogle ScholarPubMed
Apps, R, Hawkes, R, Aoki, S, et al. Cerebellar modules and their role as operational cerebellar processing units: a consensus paper [corrected]. Cerebellum 2018;17(5):654682.CrossRefGoogle ScholarPubMed
De Zeeuw, CI. Bidirectional learning in upbound and downbound microzones of the cerebellum. Nat Rev Neurosci 2021;22(2):92110.CrossRefGoogle ScholarPubMed
Tang, T, Xiao, J, Suh, CY, et al. Heterogeneity of Purkinje cell simple spike–complex spike interactions: zebrin- and non-zebrin-related variations. J Physiol 2017;595(15):53415357.CrossRefGoogle ScholarPubMed
Zhou, H, Lin, Z, Voges, K, et al. Cerebellar modules operate at different frequencies. Elife 2014;3:e02536.CrossRefGoogle ScholarPubMed
Ito, M. The Cerebellum and Neural Control. New York: Raven Press; 1984.Google Scholar
Jorntell, H, Ekerot, CF. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 2002;34(5):797806.CrossRefGoogle ScholarPubMed
Kitazawa, S, Kimura, T, Yin, P-B. Cerebellar complex spikes encode both destinations and errors in arm movements. Nature 1998;392:494497.CrossRefGoogle ScholarPubMed
Lang, EJ. Organization of olivocerebellar activity in the absence of excitatory glutamatergic input. J Neurosci 2001;21(5):16631675.CrossRefGoogle ScholarPubMed
Linden, DJ. Cerebellar long-term depression as investigated in a cell culture preparation. Behav Brain Sci. 1996;19(3):339.CrossRefGoogle Scholar
Llinás, R, Sugimori, M. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 1980;305:171195.CrossRefGoogle ScholarPubMed
Llinas, R, Yarom, Y, Sugimori, M. Isolated mammalian brain in vitro: new technique for analysis of electrical activity of neuronal circuit function. Fed Proc 1981;40(8):22402245.Google ScholarPubMed
Eccles, JC, Llinás, R, Sasaki, K. The excitatory synaptic action of climbing fibers on the Purkinje cells of the cerebellum. J Physiol 1966;182:268296.CrossRefGoogle ScholarPubMed
Eccles, JC, Llinás, R, Sasaki, K. Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp Brain Res 1966;1:1739.CrossRefGoogle ScholarPubMed
Raman, IM, Bean, BP. Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J Neurosci 1997;17(12):45174526.CrossRefGoogle ScholarPubMed
Simpson, JI, Wylie, DR, De Zeeuw, CI. On climbing fiber signals and their consequence(s). Behav Brain Sci 1996;19(3):384398.CrossRefGoogle Scholar
Batini, C, Billard, JM, Daniel, H. Long term modification of cerebellar inhibition after inferior olive degeneration. Exp Brain Res 1985;59(2):404409.CrossRefGoogle ScholarPubMed
White, JJ, Sillitoe, RV. Genetic silencing of olivocerebellar synapses causes dystonia-like behaviour in mice. Nat Commun 2017;8:14912.CrossRefGoogle ScholarPubMed
Albus, JS. A theory on cerebellar function. Math Biosci 1971;10:2561.CrossRefGoogle Scholar
Marr, D. A theory of cerebellar cortex. J Physiol 1969;202:437470.CrossRefGoogle ScholarPubMed
Ito, M, Sakurai, M, Tongroach, P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 1982;324:113134.CrossRefGoogle ScholarPubMed
Sakurai, M. Synaptic modification of parallel fibre–Purkinje cell transmission in in vitro guinea-pig cerebellar slices. J Physiol 1987;394:463–80.CrossRefGoogle ScholarPubMed
Mathy, A, Ho, SS, Davie, JT, et al. Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 2009;62(3):388399.CrossRefGoogle ScholarPubMed
Coesmans, M, Weber, JT, De Zeeuw, CI, Hansel, C. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 2004;44(4):691700.CrossRefGoogle ScholarPubMed
van Beugen, BJ, Nagaraja, RY, Hansel, C. Climbing fiber-evoked endocannabinoid signaling heterosynaptically suppresses presynaptic cerebellar long-term potentiation. J Neurosci 2006;26(32):82898294.CrossRefGoogle ScholarPubMed
Badura, A, Schonewille, M, Voges, K, et al. Climbing fiber input shapes reciprocity of Purkinje cell firing. Neuron 2013;78(4):700713.CrossRefGoogle ScholarPubMed
Lisberger, SG. The rules of cerebellar learning: around the Ito hypothesis. Neuroscience 2021;462:175190.CrossRefGoogle ScholarPubMed
Ruigrok, TJ, Pijpers, A, Goedknegt-Sabel, E, Coulon, P. Multiple cerebellar zones are involved in the control of individual muscles: a retrograde transneuronal tracing study with rabies virus in the rat. Eur J Neurosci 2008;28(1):181200.CrossRefGoogle ScholarPubMed
Pijpers, A, Winkelman, BH, Bronsing, R, Ruigrok, TJ. Selective impairment of the cerebellar C1 module involved in rat hind limb control reduces step-dependent modulation of cutaneous reflexes. J Neurosci 2008;28(9):21792189.CrossRefGoogle ScholarPubMed
Ito, M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol 2006;78(3–5):272303.CrossRefGoogle ScholarPubMed
Kawato, M, Ohmae, S, Hoang, H, Sanger, T. 50 Years since the Marr, Ito, and Albus models of the cerebellum. Neuroscience 2021;462:151174.CrossRefGoogle Scholar
Boyden, ES, Katoh, A, Pyle, JL, et al. Selective engagement of plasticity mechanisms for motor memory storage. Neuron 2006;51(6):823834.CrossRefGoogle ScholarPubMed
Gao, Z, van Beugen, BJ, De Zeeuw, CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 2012;13(9):619635.CrossRefGoogle ScholarPubMed
Wulff, P, Schonewille, M, Renzi, M, et al. Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci 2009;12(8):10421049.CrossRefGoogle ScholarPubMed
De Zeeuw, CI, Yeo, CH. Time and tide in cerebellar memory formation. Curr Opin Neurobiol 2005;15(6):667674.CrossRefGoogle ScholarPubMed
Jirenhed, DA, Hesslow, G. Are Purkinje cell pauses drivers of classically conditioned blink responses? Cerebellum 2016;15(4):526534.CrossRefGoogle ScholarPubMed
Ten Brinke, MM, Heiney, SA, Wang, X, et al. Dynamic modulation of activity in cerebellar nuclei neurons during pavlovian eyeblink conditioning in mice. Elife 2017;6.CrossRefGoogle ScholarPubMed
Llinás, R, Welsh, JP. On the cerebellum and motor learning. Curr Opin Neurobiol 1993;3:958965.CrossRefGoogle ScholarPubMed
Llinás, R, Yarom, Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol 1986;376:163182.CrossRefGoogle ScholarPubMed
Llinás, R, Baker, R, Sotelo, C. Electrotonic coupling between neurons in the cat inferior olive. J Neurophysiol 1974;37:560571.CrossRefGoogle ScholarPubMed
Lang, EJ. GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity. J Neurophysiol 2002;87(4):19932008.CrossRefGoogle ScholarPubMed
Bazzigaluppi, P, Ruigrok, T, Saisan, P, De Zeeuw, CI, de Jeu, M. Properties of the nucleo-olivary pathway: an in vivo whole-cell patch clamp study. PLoS One 2012;7(9):e46360.CrossRefGoogle Scholar
De Zeeuw, CI, Simpson, JI, Hoogenraad, CC, et al. Microcircuitry and function of the inferior olive. Trends Neurosci 1998;21:391400.CrossRefGoogle ScholarPubMed
Llinás, R, Sasaki, K. The functional organization of the olivo-cerebellar system as examined by multiple Purkinje cell recording. Eur J Neurosci 1989;1:587603.CrossRefGoogle Scholar
Blenkinsop, TA, Lang, EJ. Block of inferior olive gap junctional coupling decreases Purkinje cell complex spike synchrony and rhythmicity. J Neurosci 2006;26(6):17391748.CrossRefGoogle ScholarPubMed
Llinás, R, Volkind, R. The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Exp Brain Res 1973;18:6987.CrossRefGoogle ScholarPubMed
Llinás, R, Mühlethaler, M. Electrophysiology of guinea pig cerebellar nuclear cells in the in vitro brainstem-cerebellar preparation. J Physiol 1988;404:241258.CrossRefGoogle Scholar
Hoebeek, FE, Witter, L, Ruigrok, TJ, De Zeeuw, CI. Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proc Natl Acad Sci U S A 2011;107(18):84108415.CrossRefGoogle Scholar
Llinás, R. Rebound excitation as the physiological basis for tremor: a biophysical study of the oscillatory properties of mammalian central neurones in vitro. In: Findley, LJ, Capildeo, R, eds. Movement Disorders: Tremor. New York: Oxford University Press; 1984: 165182.CrossRefGoogle Scholar
Llinás, RR. The noncontinuous nature of movement execution. In: Humphrey, DR, Freund, H-J, eds. Motor Control: Concepts and Issues. Chichester: John Wiley & Sons; 1991: 223242.Google Scholar
Bower, JM. Perhaps it’s time to completely rethink cerebellar function. Behav Brain Sci 1996;19(3):438.CrossRefGoogle Scholar
Gao, J-H, Parsons, L, Bower, JM, et al. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 1996;272:545547.CrossRefGoogle ScholarPubMed
Voogd, J, Gerrits, NM, Ruigrok, TJ. Organization of the vestibulocerebellum. Ann N Y Acad Sci 1996;781:553579.CrossRefGoogle ScholarPubMed
Voogd, J, Barmack, NH. Oculomotor cerebellum. Progr Brain Res 2006;151:231268.CrossRefGoogle ScholarPubMed
Voogd, J, Feirabend, HKP, Schoen, JHR. Cerebellum and precerebellar nuclei. In: Paxinos, G, ed. The Human Nervous System. New York: Academic Press; 1990.Google Scholar
Arshavsky, YI, Gelfand, IM, Orlovsky, GN. Cerebellum and Rhythmical Movements. Berlin: Springer-Verlag; 1986.CrossRefGoogle Scholar
Suzuki, L, Coulon, P, Sabel-Goedknegt, EH, Ruigrok, TJ. Organization of cerebral projections to identified cerebellar zones in the posterior cerebellum of the rat. J Neurosci 2012;32(32):1085410869.CrossRefGoogle ScholarPubMed
Sugihara, I, Shinoda, Y. Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. J Neurosci 2004;24(40):87718785.CrossRefGoogle ScholarPubMed
Manni, E, Petrosini, L. A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci 2004;5(3):241249.CrossRefGoogle ScholarPubMed
Welker, W. Spatial organization of somatosensory projections to granule cell cerebellar cortex: functional and connectional implications of fractured somatotopy (summary of Wisconsin studies). In: King, JS, ed. New Concepts in Cerebellar Neurobiology. New York: Alan R. Liss, Inc.; 1987: 239280.Google Scholar
Fujita, H, Kodama, T, du Lac, S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. Elife 2020;9:e58613.CrossRefGoogle ScholarPubMed
Ruigrok, TJH. Cerebellar influences on descending spinal motor systems. In: Manto, M, Gruol, JD, Schmahmann, N, Koibuchi, N, Rossi, F, eds. Handbook of the Cerebellum and Cerebellum Disorders. Dordrecht: Springer; 2013: 497528.CrossRefGoogle Scholar
Sathyamurthy, A, Barik, A, Dobrott, CI, et al. Cerebellospinal neurons regulate motor performance and motor learning. Cell Rep 2020;31(6):107595.CrossRefGoogle ScholarPubMed
Hoover, JE, Strick, PL. The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 1999;19(4):14461463.CrossRefGoogle ScholarPubMed
Ruigrok, TJH. Precerebellar nuclei and red nucleus. In: Paxinos, G, ed. The Rat Nervous System, 3rd ed. San Diego: Elsevier Academic Press; 2004: 167204.CrossRefGoogle Scholar
Ruigrok, TJH, Voogd, J. Cerebellar influence on olivary excitability in the cat. Eur J Neurosci 1995;7:679693.CrossRefGoogle ScholarPubMed
Kennedy, PR. Corticospinal, rubrospinal and rubro-olivary projections: a unifying hypothesis. Trends Neurosci 1990;13:474479.CrossRefGoogle ScholarPubMed
Grafman, J, Litvan, I, Massaquoi, S, et al. Cognitive planning deficit in patients with cerebellar atrophy. Neurology 1992;42:14931496.CrossRefGoogle ScholarPubMed
Kelly, RM, Strick, PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 2003;23(23):8432–44.CrossRefGoogle ScholarPubMed
Guell, X, Schmahmann, JD, Gabrieli, J, Ghosh, SS. Functional gradients of the cerebellum. Elife. 2018;7:e36652.CrossRefGoogle ScholarPubMed
Thach, WT, Bastian, AJ. Role of the cerebellum in the control and adaptation of gait in health and disease. Progr Brain Res 2004;143:353366.CrossRefGoogle ScholarPubMed
Voogd, J, van Baarsen, K. The horseshoe-shaped commissure of Wernekinck or the decussation of the brachium conjunctivum methodological changes in the 1840s. Cerebellum 2014;13:113120.CrossRefGoogle ScholarPubMed
Schmahmann, JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 2004;16(3):367378.CrossRefGoogle ScholarPubMed
Schmahmann, JD, Sherman, JC. The cerebellar cognitive affective syndrome. Brain 1998;121(Pt 4):561579.CrossRefGoogle ScholarPubMed
Nieuwenhuys, R, Voogd, J, van Huijzen, C. The Human Central Nervous System. Berlin: Springer-Verlag; 1981.CrossRefGoogle Scholar
Jansen, J, Brodal, A. Das Kleinhirn. Handbuch der mikroskopischen Anatomie des Menschen 4/8. Berlin: Springer-Verlag; 1958.Google Scholar
Ruigrok, TJH. Role of the cerebellum. In Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Amsterdam: VU University Press; 2014: 79106.Google Scholar
Yeo, CH, Hesslow, G. Cerebellum and conditioned responses. Trends Neurosci. 1998;2:322330.CrossRefGoogle Scholar
Guell, X, Schmahmann, JD, Gabrieli, JDE, Ghosh, SS. Functional gradients of the cerebellum. eLife 2018;7:e36652.CrossRefGoogle ScholarPubMed

References

Bloomingdale, P, Karelina, T, Ramakrishnan, V. Hallmarks of neurodegenerative disease: a systems pharmacology perspective. CPT Pharmacometrics Syst Pharmacol 2022;11:139913429.CrossRefGoogle ScholarPubMed
Hetz, C, Saxena, S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 2017;13:477491.CrossRefGoogle ScholarPubMed
Ransohoff, RM. How neuroinflammation contributes to neurodegeneration. Science 2016;353:777783.CrossRefGoogle ScholarPubMed
Rubinsztein, DC, Marino, G, Kroemer, G. Autophagy and aging. Cell 2011;146:682695.CrossRefGoogle ScholarPubMed
Braak, H, Del Tredici, K. Potential pathways of abnormal tau and alpha-synuclein dissemination in sporadic Alzheimer’s and Parkinson’s diseases. Cold Spring Harb Perspect Biol. 2016;8:a023630.CrossRefGoogle ScholarPubMed
Sies, H, Jones, DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21:363383.CrossRefGoogle Scholar
Hetz, C, Saxena, S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 2017;13:477491.CrossRefGoogle ScholarPubMed
Cabral-Miranda, F, Hetz, C. ER stress and neurodegenerative disease: a cause or effect relationship? Curr Top Microbiol Immunol 2018;414:131157.Google ScholarPubMed
Yu, J‐T, Xu, W, Tan, CC, et al. Evidence‐based prevention of Alzheimer’s disease: systematic review and meta‐analysis of 243 observational prospective studies and 153 randomised controlled trials. J Neurol Neurosurg Psychiatry 2020;91:12011209.CrossRefGoogle ScholarPubMed
Willette, AA, Johnson, SC, Birdsill, AC, et al. Insulin resistance predicts brain amyloid deposition in late middle‐aged adults. Alzheimers Dement 2015;11:504510.CrossRefGoogle ScholarPubMed
Hickman, S, Izzy, S, Sen, P, Morsett, L, El Khoury, J. Microglia in neurodegeneration. Nat Neurosci 2018;21:13591369.CrossRefGoogle ScholarPubMed
Sengupta, U, Kayed, R. Amyloid β, tau, and α-synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Progr Neurobiol 2022;214:102270.CrossRefGoogle ScholarPubMed
Moussaud, S, Jones, DR, Moussaud-Lamodière, EL, et al.Alpha-synuclein and tau: teammates in neurodegeneration? Mol Neurodegeneration 2014;9:43.CrossRefGoogle ScholarPubMed
Vasili, E, Dominguez-Meijide, A, Outeiro, TF. Spreading of α-synuclein and tau: a systematic comparison of the mechanisms involved. Front Mol Neurosci 2019;12:107.CrossRefGoogle Scholar
Adler, CH, Connor, DJ, Hentz, JG, et al. Incidental Lewy body disease: clinical comparison to a control cohort. Mov Disord 2010;25(5):642646.CrossRefGoogle ScholarPubMed
Marras, C, Lang, A. Invited article: changing concepts in Parkinson disease: moving beyond the decade of the brain. Neurology 2008;70:19962003.CrossRefGoogle ScholarPubMed
Braak, H, Bohl, JR, Muller, CM, et al. The staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov Disord 2006;21:20422051.CrossRefGoogle Scholar
Blauwendraat, C, Nalls, MA, Singleton, AB. The genetic architecture of Parkinson’s disease. Lancet Neurol 2020;19:170178.CrossRefGoogle ScholarPubMed
Van de Berg, WDJ, Hepp, DA, Rozemuller, AJM. Neuropathology in movement disorders. In: Wolters, EC, Baumann, C, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 107145.Google Scholar
Glass, M, Faull, RL, Dragunow, M. Loss of cannabinoid receptors in the substantia nigra in Huntington’s disease. Neuroscience 1993;56:523527.CrossRefGoogle ScholarPubMed
Aarsland, D, Ballard, CG, Halliday, G. Are Parkinson’s disease with dementia and dementia with Lewy bodies the same entity? J Geriatr Psychiatry Neurol 2004;17:137145.CrossRefGoogle ScholarPubMed
McKeith, IG, Dickson, DW, Lowe, J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005;65:1863-1872.CrossRefGoogle ScholarPubMed
Spencer, BE, Jennings, RG, Fan, CC, Brewer, JB. Assessment of genetic risk for improved clinical–neuropathological correlations. Acta Neuropathol Commun 2020;8:160.CrossRefGoogle ScholarPubMed
Gilman, S, Wenning, GK, Low, PA, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008;71:670676.CrossRefGoogle ScholarPubMed
Jellinger, KA, Lantos, PL. Papp–Lantos inclusions and the pathogenesis of multiple system atrophy: an update. Acta Neuropathol 2010;119:657667.CrossRefGoogle ScholarPubMed
Spillantini, MG, Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol 2013;12:609622.CrossRefGoogle ScholarPubMed
Cowan, CM, Mudher, A. Are tau aggregates toxic or protective in tauopathies? Front Neurol 2013;4:114.CrossRefGoogle ScholarPubMed
Dickson, DW, Rademakers, R, Hutton, ML. Progressive supranuclear palsy: pathology and genetics. Brain Pathol 2007;17:7482.CrossRefGoogle ScholarPubMed
Williams, DR, Holton, JL, Strand, C, et al. Pathological tau burden and distribution distinguishes progressive supranuclear palsy–parkinsonism from Richardson’s syndrome. Brain 2007;130:15661576.CrossRefGoogle ScholarPubMed
Chung, EJ, Cho, HJ, Jang, W, et al. A case of pathologically confirmed corticobasal degeneration initially presenting as progressive supranuclear palsy syndrome. J Korean Med Sci 2022;37(22):e183.CrossRefGoogle ScholarPubMed
Neumann, M, Lee, EB, Mackenzie, IR. Frontotemporal lobar degeneration TDP-43-immunoreactive pathological subtypes: clinical and mechanistic significance. Adv Exp Med Biol 2021;1281:201217.CrossRefGoogle ScholarPubMed
Mackenzie, IR, Neumann, M, Bigio, EH, et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 2010;119:14.CrossRefGoogle ScholarPubMed
Mackenzie, IR, Shi, J, Shaw, CL, et al. Dementia lacking distinctive histology (DLDH) revisited. Acta Neuropathol 2006;112:551559.CrossRefGoogle ScholarPubMed
Kovacs, GG, Rozemuller, AJ, van Swieten, JC, et al. Neuropathology of the hippocampus in FTLD-Tau with Pick bodies: a study of the BrainNet Europe Consortium. Neuropathol Appl Neurobiol 2013;39:166178.CrossRefGoogle ScholarPubMed
Komori, T. Tau-positive glial inclusions in progressive supranuclear palsy, corticobasal degeneration and Pick’s disease. Brain Pathol 1999;9:663679.CrossRefGoogle ScholarPubMed
Dickson, DW. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. Basel: ISN Neuropath Press; 2003: 414.Google Scholar
Jesus-Hernandez, M, Mackenzie, IR, Boeve, BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72:245256.CrossRefGoogle Scholar
Van der Zee, J, Gijselinck, I, Dillen, L, et al. A pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum Mutat 2013;34:363373.CrossRefGoogle ScholarPubMed
Lee, EB, Porta, S, Baer, GM, et al. Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol 2017;134:6578.CrossRefGoogle ScholarPubMed
Neumann, M, Rademakers, R, Roeber, S, et al. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 2009;132:29222931.CrossRefGoogle ScholarPubMed
Adegbuyiro, A, Sedighi, F, Pilkington, AW 4th, Groover, S, Legleiter, J. Proteins containing expanded polyglutamine tracts and neurodegenerative disease. Biochemistry 2017;56:11991217.CrossRefGoogle ScholarPubMed
Choudhury, S, Chatterjee, S, Chatterjee, K. Clinical characterization of genetically diagnosed cases of spinocerebellar ataxia type 12 from India. Mov Disord Clin Pract 2018;5:3946.CrossRefGoogle ScholarPubMed
Paulson, HL, Shakkottai, VG, Clark, HB, Orr, HT. Polyglutamine spinocerebellar ataxias – from genes to potential treatments. Nat Rev Neurosci 2017;18:613626.CrossRefGoogle ScholarPubMed
Rüb, U, Seidel, K, Heinsen, H, et al. Huntington’s disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol 2016;26:726740.CrossRefGoogle Scholar
Vonsattel, JP, Myers, RH, Stevens, TJ, et al. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 1985;44:559577.CrossRefGoogle ScholarPubMed
Brown, TG, Chen, L. Neuropathology of Huntington’s disease. In: Szejko, N, ed. From Pathophysiology to Treatment of Huntington’s Disease [Internet]. IntechOpen; 2022. Available from: http://dx.doi.org/10.5772/intechopen.94806.Google Scholar
Paulson, HL. The spinocerebellar ataxias. J Neuroophthalmol 2009;29:227237.CrossRefGoogle ScholarPubMed
Seidel, K, Siswanto, S, Brunt, ER, et al. Brain pathology of spinocerebellar ataxias. Acta Neuropathol 2012;124:121.CrossRefGoogle ScholarPubMed
Harding, AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the ‘the Drew family of Walworth’. Brain 1982;105(Pt 1):128.CrossRefGoogle ScholarPubMed
Sullivan, R, Yau, WY, O’Connor, E, Houlden, H. Spinocerebellar ataxia: an update. J Neurol 2019;266:533544.CrossRefGoogle ScholarPubMed
Olmos, V, Gogia, N, Luttik, K, Haidery, F, Lim, J. The extra-cerebellar effects of spinocerebellar ataxia type 1 (SCA1): looking beyond the cerebellum. Cell Mol Life Sci 2022;79:404.CrossRefGoogle ScholarPubMed
Rub, U, Burk, K, Timmann, D, et al. Spinocerebellar ataxia type 1 (SCA1): new pathoanatomical and clinico-pathological insights. Neuropathol Appl Neurobiol 2012;38:665680.CrossRefGoogle ScholarPubMed
Velazquez-Perez, LC, Rodriguez-Labrada, R, Fernandez-Ruiz, J. Spinocerebellar ataxia type 2: clinicogenetic aspects, mechanistic insights, and management approaches. Front Neurol 2017;8.CrossRefGoogle ScholarPubMed
Yamada, M, Sato, T, Tsuji, S, Takahashi, H. CAG repeat disorder models and human europathology: similarities and differences. Acta Neuropathol 2008;115:7186.CrossRefGoogle Scholar
Paulson, H, Shakkottai, V. Spinocerebellar ataxia type 3. 1998 [updated 2020]. In: Adam, MP, Everman, DB, Mirzaa, GM, et al., eds. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 19932023. Available from: www.ncbi.nlm.nih.gov/books/NBK1196/Google Scholar
Rüb, U, Gierga, K, Brunt, ER, et al. Spinocerebellar ataxias types 2 and 3: degeneration of the pre-cerebellar nuclei isolates the three phylogenetically defined regions of the cerebellum. J Neural Transm (Vienna) 2005;112:15231545.CrossRefGoogle ScholarPubMed
Rüb, U, Brunt, ER, Petrasch-Parwez, E, et al. Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2, 3, 6 and 7. Neuropathol Appl Neurobiol 2006;32:635649.CrossRefGoogle ScholarPubMed
La Spada, AR. Spinocerebellar ataxia type 7. 1998 [updated 2020 Jul 23]. In: Adam, MP, Everman, DB, Mirzaa, GM, et al., eds. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 19932023. Available from: www.ncbi.nlm.nih.gov/books/NBK1256/Google Scholar
Parchi, P, Strammiello, R, Giese, A, Kretzschmar, H. Phenotypic variability of sporadic human prion disease and its molecular basis: past, present, and future. Acta Neuropathol 2011;121:91112.CrossRefGoogle ScholarPubMed
Han, S, Seladi-Schulman, J. What is prion disease. www.healthline.com/health/prion-disease#types. 2022.Google Scholar
Ho, M, Sharma, R, Knipe, H, et al. Creutzfeldt–Jakob disease. Radiopaedia.org. 2023. https://radiopaedia.org/articles/7269Google Scholar
Iwasaki, Y. Creutzfeldt–Jakob disease. Neuropathology 2017;37:174188.CrossRefGoogle ScholarPubMed
Baiardi, S, Romana Rizzi, R, Capellari, S, et al. Gerstmann–Sträussler–Scheinker disease (PRNP p.D202N) presenting with atypical parkinsonism. Neurol Genet 2020;6:e400.CrossRefGoogle ScholarPubMed
Jansen, C, Parchi, P, Capellari, S, et al. Human prion diseases in The Netherlands (1998–2009): clinical, genetic and molecular aspects. PLoS One 2012;7:e36333.CrossRefGoogle ScholarPubMed

References

Potashkin, JA, Blume, SR, Runkle, NK. Limitations of animal models of Parkinson’s disease. Parkinsons Dis 2011;2011:658083.Google Scholar
Avazzadeh, S, Baena, JM, Keighron, C, Feller-Sanchez, Y, Quinlan, LR. Modelling Parkinson’s disease: iPSCs towards better understanding of human pathology. Brain Sci 2021;11(3):373.CrossRefGoogle ScholarPubMed
Tio, M, Tan, EK. Genetics of essential tremor. Parkinsonism Relat Disord 2016;22:176178.CrossRefGoogle ScholarPubMed
Takahashi, K, Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663676.CrossRefGoogle ScholarPubMed
Park, IH, Arora, N, Huo, H, et al. Disease-specific induced pluripotent stem cells. Cell 2008;134(5):877886.CrossRefGoogle ScholarPubMed
Soldner, F, Hockemeyer, D, Beard, C, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009;136(5):964977.CrossRefGoogle ScholarPubMed
Outeiro, TF, Heutink, P, Bezard, E, Cenci, AM. From iPS cells to rodents and nonhuman primates: filling gaps in modeling Parkinson’s disease. Mov Disord 2021;36(4):832841.CrossRefGoogle ScholarPubMed
Blauwendraat, C, Nalls, MA, Singleton, AB. The genetic architecture of Parkinson’s disease. Lancet Neurol 2020;19(2):170178.CrossRefGoogle ScholarPubMed
Bressan, E, Reed, X, Bansal, V, et al. The Foundational data initiative for Parkinson’s disease [FOUNDIN-PD]: enabling efficient translation from genetic maps to mechanism. Cell Genom 2023;3(3):100261.CrossRefGoogle Scholar
Marek, K, Jennings, D, Lasch, S, et al. The Parkinson Progression Marker Initiative (PPMI). Prog Neurobiol 2011;95(4):629635.CrossRefGoogle Scholar
McTague, A, Rossignoli, G, Ferrini, A, Barral, S, Kurian, MA. Genome editing in iPSC-based neural systems: from disease models to future therapeutic strategies. Front Genome Ed 2021;3:630600.CrossRefGoogle ScholarPubMed
Germain, PL, Testa, G. Taming human genetic variability: transcriptomic meta-analysis guides the experimental design and interpretation of iPSC-based disease modeling. Stem Cell Reports 2017;8(6):17841796.CrossRefGoogle ScholarPubMed
Reinhardt, P, Schmid, B, Burbulla, LF, et al. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 2013;12(3):354367.CrossRefGoogle Scholar
Nickels, SL, Walter, J, Bolognin, S, et al. Impaired serine metabolism complements LRRK2-G2019S pathogenicity in PD patients. Parkinsonism Relat Disord 2019;67:4855.CrossRefGoogle ScholarPubMed
Kantor, B, Tagliafierro, L, Gu, J, et al. Downregulation of SNCA expression by targeted editing of DNA methylation: a potential strategy for precision therapy in PD. Mol Ther 2018;26(11):26382649.CrossRefGoogle ScholarPubMed
Alquezar, C, Felix, JB, McCandlish, E, et al. Heavy metals contaminating the environment of a progressive supranuclear palsy cluster induce tau accumulation and cell death in cultured neurons. Sci Rep 2020; 10(1):569.CrossRefGoogle ScholarPubMed
Ng, JH, Sun, A, Je, HS, Tan, EK. Unravelling pathophysiology of neurological and psychiatric complications of COVID-19 using brain organoids. Neuroscientist 2023;29(1):3040.CrossRefGoogle ScholarPubMed
Sun, AX, Ng, HH, Tan, EK. Translational potential of human brain organoids. Ann Clin Transl Neurol 2018;5(2):226235.CrossRefGoogle ScholarPubMed
Faravelli, I, Costamagna, G, Tamanini, S, Corti, S. Back to the origins: human brain organoids to investigate neurodegeneration. Brain Res 2020;1727:146561.CrossRefGoogle Scholar
Jo, J, Xiao, Y, Sun, AX, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 2016;19(2):248257.CrossRefGoogle ScholarPubMed
Kim, H, Park, HJ, Choi, H, et al. Modeling G2019S-LRRK2 sporadic Parkinson’s disease in 3D midbrain organoids. Stem Cell Reports 2019;12(3):518531.CrossRefGoogle ScholarPubMed
Jo, J, Yang, L, Tran, HD, et al. Lewy body–like inclusions in human midbrain organoids carrying glucocerebrosidase and α-synuclein mutations. Ann Neurol 2021;90(3):490505.CrossRefGoogle Scholar
Chia, SJ, Tan, EK, Chao, YX. Historical perspective: models of Parkinson’s disease. Int J Mol Sci 2020;21(7):2464.CrossRefGoogle ScholarPubMed
Dexter, PM, Caldwell, KA, Caldwell, GA. A predictable worm: application of Caenorhabditis elegans for mechanistic investigation of movement disorders. Neurotherapeutics 2012;9(2):393404.CrossRefGoogle ScholarPubMed
Nagoshi, E. Drosophila models of sporadic Parkinson’s disease. Int J Mol Sci 2018;19:3343.CrossRefGoogle ScholarPubMed
Vaz, RL, Outeiro, TF, Ferreira, JJ. Zebrafish as an animal model for drug discovery in Parkinson’s disease and other movement disorders: a systematic review. Front Neurol 2018;9:347.CrossRefGoogle Scholar
Tran, J, Anastacio, H, Bardy, C. Genetic predispositions of Parkinson’s disease revealed in patient-derived brain cells. NPJ Park Dis 2020; 6(1).Google ScholarPubMed
Vázquez-Vélez, GE, Zoghbi, HY. Parkinson’s disease genetics and pathophysiology. Annu Rev Neurosci 2021;44:87108.CrossRefGoogle Scholar
Kachidian, P, Gubellini, P. Genetic models of Parkinson’s disease. Neuromethods 2021;160:3784.CrossRefGoogle Scholar
Hu, X, Mao, C, Fan, L, et al. Modeling Parkinson’s disease using induced pluripotent stem cells. Stem Cells Int 2020;2020:1061470.CrossRefGoogle ScholarPubMed
Bird, TD. Hereditary ataxia overview. GeneReviews. Seattle:University of Washington; 1993–2021.Google Scholar
Tan, EK, Ashizawa, T. Genetic testing in spinocerebellar ataxias: defining a clinical role. Arch Neurol 2001;58(2):191195.CrossRefGoogle ScholarPubMed
Klockgether, T, Mariotti, C, Paulson, HL. Spinocerebellar ataxia. Nat Rev Dis Prim 2019;5(1):121.Google ScholarPubMed
Tabrizi, SJ, Flower, MD, Ross, CA, Wild, EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 2020;16(10):529546.CrossRefGoogle ScholarPubMed
Lin, J-T, Chang, W-C, Chen, H-M, et al. Regulation of feedback between protein kinase A and the proteasome system worsens Huntington’s disease. Mol Cell Biol 2013;33(5):10731084.CrossRefGoogle ScholarPubMed
Imbriani, P, Ponterio, G, Tassone, A, et al. Models of dystonia: an update. J Neurosci Methods 2020;339:108728.CrossRefGoogle ScholarPubMed
Ip, CW, Isaias, IU, Kusche-Tekin, BB, et al. Tor1a+/– mice develop dystonia-like movements via a striatal dopaminergic dysregulation triggered by peripheral nerve injury. Acta Neuropathol Commun 2016;4(1):114.CrossRefGoogle Scholar
Jiménez-Jiménez, FJ, Alonso-Navarro, H, García-Martín, E, et al. Update on genetics of essential tremor. Acta Neurol Scand 2013;128(6):359371.CrossRefGoogle ScholarPubMed
Hor, H, Francescatto, L, Bartesaghi, L, et al. Missense mutations in TENM4, a regulator of axon guidance and central myelination, cause essential tremor. Hum Mol Genet 2015;24(20):56775686.CrossRefGoogle ScholarPubMed
Welton, T, Cardoso, F, Carr, JA, et al. Essential tremor. Nat Rev Dis Prim 2021;7(1):117.Google ScholarPubMed
Ferrari, E, Cardinale, A, Picconi, B, Gardoni, F. From cell lines to pluripotent stem cells for modelling Parkinson’s Disease. J Neurosci Methods 2020;340:108741.CrossRefGoogle ScholarPubMed
Coccia, E, Ahfeldt, T. Towards physiologically relevant human pluripotent stem cell (hPSC) models of Parkinson’s disease. Stem Cell Res Ther 2021;12(1):253.CrossRefGoogle ScholarPubMed
Agboola, OS, Hu, X, Shan, Z, Wu, Y, Lei, L. Brain organoid: a 3D technology for investigating cellular composition and interactions in human neurological development and disease models in vitro. Stem Cell Res Ther 2021;12(1):116.CrossRefGoogle Scholar
Hou, S, Tiriac, H, Sridharan, BP, et al. Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening. SLAS Discov 2018;23(6):574584.CrossRefGoogle ScholarPubMed

References

DiMauro, S, Schon, EA. Mitochondrial respiratory-chain diseases. N Engl J Med 2003;348:26562668.CrossRefGoogle ScholarPubMed
Finsterer, J. Inherited mitochondrial disorders. Adv Exp Med Biol 2012;942:187213.CrossRefGoogle ScholarPubMed
Swerdlow, RH. Treating neurodegeneration by modifying mitochondria: potential solutions to a ‘complex’ problem. Antooxid Redox Signal 2007;9:15911603.CrossRefGoogle ScholarPubMed
Swerdlow, RH. The neurodegenerative mitochondriopathies. J Alzheimers Dis 2009;17:737751.CrossRefGoogle ScholarPubMed
Finsterer, J. Mitochondriopathies. Eur J Neurol. 2004;11:163186.CrossRefGoogle ScholarPubMed
Schon, EA, Manfredi, G. Neuronal degeneration and mitochondrial dysfunction. J Clin Invest 2003;111:303312.CrossRefGoogle ScholarPubMed
Schapira, AHV. Mitochondrial diseases. Lancet 2012; 379:18251834CrossRefGoogle ScholarPubMed
Orsucci, D, Ienco, EC, Mancuso, M, Siciliano, G. POLG1-related and other ‘mitochondrial Parkinsonisms’: an overview. J Mol Neurosci 2011;44:1724.CrossRefGoogle ScholarPubMed
Mackey, DA, Oostra, RJ, Rosenberg, T, et al. Primary pathogenic mtDNA mutations in multigeneration pedigrees with Leber hereditary optic neuropathy. Am J Hum Genet 1996;59:481485.Google ScholarPubMed
Betts, J, Lightowlers, RN, Turnbull, DM. Neuropathological apects of mitochondrial DNA disease. Neurochem Res 2004;29:505511.CrossRefGoogle Scholar
Takeda, S, Wakabayashi, F, Ohama, E, Ikuta, F. Neuropathology of myoclonus epilepsy associated with ragged-red fibers (Fukuhara’s disease). Acta Neuropathol 1988;75:433440.CrossRefGoogle Scholar
Filosto, M, Tomelleri, G, Tonin, P, et al. Neuropathology of mitochondrial diseases. Biosci Rep 2007;27:2330.CrossRefGoogle ScholarPubMed
Rojo, A, Campos, Y, Sanchez, JM, et al. NARP-MILS syndrome caused by 8993 T>G mitochondrial DNA mutation: a clinical, genetic and neuropathological study. Acta Neuropathol 2006;111:610616.CrossRefGoogle ScholarPubMed
Nishioka, K, Vilariño-Güell, C, Cobb, SA, et al. Genetic variation of the mitochondrial complex I subunit NDUFV2 and Parkinson’s disease. Parkinsonism Relat Disord 2010;16:686687.CrossRefGoogle ScholarPubMed
Copeland, WC. The mitochondrial DNA polymerase in health and disease. Subcell Biochem 2010;50:211222.CrossRefGoogle ScholarPubMed
Cui, L, Jeong, H, Borovecki, F, et al. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006;127:5969.CrossRefGoogle ScholarPubMed
Lodi, R, Cooper, JM, Bradley, JL, et al. Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci USA 1999;96:1149211495.CrossRefGoogle ScholarPubMed
Rossi, L, Lombardo, MF, Ciriolo, MR, Rotilio, G. Mitochondrial dysfunction in neurodegenerative diseases associated with copper imbalance. Neurochem Res 2004;29:493504.CrossRefGoogle ScholarPubMed
Kordasiewicz, HB, Stanek, LM, Wancewicz, EV, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 2012;74:10314104.CrossRefGoogle ScholarPubMed
Hudson, G, Chinnery, PF. Mitochondrial DNA polymerase-gamma and human disease. Hum Mol Genet 2006;15:244252.CrossRefGoogle ScholarPubMed
Chan, SS, Copeland, WC. DNA polymerase gamma and mitochondrial disease: understanding the consequences of POLG mutations. Biochim Biophys Acta 2009;1787:312319.CrossRefGoogle ScholarPubMed
Fukae, J, Mizuno, Y, Hattori, N. Mitochondrial dysfunction in Parkinson’s disease. Mitochondrion 2007;7:58-62.CrossRefGoogle ScholarPubMed
Tranchant, C, Anheim, M. Movement disorders in mitochondrial diseases. Revue Neurologique 2016: 172: 524529.CrossRefGoogle ScholarPubMed
Schreglmann, S, Riederer, F, Galovic, M, et al. Movement disorders in genetically confirmed mitochondrial disease and the putative role of the cerebellum. Mov Disord 33: 146–155CrossRefGoogle Scholar
Manusco, M, Filosto, M, Orsucci, D, Siciliano, G. Mitochondrial DNA sequence variation and neurodegeneration. Hum Genomics 2008;3:7178.Google Scholar
Thyagajaran, D, Bressman, S, Bruno, C, et al. A novel mitochondrial 12SrRNA point mutation in parkinsonism, deafness, and neuropathy. Ann Neurol 2000;48:730736.3.0.CO;2-0>CrossRefGoogle Scholar
Horvath, R, Kley, RA, Lochmuller, H, Vorgerd, M. Parkinson syndrome, neuropathy, and myopathy caused by the mutation A8344G (MERRF) in tRNALys. Neurology. 2007;68:5658CrossRefGoogle ScholarPubMed
Nikoskelainen, EK, Martilla, RJ, Huoponen, K, et al. Leber’s “plus” neurological abnormalities in patients with Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry 1995;59:160164.CrossRefGoogle ScholarPubMed
Luoma, PT, Eerola, J, Ahola, S, et al. Mitochondrial DNA polymerase gamma variants in idiopathic sporadic Parkinson disease. Neurology 2007;69:11521159.CrossRefGoogle ScholarPubMed
Eerola, J, Luoma, PT, Peuralinna, T, et al. POLG1 polyglutamine tract variants associated with Parkinson’s disease. Neurosci Lett 2010;477:15.CrossRefGoogle ScholarPubMed
Anvret, A, Westerlund, M, Sydow, O. Variations of the CAG trinucleotide repeat in DNA polymerase gamma (POLG1) is associated with Parkinson’s disease in Sweden. Neurosci Lett 2010;485:117120.CrossRefGoogle ScholarPubMed
Synofzik, M, Asmus, F, Reimold, M, Schols, L, Berg, D. Sustained dopaminergic response of parkinsonism and depression in POLG-associated parkinsonism. Mov Disord 2010;25:243245.CrossRefGoogle ScholarPubMed
Bueler, H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 2009;218:235247.CrossRefGoogle ScholarPubMed
Lera, G, Bhatia, K, Marsden, CD. Dystonia as the major manifestation of Leigh’s syndrome. Mov Disord 1994;9:642649CrossRefGoogle Scholar
Koene, S, Rodenburg, RJ, van der Knaap, MS, et al. Natural disease course and genotype–phenotype correlations in Complex I deficiency caused by nuclear gene defects: what we learned from 130 cases. J Inherit Metab Dis. 2012;35:737747.CrossRefGoogle ScholarPubMed
Simon, DK, Friedman, J, Breakefield, XO, et al. A heteroplasmic mitochondrial complex I gene mutation in adult-onset dystonia. Neurogenetics 2003;4:199205CrossRefGoogle ScholarPubMed
Wang, K, Takahashi, Y, Gao, ZL, et al. Mitochondrial ND3 as the novel causative gene for Leber hereditary optic neuropathy and dystonia. Neurogenetics. 2009;10:337345CrossRefGoogle Scholar
Solano, A, Roig, M, Vives-Bauza, C, et al. Bilateral striatal necrosis associated with a novel mutation in the mitochondrial ND6 gene. Ann Neurol 2003;54:527530.CrossRefGoogle ScholarPubMed
Mestre, T, Ferreira, J, Coelho, MM, Rosa, M, Sampaio, C. Therapeutic interventions for symptomatic treatment in Huntington’s disease. Cochrane Database Syst Rev 2009;(3):CD006456.CrossRefGoogle Scholar
Gehrig, SM, Petersen, JA, Frese, S, et al. Skeletal muscle characteristics and mitochondrial function in Huntington disease patients. Mov Disord 2017;32:12581259.CrossRefGoogle Scholar
Emmanuele, V, Lopez, LC, Berardo, A, et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch Neurol 2012;69:978983.CrossRefGoogle ScholarPubMed
Satishchandra, P, Sinha, S. Progressive myoclonic epilepsy. Neurol India 2010;58:514522.CrossRefGoogle ScholarPubMed
Anheim, M, Tranchant, C, Koenig, M. The autosomal recessive cerebellar ataxias. N Engl J Med 2012;366(7):636646.CrossRefGoogle ScholarPubMed
Nikali, K, Suomalainen, A, Saharinen, J, et al. Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins Twinkle and Twinky. Hum Mol Genet 2005;14:29812990.CrossRefGoogle ScholarPubMed
Wolters, ECh, Jung, HH, Baumann, CR. Mitochondrial movement disorders. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement disorders. Amsterdam: VU University Press; 2014: 577586.Google Scholar

References

Jinnah, HA, Albanese, A, Bhatia, KP, et al. Treatable inherited rare movement disorders. Mov Disord 2018;33:2135.CrossRefGoogle ScholarPubMed
Sedel, F, Saudubray, JM, Roze, E, Agid, Y, Vidailhet, M. Movement disorders and inborn errors of metabolism in adults: a diagnostic approach. J Inherit Metab Dis 2008;31:308318.CrossRefGoogle ScholarPubMed
Kingma, SDK, Bodamer, OA, Wijburg, FA. Epidemiology and diagnosis of lysosomal storage disorders; challenges of screening. Best Pract Res Clin Endocrinol Metab 2015;29:145157.CrossRefGoogle ScholarPubMed
Muthane, UB, Chickabasaviah, Y, Kaneski, C, et al. Clinical features of adult GM1 gangliosidosis: report of three Indian patients and review of 40 cases. Mov Disord 2004;19:13341341.CrossRefGoogle ScholarPubMed
Bajwa, H, Azhar, W. Niemann–Pick disease. [Updated 2023 Mar 6]. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2024. Available from: www.ncbi.nlm.nih.gov/books/NBK556129/Google Scholar
Vanier, MT. Niemann–Pick disease type C. Orphanet J Rare Dis 2010;5:118.CrossRefGoogle ScholarPubMed
Williams, RE, Adams, HR, Blohm, M, et al. Management strategies for CLN2 disease. Pediatr Neurol 2017;69:102112.CrossRefGoogle ScholarPubMed
Canafoglia, L, Gilioli, I, Invernizzi, F, et al. Electroclinical spectrum of the neuronal ceroid lipofuscinoses associated with CLN6 mutations. Neurology 2015;85:316324.CrossRefGoogle ScholarPubMed
Shahwan, A, Farrell, M, Delanty, N. Progressive myoclonic epilepsies: a review of genetic and therapeutic aspects. Lancet Neurol 2005;4:239248.CrossRefGoogle ScholarPubMed
Schulz, A, Ajayi, T, Specchio, N, et al. Study of intraventricular cerliponase alfa for CLN2 disease. N Engl J Med 2018;378:18981907.CrossRefGoogle ScholarPubMed
Reichert, R, Campos, LG, Vairo, F, et al. Neuroimaging findings in patients with mucopolysaccharidosis: what you really need to know. Radiographics 2016;36:14481462.CrossRefGoogle ScholarPubMed
Michaud, M, Belmatoug, N, Catros, F, et al. Mucopolysaccharidosis: a review. Rev Med Interne 2020;41:180188.CrossRefGoogle ScholarPubMed
Regier, DS, Tifft, CJ, Rothermel, CE. GLB1-related disorders. 2021. In: Adam, MP, Everman, DB, Mirzaa, GM, et al., eds. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 19932023.Google Scholar
Roze, E, Ewenczyk, C, Sedel, F. GM2 gangliosidosis. In: Kompoliti, K, Verhagen Metman, L, eds. Encyclopedia of Movement Disorders. New York: Academic Press; 2010.Google Scholar
Hall, P, Minnich, S, Teigen, C, Raymond, K. Diagnosing lysosomal storage disorders: the GM2 gangliosidoses. Curr Protoc Hum Genet 2014;83:17.16.18.Google ScholarPubMed
Orsini, JJ, Escolar, ML, Wasserstein, MP, Caggana, M. Krabbe disease. 2018. In: Adam, MP, Everman, DB, Mirzaa, GM, et al., eds. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 19932023.Google Scholar
Cousyn, L, Law-Ye, B, Pyatigorskaya, N, et al. Brain MRI features and scoring of leukodystrophy in adult-onset Krabbe disease. Neurology 2019;93:E647–652.CrossRefGoogle ScholarPubMed
Wenger, DA, Rafi, MA, Luzi, P. Molecular genetics of Krabbe disease (globoid cell leukodystrophy): diagnostic and clinical implications. Hum Mutat 1997;10:268279.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Riboldi, GM, di Fonzo, AB. GBA, Gaucher disease, and Parkinson’s disease: from genetic to clinic to new therapeutic approaches. Cells 2019;8:364.CrossRefGoogle ScholarPubMed
Smith, L, Schapira, AHV. GBA variants and Parkinson disease: mechanisms and treatments. Cells 2022;11(8):1261.CrossRefGoogle ScholarPubMed
Tamargo, RJ, Velayati, A, Goldin, E, Sidransky, E. The role of saposin C in Gaucher disease. Mol Genet Metab 2012;106:257263.CrossRefGoogle ScholarPubMed
Lai, SC, Chen, RS, Wu Chou, YH, et al. A longitudinal study of Taiwanese Sialidosis type 1: an insight into the concept of cherry-red spot myoclonus syndrome. European Journal of Neurology 2009;16:912919.CrossRefGoogle ScholarPubMed
Gieselmann, V, Krägeloh-Mann, I. Metachromatic leukodystrophy – an update. Neuropediatrics 2010;41:16.CrossRefGoogle ScholarPubMed
Shaimardanova, AA, Chulpanova, DS, Solovyeva, VV, et al. Metachromatic leukodystrophy: diagnosis, modeling, and treatment approaches. Front Med 2020;7:576221.CrossRefGoogle ScholarPubMed
Atalar, MH, Salk, I, Egilmez, H. Classical signs and appearances in pediatric neuroradiology: a pictorial review. Pol J Radiol 2014;79:479489.Google ScholarPubMed
Kaplan, J, de Domenico, I, Ward, DMV. Chediak–Higashi syndrome. Curr Opin Hematol 2008;15:2229.CrossRefGoogle ScholarPubMed
Aggarwal, A, Bhatt, M. Update on Wilson disease. Int Rev Neurobiol 2013;110:313348.CrossRefGoogle ScholarPubMed
Członkowska, A, Litwin, T, Dusek, P, et al. Wilson disease. Nat Rev Dis Primers 2018;4:21.CrossRefGoogle ScholarPubMed
Ferenci, P, Caca, K, Loudianos, G, et al. Diagnosis and phenotypic classification of Wilson disease. Liver Int 2003;23:139142.CrossRefGoogle ScholarPubMed
Masełbas, W, Chabik, G, Członkowska, A. Persistence with treatment in patients with Wilson disease. Neurol Neurochir Pol 2010;44:260263.CrossRefGoogle ScholarPubMed
Brissot, P, Pietrangelo, A, Adams, PC, et al. Haemochromatosis. Nat Rev Dis Primers 2018;4:18016.CrossRefGoogle ScholarPubMed
Gregory, A, Polster, BJ, Hayflick, SJ. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet 2009;46:7380.CrossRefGoogle ScholarPubMed
Kurian, MA, Hayflick, SJ. Pantothenate kinase-associated neurodegeneration (PKAN) and PLA2G6-associated neurodegeneration (PLAN): review of two major neurodegeneration with brain iron accumulation (NBIA) phenotypes. Int Rev Neurobiol 2013;110:4971.CrossRefGoogle ScholarPubMed
Seo, JH, Song, SK, Lee, PH. A novel PANK2 mutation in a patient with atypical pantothenate-kinase-associated neurodegeneration presenting with adult-onset parkinsonism. J Clin Neurol 2009;5:192194.CrossRefGoogle Scholar
Miyajima, H, Hosoi, Y. Aceruloplasminemia. 2018. In: Adam, MP, Everman, DB, Mirzaa, GM, et al., eds. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 19932023.Google Scholar
Hartig, MB. Neuroferritinopathy. In: Kompoliti, K, Verhagen Metman, L, eds. Encyclopedia of Movement Disorders. New York: Academic Press; 1993.Google Scholar
Riboldi, GM, Frattini, E, Monfrini, E, Frucht, SJ, di Fonzo, A. A practical approach to early-onset parkinsonism. J Parkinsons Dis 2022;12:126.CrossRefGoogle ScholarPubMed
Lindner, M, Kölker, S, Schulze, A, et al. Neonatal screening for glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2004;27:851859.CrossRefGoogle ScholarPubMed
Boy, N, Mühlhausen, C, Maier, EM, et al. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision. J Inherit Metab Dis 2017;40:75101.CrossRefGoogle ScholarPubMed
Mochel, F, Schiffmann, R, Steenweg, ME, et al. Adult polyglucosan body disease: natural history and key magnetic resonance imaging findings. Ann Neurol 2012;72:433441.CrossRefGoogle ScholarPubMed
Akman, HO, Lossos, A, Kakhlon, O. GBE1 Adult Polyglucosan Body Disease. In Gene Reviews® [Internet]. Seattle, WA: University of Washington, Seattle; 1993, updated 2020.Google Scholar
Harris, JC. Lesch–Nyhan syndrome and its variants: examining the behavioral and neurocognitive phenotype. Curr Opin Psychiatry 2018;31:96102.CrossRefGoogle ScholarPubMed
Harris, JC, Lee, RR, Jinnah, HA, et al. Craniocerebral magnetic resonance imaging measurement and findings in Lesch–Nyhan syndrome. Arch Neurol 1998;55:547553.CrossRefGoogle ScholarPubMed
Edwards, A, Voss, H, Rice, P, et al. Automated DNA sequencing of the human HPRT locus. Genomics 1990;6:593608.CrossRefGoogle ScholarPubMed
Torres, RJ, Puig, JG. Hypoxanthine–guanine phosophoribosyltransferase (HPRT) deficiency: Lesch–Nyhan syndrome. Orphanet J Rare Dis 2007;2:48.CrossRefGoogle ScholarPubMed
Lorincz, MT, Rainier, S, Thomas, D, Fink, JK. Cerebrotendinous xanthomatosis: possible higher prevalence than previously recognized. Arch Neurol 2005;62:14591463.CrossRefGoogle ScholarPubMed
Nie, S, Chen, G, Cao, X, Zhang, Y. Cerebrotendinous xanthomatosis: a comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J Rare Dis 2014;9:179.CrossRefGoogle ScholarPubMed
Barkhof, F, Verrips, A, Wesseling, P, et al. Cerebrotendinous xanthomatosis: the spectrum of imaging findings and the correlation with neuropathologic findings. Radiology 2000;217:869876.CrossRefGoogle ScholarPubMed
Verrips, A, Wevers, RA, van Engelen, BGM, et al. Effect of simvastatin in addition to chenodeoxycholic acid in patients with cerebrotendinous xanthomatosis. Metabolism 1999;48:233238.CrossRefGoogle ScholarPubMed
Pedroso, JL, Barsottini, OG, Espay, AJ. Movement disorders in metabolic disorders. Curr Neurol Neurosci Reports 2019 19(2):7.CrossRefGoogle ScholarPubMed

References

Lancaster, E, Dalmau, J. Neuronal autoantigens – pathogenesis, associated disorders and antibody testing. Nat Rev Neurol 2012;8(7):380390.CrossRefGoogle ScholarPubMed
Balint, B, Vincent, A, Meinck, HM, Irani, SR, Bhatia, KP. Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology. Brain 2018;141(1):1336.CrossRefGoogle ScholarPubMed
Chen, Y, Xing, XW, Zhang, JT, et al. Autoimmune encephalitis mimicking sporadic Creutzfeldt–Jakob disease: a retrospective study. J Neuroimmunol 2016;295–296:18.CrossRefGoogle ScholarPubMed
Geschwind, MD, Tan, KM, Lennon, VA, et al. Voltage-gated potassium channel autoimmunity mimicking Creutzfeldt–Jakob disease. Arch Neurol 2008;65(10):13411346.CrossRefGoogle ScholarPubMed
van Sonderen, A, Thijs, RD, Coenders, EC, et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 2016;87(14):14491456.CrossRefGoogle ScholarPubMed
Graus, F, Titulaer, MJ, Balu, R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15(4):391404.CrossRefGoogle ScholarPubMed
Zekeridou, A, Kryzer, T, Guo, Y, et al. Phosphodiesterase 10A IgG: a novel biomarker of paraneoplastic neurologic autoimmunity. Neurology 2019;93(8):e815e822.CrossRefGoogle ScholarPubMed
Mencacci, NE, Kamsteeg, EJ, Nakashima, K, et al. De novo mutations in PDE10A cause childhood-onset chorea with bilateral striatal lesions. Am J Hum Genet 2016;98(4):763771.CrossRefGoogle ScholarPubMed
Michael, S, Waters, P, Irani, SR. Stop testing for autoantibodies to the VGKC-complex: only request LGI1 and CASPR2. Pract Neurol 2020;20(5):377384.CrossRefGoogle Scholar
Dawes, JM, Weir, GA, Middleton, SJ, et al. Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability. Neuron 2018;97(4):806822.CrossRefGoogle ScholarPubMed
Gaig, C, Graus, F, Compta, Y, et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 2017;88(18):17361743.CrossRefGoogle ScholarPubMed
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12(2):157165.CrossRefGoogle ScholarPubMed
Varley, JA, Webb, AJS, Balint, B, et al. The movement disorder associated with NMDAR antibody-encephalitis is complex and characteristic: an expert video-rating study. J Neurol Neurosurg Psychiatry 2019;90(6):721726.CrossRefGoogle ScholarPubMed
Berlot, R, Bhatia, KP, Kojović, M. Pseudodystonia: a new perspective on an old phenomenon. Parkinsonism Relat Disord 2019;62:4450.CrossRefGoogle Scholar
Simard, C, Vogrig, A, Joubert, B, et al. Clinical spectrum and diagnostic pitfalls of neurologic syndromes with Ri antibodies. Neurol Neuroimmunol Neuroinflamm 2020;7(3):e699.CrossRefGoogle ScholarPubMed
Lehmann, HC, Burke, D, Kuwabara, S. Chronic inflammatory demyelinating polyneuropathy: update on diagnosis, immunopathogenesis and treatment. J Neurol Neurosurg Psychiatry 2019;90(9):981987.CrossRefGoogle ScholarPubMed
Balint, B, Meinck, HM. Pragmatic treatment of stiff person spectrum disorders. Mov Disord Clin Pract 2018;5(4):394401.CrossRefGoogle ScholarPubMed
Irani, SR, Stagg, CJ, Schott, JM, et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 2013;136(Pt 10):31513162.CrossRefGoogle Scholar
Flanagan, EP, Kotsenas, AL, Britton, JW, et al. Basal ganglia T1 hyperintensity in LGI1-autoantibody faciobrachial dystonic seizures. Neurol Neuroimmunol Neuroinflamm 2015;2(6):e161.CrossRefGoogle ScholarPubMed
Kim, SM, Waters, P, Woodhall, M, et al. Utility of aquaporin-4 antibody assay in patients with neuromyelitis optica spectrum disorders. Mult Scler 2013;19(8):10601067.CrossRefGoogle ScholarPubMed
Boronat, A, Gelfand, JM, Gresa-Arribas, N, et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol 2013;73(1):120128.CrossRefGoogle ScholarPubMed
Tobin, WO, Lennon, VA, Komorowski, L, et al. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 2014;83(20):17971803.CrossRefGoogle ScholarPubMed
Petit-Pedrol, M, Armangue, T, Peng, X, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol 2014;13(3):276286.CrossRefGoogle Scholar
Gövert, F, Witt, K, Erro, R, et al. Orthostatic myoclonus associated with Caspr2 antibodies. Neurology 2016;86(14):13531355.CrossRefGoogle ScholarPubMed
Balint, B, Jarius, S, Nagel, S, et al. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology 2014;82(17):15211528.CrossRefGoogle ScholarPubMed
Dalmau, J, Graus, F, Villarejo, A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127(Pt 8):18311844.CrossRefGoogle ScholarPubMed
Tada, S, Furuta, M, Fukada, K, et al. Severe parkinsonism associated with anti-CRMP5 antibody-positive paraneoplastic neurological syndrome and abnormal signal intensity in the bilateral basal ganglia. J Neurol Neurosurg Psychiatry 2016;87(8):907910.CrossRefGoogle ScholarPubMed
Kurtis, MM, Toledano, R, García-Morales, I, Gil-Nagel, A. Immunomodulated parkinsonism as a presenting symptom of LGI1 antibody encephalitis. Parkinsonism Relat Disord 2015;21(10):12861287.CrossRefGoogle ScholarPubMed
Kannoth, S, Nambiar, V, Gopinath, S, et al. Expanding spectrum of contactin-associated protein 2 (CASPR2) autoimmunity-syndrome of parkinsonism and ataxia. Neurol Sci 2018;39(3):455460.CrossRefGoogle ScholarPubMed
Dale, RC, Merheb, V, Pillai, S, et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain 2012;135(Pt 11):34533468.CrossRefGoogle ScholarPubMed
Fuseya, K, Kimura, A, Yoshikura, N, et al. Corticobasal syndrome in a patient with anti-IgLON5 antibodies. Mov Disord Clin Pract 2020;7(5):557559.CrossRefGoogle Scholar
Blattner, MS, de Bruin, GS, Bucelli, RC, Day, GS. Sleep disturbances are common in patients with autoimmune encephalitis. J Neurol 2019;266(4):10071015.CrossRefGoogle ScholarPubMed
Sabater, L, Gaig, C, Gelpi, E, et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 2014;13(6):575586.CrossRefGoogle Scholar
Delmont, E, Brodovitch, A, Kouton, L, et al. Antibodies against the node of Ranvier: a real-life evaluation of incidence, clinical features and response to treatment based on a prospective analysis of 1500 sera. J Neurol 2020;267(12):36643672.CrossRefGoogle ScholarPubMed
Kunchok, A, Zekeridou, A, McKeon, A. Autoimmune glial fibrillary acidic protein astrocytopathy. Curr Opin Neurol 2019;32(3):452458.CrossRefGoogle ScholarPubMed
Fang, B, McKeon, A, Hinson, SR, et al. Autoimmune glial fibrillary acidic protein astrocytopathy: a novel meningoencephalomyelitis. JAMA Neurol 2016;73(11):12971307.CrossRefGoogle ScholarPubMed
Honorat, JA, Komorowski, L, Josephs, KA, et al. IgLON5 antibody: neurological accompaniments and outcomes in 20 patients. Neurology Neuroimmun Neuroinflamm 2017;4(5):e385.CrossRefGoogle ScholarPubMed
Morales-Briceño, H, Cruse, B, Fois, AF, et al. IgLON5-mediated neurodegeneration is a differential diagnosis of CNS Whipple disease. Neurology 2018;90(24):11131115.CrossRefGoogle ScholarPubMed
Camacho, A, Núñez, N, Armangué, T, Simón, R. Myorhythmia-like dyskinesia affecting the face and ear associated with anti-N-methyl-d-aspartate receptor encephalitis. Mov Disord Clin Pract 2015;3(4):425426.CrossRefGoogle ScholarPubMed
Wenninger, S. Expanding the clinical spectrum of IgLON5-syndrome. J Neuromuscul Dis 2017;4(4):337339.CrossRefGoogle ScholarPubMed
Gövert, F, Leypoldt, F, Junker, R, et al. Antibody-related movement disorders – a comprehensive review of phenotype–autoantibody correlations and a guide to testing. Neurol Res Pract 2020;2(1):6.CrossRefGoogle Scholar
Vacchiano, V, Giannoccaro, MP, Rinaldi, R, Guarino, M, Liguori, R. Movement disorders associated with GABAA receptor encephalitis: a video case report. Mov Disord Clin Pract 2020;7(6):681683.CrossRefGoogle ScholarPubMed
Ariño, H, Armangué, T, Petit-Pedrol, M, et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 2016;87(8):759765.CrossRefGoogle ScholarPubMed
Baumgartner, A, Rauer, S, Hottenrott, T, et al. Admission diagnoses of patients later diagnosed with autoimmune encephalitis. J Neurol 2019;266(1):124132.CrossRefGoogle ScholarPubMed
Hermetter, C, Fazekas, F, Hochmeister, S. Systematic review: syndromes, early diagnosis, and treatment in autoimmune encephalitis. Front Neurol 2018;9:706.CrossRefGoogle ScholarPubMed
Blinder, T, Lewerenz, J. Cerebrospinal fluid findings in patients with autoimmune encephalitis – a systematic analysis. Front Neurol 2019;10:804.CrossRefGoogle ScholarPubMed
Budhram, A, Dubey, D, Sechi, E, et al. Neural antibody testing in patients with suspected autoimmune encephalitis. Clin Chem 2020;66(12):14961509.CrossRefGoogle ScholarPubMed
Lang, K, Prüss, H. Frequencies of neuronal autoantibodies in healthy controls: estimation of disease specificity. Neurol Neuroimmunol Neuroinflamm 2017;4(5):e386.CrossRefGoogle ScholarPubMed
Balint, B, Bhatia, K. Reopening the case for anti-basal ganglia antibodies (ABGAs): identification of dopamine-2 receptor antibodies associated with movement disorders. Mov Disord 2013;28(6):733.CrossRefGoogle ScholarPubMed
Bejerot, S, Klang, A, Hesselmark, E. The Cunningham Panel: concerns remain. Transl Psychiatry 2019;9(1):224-.CrossRefGoogle ScholarPubMed
Dahm, L, Ott, C, Steiner, J, et al. Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol 2014;76(1):8294.CrossRefGoogle ScholarPubMed
Hara, M, Martinez-Hernandez, E, Ariño, H, et al. Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology 2018;90(16):e1386e1394.CrossRefGoogle ScholarPubMed
Balint, B, Bhatia, KP, Dalmau, J. “Antibody of unknown significance” (AUS): the issue of interpreting antibody test results. Mov Disord 2021;36(7):15431547.CrossRefGoogle ScholarPubMed
Nosadini, M, Mohammad, SS, Ramanathan, S, Brilot, F, Dale, RC. Immune therapy in autoimmune encephalitis: a systematic review. Expert Rev Neurother 2015;15(12):13911419.CrossRefGoogle ScholarPubMed
Abboud, H, Probasco, J, Irani, SR, et al. Autoimmune encephalitis: proposed recommendations for symptomatic and long-term management. J Neurol Neurosurg Psychiatry 2021;92(8):897907.CrossRefGoogle ScholarPubMed
Pittock, SJ, Berthele, A, Fujihara, K, et al. Eculizumab in aquaporin-4–positive neuromyelitis optica spectrum disorder. N Engl J Med 2019;381(7):614625.CrossRefGoogle ScholarPubMed
Wickel, J, Chung, HY, Platzer, S, et al. Generate-Boost: study protocol for a prospective, multicenter, randomized controlled, double-blinded phase II trial to evaluate efficacy and safety of bortezomib in patients with severe autoimmune encephalitis. Trials 2020;21(1):625.CrossRefGoogle ScholarPubMed
Scheibe, F, Ostendorf, L, Reincke, SM, et al. Daratumumab treatment for therapy-refractory anti-CASPR2 encephalitis. J Neurol 2020;267(2):317323.CrossRefGoogle ScholarPubMed
Dubey, D, David, WS, Reynolds, KL, et al. Severe neurological toxicity of immune checkpoint inhibitors: growing spectrum. Ann Neurol 2020;87(5):659669.CrossRefGoogle ScholarPubMed
Vogrig, A, Muñiz-Castrillo, S, Honnorat, J. Value of onconeural antibodies in checkpoint inhibitor-related toxicities. Ann Neurol 2020;88(1):199200.CrossRefGoogle ScholarPubMed
Wilson, R, Menassa, DA, Davies, AJ, et al. Seronegative antibody-mediated neurology after immune checkpoint inhibitors. Ann Clin Transl Neurol 2018;5(5):640645.CrossRefGoogle ScholarPubMed
Vogrig, A, Muñiz-Castrillo, S, Desestret, V, Joubert, B, Honnorat, J. Pathophysiology of paraneoplastic and autoimmune encephalitis: genes, infections, and checkpoint inhibitors. Ther Adv Neurol Disord 2020;13:1756286420932797.CrossRefGoogle ScholarPubMed
Honorat, JA, Lopez-Chiriboga, AS, Kryzer, TJ, et al. Autoimmune septin-5 cerebellar ataxia. Neurol Neuroimmunol Neuroinflamm 2018;5(5):e474.CrossRefGoogle ScholarPubMed
Shelly, S, Kryzer, TJ, Komorowski, L, et al. Neurochondrin neurological autoimmunity. Neurol Neuroimmunol Neuroinflamm 2019;6(6):e612.CrossRefGoogle ScholarPubMed
Basal, E, Zalewski, N, Kryzer, TJ, et al. Paraneoplastic neuronal intermediate filament autoimmunity. Neurology 2018;91(18):e1677e1689.CrossRefGoogle ScholarPubMed
Dubey, D, Wilson, MR, Clarkson, B, et al. Expanded clinical phenotype, oncological associations, and immunopathologic insights of paraneoplastic Kelch-like protein-11 encephalitis. JAMA Neurol 2020;77(11):14201429.CrossRefGoogle ScholarPubMed
Menozzi, E, Mulroy, E, Akbarian-Tefaghi, L, Bhatia, KP, Balint, B. Movement disorders in systemic autoimmune diseases: clinical spectrum, ancillary investigations, pathophysiological considerations. Parkinsonism Relat Disord 2021;88:116128.CrossRefGoogle ScholarPubMed
Conway, KS, Camelo-Piragua, S, Fisher-Hubbard, A, et al. Multiple system atrophy pathology is associated with primary Sjögren’s syndrome. JCI Insight 2020;5(15):e138619.CrossRefGoogle ScholarPubMed
Bhatia, KP, Brown, P, Gregory, R, et al. Progressive myoclonic ataxia associated with coeliac disease. The myoclonus is of cortical origin, but the pathology is in the cerebellum. Brain 1995;118(Pt 5):10871093.CrossRefGoogle ScholarPubMed
Tijssen, MA, Thom, M, Ellison, DW, et al. Cortical myoclonus and cerebellar pathology. Neurology 2000;54(6):13501356.CrossRefGoogle ScholarPubMed
Peluso, S, Antenora, A, De Rosa, A, et al. Antiphospholipid-related chorea. Front Neurol 2012;3:150.CrossRefGoogle ScholarPubMed
Garretti, F, Agalliu, D, Lindestam Arlehamn, CS, Sette, A, Sulzer, D. Autoimmunity in Parkinson’s disease: the role of α-synuclein-specific T cells. Front Immunol 2019;10:303.CrossRefGoogle ScholarPubMed
Sabatino, JJ, Jr., Pröbstel, AK, Zamvil, SS. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 2019;20(12):728745.CrossRefGoogle ScholarPubMed
Witoelar, A, Jansen, IE, Wang, Y, et al. Genome-wide pleiotropy between Parkinson disease and autoimmune diseases. JAMA Neurol 2017;74(7):780792.CrossRefGoogle ScholarPubMed

References

Bonnet, C, Roubertie, A, Doummar, D, et al. Developmental and benign movement disorders in childhood. Mov Disord 2010;25(10):13171334.CrossRefGoogle ScholarPubMed
Maydell, BV, Berenson, F, Rothner, AD, Wyllie, E, Kotagal, P. Benign myoclonus of early infancy: an imitator of West’s syndrome. J Child Neurol 2001;16(2):109112.CrossRefGoogle ScholarPubMed
Coulter, DL, Allen, RJ. Benign neonatal sleep myoclonus. Arch Neurol 1982;39(3):191192.CrossRefGoogle ScholarPubMed
Marx, C, Masruha, MR, Garzon, E, Vilanova, LC. Benign neonatal sleep myoclonus. Epileptic Disord 2008;10(2):177180.CrossRefGoogle ScholarPubMed
Maurer, VO, Rizzi, M, Bianchetti, MG, Ramelli, GP. Benign neonatal sleep myoclonus: a review of the literature. Pediatrics 2010;125(4):e919–924.CrossRefGoogle ScholarPubMed
Holmes, GL, Russman, BS. Shuddering attacks. Evaluation using electroencephalographic frequency modulation radiotelemetry and videotape monitoring. Am J Dis Child 1986;140(1):7273.CrossRefGoogle ScholarPubMed
Kanazawa, O. Shuddering attacks-report of four children. Pediatr Neurol 2000;23(5):421424.CrossRefGoogle ScholarPubMed
Bye, AM, Kok, DJ, Ferenschild, FT, Vles, JS. Paroxysmal non-epileptic events in children: a retrospective study over a period of 10 years. J Paediatr Child Health 2000;36(3):244248.CrossRefGoogle Scholar
Kotagal, P, Costa, M, Wyllie, E, Wolgamuth, B. Paroxysmal nonepileptic events in children and adolescents. Pediatrics 2002;110(4):e46.CrossRefGoogle ScholarPubMed
Jan, MM. Shuddering attacks are not related to essential tremor. J Child Neurol 2010;25(7):881883.CrossRefGoogle Scholar
Vanasse, M, Bedard, P, Andermann, F. Shuddering attacks in children: an early clinical manifestation of essential tremor. Neurology 1976;26(11):10271030.CrossRefGoogle Scholar
Barron, TF, Younkin, DP. Propranolol therapy for shuddering attacks. Neurology 1992;42(1):258259.CrossRefGoogle ScholarPubMed
Lombroso, CT, Fejerman, N. Benign myoclonus of early infancy. Ann Neurol 1977;1(2):138143.CrossRefGoogle ScholarPubMed
Caraballo, RH, Capovilla, G, Vigevano, F, et al. The spectrum of benign myoclonus of early infancy: clinical and neurophysiologic features in 102 patients. Epilepsia 2009;50(5):11761183.CrossRefGoogle ScholarPubMed
Fernandez-Alvarez, E. Transient benign paroxysmal movement disorders in infancy. Eur J Paediatr Neurol 2018;22(2):230237.CrossRefGoogle ScholarPubMed
Shuper, A, Zalzberg, J, Weitz, R, Mimouni, M. Jitteriness beyond the neonatal period: a benign pattern of movement in infancy. J Child Neurol 1991;6(3):243245.CrossRefGoogle ScholarPubMed
Volpe, JJ, Volpe, JJ. Volpe’s Neurology of the Newborn. Sixth ed. Philadelphia, PA: Elsevier; 2018.Google Scholar
Parker, S, Zuckerman, B, Bauchner, H, et al. Jitteriness in full-term neonates: prevalence and correlates. Pediatrics 1990;85(1):1723.CrossRefGoogle ScholarPubMed
Ouvrier, R, Billson, F. Paroxysmal tonic upgaze of childhood – a review. Brain Dev 2005;27(3):185188.CrossRefGoogle ScholarPubMed
Ouvrier, RA, Billson, F. Benign paroxysmal tonic upgaze of childhood. J Child Neurol 1988;3(3):177180.CrossRefGoogle ScholarPubMed
Wolsey, DH, Warner, JE. Paroxysmal tonic downgaze in two healthy infants. J Neuroophthalmol 2006;26(3):187189.Google ScholarPubMed
Quade, A, Thiel, A, Kurth, I, et al. Paroxysmal tonic upgaze: A heterogeneous clinical condition responsive to carbonic anhydrase inhibition. Eur J Paediatr Neurol 2020;25:181186.CrossRefGoogle ScholarPubMed
Blumkin, L, Lev, D, Watemberg, N, Lerman-Sagie, T. Hypomyelinating leukoencephalopathy with paroxysmal tonic upgaze and absence of psychomotor development. Mov Disord 2007;22(2):226230.CrossRefGoogle ScholarPubMed
Salmina, C, Taddeo, I, Falesi, M, et al. Paroxysmal tonic upgaze in normal children: a case series and a review of the literature. Eur J Paediatr Neurol 2012;16(6):683687.CrossRefGoogle Scholar
Weissman, BM, Dell’Osso, LF, Abel, LA, Leigh, RJ. Spasmus nutans. A quantitative prospective study. Arch Ophthalmol 1987;105(4):525528.CrossRefGoogle ScholarPubMed
Gottlob, I, Zubcov, AA, Wizov, SS, Reinecke, RD. Head nodding is compensatory in spasmus nutans. Ophthalmology 1992;99(7):10241031.CrossRefGoogle ScholarPubMed
Chrousos, GA, Reingold, DR, Chu, FC, Cogan, DG. Habitual head turning in spasmus nutans: an oculographic study. J Pediatr Ophthalmol Strabismus 1985;22(3):113116.CrossRefGoogle ScholarPubMed
Gottlob, I, Wizov, SS, Reinecke, RD. Spasmus nutans. A long-term follow-up. Invest Ophthalmol Vis Sci 1995;36(13):27682771.Google ScholarPubMed
Kiblinger, GD, Wallace, BS, Hines, M, Siatkowski, RM. Spasmus nutans-like nystagmus is often associated with underlying ocular, intracranial, or systemic abnormalities. J Neuroophthalmol 2007;27(2):118122.CrossRefGoogle ScholarPubMed
Rosman, NP, Douglass, LM, Sharif, UM, Paolini, J. The neurology of benign paroxysmal torticollis of infancy: report of 10 new cases and review of the literature. J Child Neurol 2009;24(2):155160.CrossRefGoogle ScholarPubMed
Shin, M, Douglass, LM, Milunsky, JM, Rosman, NP. The genetics of benign paroxysmal torticollis of infancy: is there an association with mutations in the CACNA1A gene? J Child Neurol 2016;31(8):10571061.CrossRefGoogle ScholarPubMed
Dale, RC, Gardiner, A, Antony, J, Houlden, H. Familial PRRT2 mutation with heterogeneous paroxysmal disorders including paroxysmal torticollis and hemiplegic migraine. Dev Med Child Neurol 2012;54(10):958960.CrossRefGoogle ScholarPubMed
Humbertclaude, V, Riant, F, Krams, B, et al. Cognitive impairment in children with CACNA1A mutations. Dev Med Child Neurol 2020;62(3):330337.CrossRefGoogle ScholarPubMed
Calado, R, Monteiro, JP, Fonseca, MJ. Transient idiopathic dystonia in infancy. Acta Paediatr 2011;100(4):624627.CrossRefGoogle ScholarPubMed
Deonna, TW, Ziegler, AL, Nielsen, J. Transient idiopathic dystonia in infancy. Neuropediatrics 1991;22(4):220224.CrossRefGoogle ScholarPubMed
John, B, Klemm, E, Haverkamp, F. Evidence for altered basal ganglia and cortical functions in transient idiopathic dystonia. J Child Neurol 2000;15(12):820822.CrossRefGoogle ScholarPubMed
Singer, HS, Mink, JW, Gilbert, DL, Jankovic, J. Movement Disorders in Childhood. Second ed. Amsterdam: Elsevier/Academic Press; 2016.Google Scholar
Shepherd, RW, Wren, J, Evans, S, Lander, M, Ong, TH. Gastroesophageal reflux in children. Clinical profile, course and outcome with active therapy in 126 cases. Clin Pediatr (Phila) 1987;26(2):5560.CrossRefGoogle ScholarPubMed
Mindlina, I. Diagnosis and management of Sandifer syndrome in children with intractable neurological symptoms. Eur J Pediatr 2020;179(2):243250.CrossRefGoogle ScholarPubMed
Leung, AK, Robson, WL. Childhood masturbation. Clin Pediatr (Phila) 1993;32(4):238241.CrossRefGoogle ScholarPubMed
Nechay, A, Ross, LM, Stephenson, JB, O’Regan, M. Gratification disorder (“infantile masturbation”): a review. Arch Dis Child 2004;89(3):225226.CrossRefGoogle ScholarPubMed
Yang, ML, Fullwood, E, Goldstein, J, Mink, JW. Masturbation in infancy and early childhood presenting as a movement disorder: 12 cases and a review of the literature. Pediatrics 2005;116(6):14271432.CrossRefGoogle Scholar
Jankovic, J, Tolosa, E. Parkinson’s Disease and Movement Disorders. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007.Google Scholar
Edwards, MJ, Lang, AE, Bhatia, KP. Stereotypies: a critical appraisal and suggestion of a clinically useful definition. Mov Disord 2012;27(2):179185.CrossRefGoogle ScholarPubMed
Singer, HS. Motor stereotypies. Semin Pediatr Neurol 2009;16(2):7781.CrossRefGoogle ScholarPubMed
Harris, KM, Mahone, EM, Singer, HS. Nonautistic motor stereotypies: clinical features and longitudinal follow-up. Pediatr Neurol 2008;38(4):267272.CrossRefGoogle ScholarPubMed
Robinson, S, Woods, M, Cardona, F, Hedderly, T. Intense imagery movements (IIM): more to motor stereotypies than meets the eye. Eur J Paediatr Neurol 2016;20(1):6168.CrossRefGoogle ScholarPubMed
Mahone, EM, Bridges, D, Prahme, C, Singer, HS. Repetitive arm and hand movements (complex motor stereotypies) in children. J Pediatr 2004;145(3):391395.CrossRefGoogle ScholarPubMed

References

Tysnes, OB, Storstein, A. Epidemiology of Parkinson’s disease. J Neural Transm Vienna 2017;124(8):901905.CrossRefGoogle ScholarPubMed
Gibb, WR, Lees, AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 1988;51(6):745752.CrossRefGoogle Scholar
Hamedani, AG, Abraham, DS, Maguire, MG, Willis, AW. Visual impairment is more common in Parkinson’s disease and is a risk factor for poor health outcomes. Mov Disord 2020;35(9):15421549.CrossRefGoogle ScholarPubMed
Han, G, Han, J, Han, K, Youn, J, Chung, TY, Lim, DH. Visual acuity and development of Parkinson’s disease: a nationwide cohort study. Mov Disord 2020;35(9):15321541.CrossRefGoogle ScholarPubMed
Price, MJ, Feldman, RG, Adelberg, D, Kayne, H. Abnormalities in color vision and contrast sensitivity in Parkinson’s disease. Neurology 1992;42(4):887890.CrossRefGoogle ScholarPubMed
Weil, RS, Schrag, AE, Warren, JD, et al. Visual dysfunction in Parkinson’s disease. Brain J Neurol 2016;139(11):28272843.CrossRefGoogle ScholarPubMed
Büttner, T, Kuhn, W, Klotz, P, et al. Disturbance of colour perception in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1993;6(1):1115.CrossRefGoogle ScholarPubMed
Rieger, G. Improvement of contrast sensitivity with yellow filter glasses. Can J Ophthalmol 1992;27(3):137138.Google ScholarPubMed
Almer, Z, Klein, KS, Marsh, L, Gerstenhaber, M, Repka, MX. Ocular motor and sensory function in Parkinson’s disease. Ophthalmology 2012;119(1):178182.CrossRefGoogle ScholarPubMed
Büttner, T, Kuhn, W, Patzold, T, Przuntek, H. L-Dopa improves colour vision in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1994;7(1):1319.CrossRefGoogle ScholarPubMed
Nakamura, T, Kanayama, R, Sano, R, et al. Quantitative analysis of ocular movements in Parkinson’s disease. Acta Oto-Laryngol Suppl 1991;481:559562.CrossRefGoogle ScholarPubMed
Corin, MS, Elizan, TS, Bender, MB. Oculomotor function in patients with Parkinson’s disease. J Neurol Sci 1972;15(3):251265.CrossRefGoogle ScholarPubMed
Shibasaki, H, Tsuji, S, Kuroiwa, Y. Oculomotor abnormalities in Parkinson’s disease. Arch Neurol 1979;36(6):360364.CrossRefGoogle ScholarPubMed
Ladda, J, Valkovic, P, Eggert, T, Straube, A. Parkinsonian patients show impaired predictive smooth pursuit. J Neurol 2008;255(7):10711078.CrossRefGoogle ScholarPubMed
Vidailhet, M, Rivaud, S, Gouider-Khouja, N, et al. Eye movements in parkinsonian syndromes. Ann Neurol 1994;35(4):420426.CrossRefGoogle ScholarPubMed
Pinkhardt, EH, Kassubek, J, Süssmuth, S, et al. Comparison of smooth pursuit eye movement deficits in multiple system atrophy and Parkinson’s disease. J Neurol 2009;256(9):14381446.CrossRefGoogle ScholarPubMed
Kassavetis, P, Kaski, D, Anderson, T, Hallett, M. Eye movement disorders in movement disorders. Mov Disord Clin Pract 2022;9(3):284295.CrossRefGoogle ScholarPubMed
Shaunak, S, O’Sullivan, E, Blunt, S, et al. Remembered saccades with variable delay in Parkinson’s disease. Mov Disord 1999;14(1):8086.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Briand, KA, Strallow, D, Hening, W, Poizner, H, Sereno, AB. Control of voluntary and reflexive saccades in Parkinson’s disease. Exp Brain Res 1999;129(1):3848.CrossRefGoogle ScholarPubMed
Antoniades, CA, Demeyere, N, Kennard, C, Humphreys, GW, Hu, MT. Antisaccades and executive dysfunction in early drug-naive Parkinson’s disease: the discovery study. Mov Disord 2015;30(6):843847.CrossRefGoogle ScholarPubMed
Urwyler, P, Nef, T, Killen, A, et al. Visual complaints and visual hallucinations in Parkinson’s disease. Parkinsonism Relat Disord 2014;20(3):318322.CrossRefGoogle ScholarPubMed
Lin, IC, Wang, YH, Wang, TJ, et al. Glaucoma, Alzheimer’s disease, and Parkinson’s disease: an 8-year population-based follow-up study. PLoS One 2014;9(9):e108938.CrossRefGoogle ScholarPubMed
Lai, SW, Lin, CL, Liao, KF. Glaucoma correlates with increased risk of Parkinson’s disease in the elderly: a national-based cohort study in Taiwan. Curr Med Res Opin 2017;33(8):15111516.CrossRefGoogle ScholarPubMed
Kawabata, K, Ohdake, R, Watanabe, H, et al. Visuoperceptual disturbances in Parkinson’s disease. Clin Park Relat Disord 2020;3:100036.Google ScholarPubMed
Schrag, A, Ben-Shlomo, Y, Quinn, NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 1999;354(9192):17711775.CrossRefGoogle ScholarPubMed
Gilman, S, Wenning, GK, Low, PA, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008;71(9):670676.CrossRefGoogle ScholarPubMed
Hughes, AJ, Ben-Shlomo, Y, Daniel, SE, Lees, AJ. What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. Neurology 1992;42(6):11421146.CrossRefGoogle ScholarPubMed
Armstrong, RA. Visual signs and symptoms of multiple system atrophy. Clin Exp Optom 2014;97(6):483491.CrossRefGoogle ScholarPubMed
Sartucci, F, Orlandi, G, Bonuccelli, U, et al. Chromatic pattern-reversal electroretinograms (ChPERGs) are spared in multiple system atrophy compared with Parkinson’s disease. Neurol Sci 2006;26(6):395401.CrossRefGoogle ScholarPubMed
Anderson, T, Luxon, L, Quinn, N, et al. Oculomotor function in multiple system atrophy: clinical and laboratory features in 30 patients. Mov Disord 2008;23(7):977984.CrossRefGoogle ScholarPubMed
Brooks, SH, Klier, EM, Red, SD, et al. Slowed prosaccades and increased antisaccade errors as a potential behavioral biomarker of multiple system atrophy. Front Neurol 2017;8:261.CrossRefGoogle ScholarPubMed
Bertram, K, Williams, DR. Visual hallucinations in the differential diagnosis of parkinsonism. J Neurol Neurosurg Psychiatry 2012;83(4):448452.CrossRefGoogle ScholarPubMed
McKeith, IG, Boeve, BF, Dickson, DW, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 2017;89(1):88100.CrossRefGoogle ScholarPubMed
Unger, RH, Flanigan, PM, Khosravi, M, Leverenz, JB, Tousi, B. Clinical and imaging characteristics associated with color vision impairment in Lewy body disease. J Alzheimers Dis 2019;72(4):12331240.CrossRefGoogle ScholarPubMed
Anderson, TJ, MacAskill, MR. Eye movements in patients with neurodegenerative disorders. Nat Rev Neurol 2013;9(2):7485.CrossRefGoogle ScholarPubMed
Viscidi, E, Litvan, I, Dam, T, et al. Clinical features of patients with progressive supranuclear palsy in a US insurance claims database. Front Neurol 2021;12:571800.CrossRefGoogle Scholar
Hoglinger, GU, Respondek, G, Stamelou, M, et al. Clinical diagnosis of progressive supranuclear palsy: the Movement Disorder Society criteria. Mov Disord 2017;32(6):853864.CrossRefGoogle ScholarPubMed
Armstrong, RA. Visual signs and symptoms of progressive supranuclear palsy. Clin Exp Optom 2011;94(2):150160.CrossRefGoogle ScholarPubMed
Matsumoto, H, Inaba, T, Kakumoto, T, et al. Progressive supranuclear palsy with wall-eyed bilateral internuclear ophthalmoplegia syndrome: authors’ second case. Case Rep Neurol 2019;11(2):205208.CrossRefGoogle ScholarPubMed
Otero-Millan, J, Serra, A, Leigh, RJ, et al. Distinctive features of saccadic intrusions and microsaccades in progressive supranuclear palsy. J Neurosci 2011;31(12):43794387.CrossRefGoogle ScholarPubMed
Pinkhardt, EH, Jürgens, R, Becker, W, et al. Differential diagnostic value of eye movement recording in PSP-parkinsonism, Richardson’s syndrome, and idiopathic Parkinson’s disease. J Neurol 2008;255(12):19161925.CrossRefGoogle ScholarPubMed
Quinn, N. The “round the houses” sign in progressive supranuclear palsy. Ann Neurol 1996;40(6):951.CrossRefGoogle Scholar
Abate, F, Picillo, M, Della Rocca, G, Barone, P, Erro, R. The “zig-zag” sign in progressive supranuclear palsy. Parkinsonism Relat Disord 2020;79:8687.CrossRefGoogle Scholar
Chen, AL, Riley, DE, King, SA, et al. The disturbance of gaze in progressive supranuclear palsy: implications for pathogenesis. Front Neurol 2010;1:147.CrossRefGoogle ScholarPubMed
Hardwick, A, Rucker, JC, Cohen, ML, et al. Evolution of oculomotor and clinical findings in autopsy-proven Richardson syndrome. Neurology 2009;73(24):21222124.CrossRefGoogle ScholarPubMed
Garbutt, S, Riley, DE, Kumar, AN, et al. Abnormalities of optokinetic nystagmus in progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2004;75(10):13861394.CrossRefGoogle ScholarPubMed
Constantinides, VC, Paraskevas, GP, Paraskevas, PG, Stefanis, L, Kapaki, E. Corticobasal degeneration and corticobasal syndrome: a review. Clin Park Relat Disord 2019;1:6671.Google ScholarPubMed
Armstrong, MJ, Litvan, I, Lang, AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013;80(5):496503.CrossRefGoogle ScholarPubMed
Rivaud-Péchoux, S, Vidailhet, M, Gallouedec, G, et al. Longitudinal ocular motor study in corticobasal degeneration and progressive supranuclear palsy. Neurology 2000;54(5):10291032.CrossRefGoogle ScholarPubMed
Rajagopal, R, Bateman, R, Van Stavern, GP. Visual involvement in corticobasal syndrome. J Neuro-Ophthalmol 2012;32(4):338340.CrossRefGoogle ScholarPubMed
Song, P, Zhang, Y, Zha, M, et al. The global prevalence of essential tremor, with emphasis on age and sex: a meta-analysis. J Glob Health 2021;11:04028.CrossRefGoogle ScholarPubMed
Bhatia, KP, Bain, P, Bajaj, N, et al. Consensus statement on the classification of tremors from the Task Force on Tremor of the International Parkinson and Movement Disorder Society. Mov Disord 2018;33(1):7587.CrossRefGoogle ScholarPubMed
Helmchen, C, Hagenow, A, Miesner, J, et al. Eye movement abnormalities in essential tremor may indicate cerebellar dysfunction. Brain J Neurol 2003;126(Pt 6):13191332.CrossRefGoogle ScholarPubMed
Visser, F, Bour, LJ, Lee, YX, Ten Brinke, TR, van Rootselaar, AF. Eye movement abnormalities in essential tremor versus tremor dominant Parkinson’s disease. Clin Neurophysiol 2019;130(5):683691.CrossRefGoogle ScholarPubMed
Gitchel, GT, Wetzel, PA, Baron, MS. Slowed saccades and increased square wave jerks in essential tremor. Tremor Other Hyperkinetic Mov N Y 2013;3:tre-03-178-4116-2.Google ScholarPubMed
Louis, ED, Gerbin, M, Viner, AS. Color vision: a study of essential tremor cases versus normal controls. Eur J Neurol 2012;19(8):11361139.CrossRefGoogle ScholarPubMed
Oh, YS, Kim, JS, Chung, SW, et al. Color vision in Parkinson’s disease and essential tremor. Eur J Neurol 2011;18(4):577583.CrossRefGoogle ScholarPubMed
Paulson, HL, Shakkottai, VG, Clark, HB, Orr, HT. Polyglutamine spinocerebellar ataxias – from genes to potential treatments. Nat Rev Neurosci 2017;18(10):613626.CrossRefGoogle ScholarPubMed
Teive, HAG, Munhoz, RP, Arruda, WO, et al. Spinocerebellar ataxias: genotype–phenotype correlations in 104 Brazilian families. Clinics (Sao Paulo) 2012;67(5):443449.CrossRefGoogle ScholarPubMed
Rosini, F, Pretegiani, E, Battisti, C, et al. Eye movement changes in autosomal dominant spinocerebellar ataxias. Neurol Sci 2020;41(7):17191734.CrossRefGoogle ScholarPubMed
Yabe, I, Sasaki, H, Takeichi, N, et al. Positional vertigo and macroscopic downbeat positioning nystagmus in spinocerebellar ataxia type 6 (SCA6). J Neurol 2003;250(4):440443.CrossRefGoogle ScholarPubMed
Moscovich, M, Okun, MS, Favilla, C, et al. Clinical evaluation of eye movements in spinocerebellar ataxias: a prospective multicenter study. J Neuro-Ophthalmol 2015;35(1):1621.CrossRefGoogle ScholarPubMed
Miller, RC, Tewari, A, Miller, JA, Garbern, J, Van Stavern, GP. Neuro-ophthalmologic features of spinocerebellar ataxia type 7. J Neuro-Ophthalmol 2009;29(3):180186.CrossRefGoogle ScholarPubMed
Dupré, M, Hermann, R, Froment Tilikete, C. Update on cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Cerebellum 2021;20(5):687700.CrossRefGoogle ScholarPubMed
Swift, M, Morrell, D, Cromartie, E, et al. The incidence and gene frequency of ataxia–telangiectasia in the United States. Am J Hum Genet 1986;39(5):573583.Google ScholarPubMed
Boder, E, Sedgwick, RP. Ataxia–telangiectasia; a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics 1958;21(4):526554.CrossRefGoogle ScholarPubMed
Lewis, RF, Lederman, HM, Crawford, TO. Ocular motor abnormalities in ataxia telangiectasia. Ann Neurol 1999;46(3):287295.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Farr, AK, Shalev, B, Crawford, TO, et al. Ocular manifestations of ataxia–telangiectasia. Am J Ophthalmol 2002;134(6):891896.CrossRefGoogle ScholarPubMed
Hirsig, A, Barbey, C, Schüpbach, MWM, Bargiotas, P. Oculomotor functions in focal dystonias: a systematic review. Acta Neurol Scand 2020;141(5):359367.CrossRefGoogle ScholarPubMed
Barow, E, Schneider, SA, Bhatia, KP, Ganos, C. Oculogyric crises: etiology, pathophysiology and therapeutic approaches. Parkinsonism Relat Disord 2017;36:39.CrossRefGoogle ScholarPubMed
Onuaguluchi, G. Crises in post-encephalitic Parkinsonism. Brain 1961;84:395414.CrossRefGoogle ScholarPubMed
Di Maio, L, Squitieri, F, Napolitano, G, et al. Onset symptoms in 510 patients with Huntington’s disease. J Med Genet 1993;30(4):289292.CrossRefGoogle ScholarPubMed
Blekher, T, Johnson, SA, Marshall, J, et al. Saccades in presymptomatic and early stages of Huntington disease. Neurology 2006;67(3):394399.CrossRefGoogle ScholarPubMed
Fielding, J, Georgiou-Karistianis, N, Bradshaw, J, et al. Impaired modulation of the vestibulo-ocular reflex in Huntington’s disease. Mov Disord 2004;19(1):6875.CrossRefGoogle ScholarPubMed
Leigh, RJ, Newman, SA, Folstein, SE, Lasker, AG, Jensen, BA. Abnormal ocular motor control in Huntington’s disease. Neurology 1983;33(10):12681275.CrossRefGoogle ScholarPubMed
Robertson, MM. A personal 35 year perspective on Gilles de la Tourette syndrome: prevalence, phenomenology, comorbidities, and coexistent psychopathologies. Lancet Psychiatry 2015;2(1):6887.CrossRefGoogle ScholarPubMed
Straube, A, Mennicken, JB, Riedel, M, Eggert, T, Müller, N. Saccades in Gilles de la Tourette’s syndrome. Mov Disord 1997;12(4):536546.CrossRefGoogle ScholarPubMed
Farber, R, Swerdlow, N, Clementz, B. Saccadic performance characteristics and the behavioural neurology of Tourette’s syndrome. J Neurol Neurosurg Psychiatry 1999;66(3):305312.CrossRefGoogle ScholarPubMed
Goetz, CG. Eye signs and tic disorders: Gilles de la Tourette’s syndrome. J Am Optom Assoc 1997;68(11):688692.Google ScholarPubMed
Bisker, ER, McClelland, CM, Brown, LW, Liu, GT. The long-term outcomes of ocular tics in a pediatric neuro-ophthalmology practice. J AAPOS 2014;18(1):3135.CrossRefGoogle Scholar
Enoch, JM, Itzhaki, A, Lakshminarayanan, V, Comerford, JP, Lieberman, M. Visual field defects detected in patients with Gilles de la Tourette syndrome: preliminary report. Int Ophthalmol 1989;13(5):331344.CrossRefGoogle ScholarPubMed
Baizabal-Carvallo, JF, Jankovic, J. Psychogenic ophthalmologic movement disorders. J Neuropsychiatry Clin Neurosci 2016;28(3):195198.CrossRefGoogle ScholarPubMed
Kaski, D, Bronstein, AM, Edwards, MJ, Stone, J. Cranial functional (psychogenic) movement disorders. Lancet Neurol 2015;14(12):11961205.CrossRefGoogle ScholarPubMed

References

Parkinson, J. An Essay on the Shaking Palsy. London: Sherwood Neely and Jones; 1817.Google Scholar
Lewy, FH. Paralysis agitans. I. Pathologische Anatomie. In: Handbuch der Neurologie, III. Bd. Berlin: Springer; 1912: 920933.Google Scholar
Carlsson, A, Lindqvist, M, Magnusson, TO. 3,4-Dihydroxyphenylalanine and 5-hydroxy-tryptophan as reserpine antagonists. Nature 1957;180:1200.CrossRefGoogle ScholarPubMed
Birkmayer, W, Hornykiewicz, O. The l-3,4-dioxyphenylalanine (l-DOPA) effect in Parkinson’s akinesia. Wien Klin Wochenschrift 1961;73:7788.Google Scholar
Hornykiewicz, O. Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 1966;18:925964.Google ScholarPubMed
Henchcliffe, C, Parmar, M. Repairing the brain: cell replacement using stem cell-based technologies. J Parkinson’s Dis 2018;8:S131S137.CrossRefGoogle ScholarPubMed
Bjorklund, P. Repairing the brain: gene therapy. J Parkinson’s Dis 2018;8:S123S130.CrossRefGoogle ScholarPubMed
Chen-Plotkin, AS, Zetterberg, H. Updating our definitions of Parkinson’s disease for a molecular Age. J Parkinson’s Dis 2018;8:S53S57.CrossRefGoogle ScholarPubMed
Tysnes, OB, Storstein, A. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna) 2017;124:901905.CrossRefGoogle ScholarPubMed
Van den Eeden, S, Tanner, C, Bernstein, A, et al. Incidence of Parkinson’s disease: variation by age, gender and race/ethnicity. Am J Epidemiol 2003;157:10151022.CrossRefGoogle ScholarPubMed
Braak, H, Del Tredici, K, Rub, U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24:197211.CrossRefGoogle ScholarPubMed
Maiti, P, Manna, J, Dunbar, GL. Current understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. Transl Neurodegener 2017;6:28.CrossRefGoogle ScholarPubMed
Di Domenico, A, Carola, G, Calatayud, C, et al. Patient-specific iPSC-derived astrocytes contribute to non-cell-autonomous neurodegeneration in Parkinson’s disease. Stem Cell Rep 2019;12:213222.CrossRefGoogle ScholarPubMed
Surmeier, DJ, Obeso, JA, Halliday, GM Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 2017;18:101113.CrossRefGoogle ScholarPubMed
Wolters, ECh, Braak, H. Parkinson’s disease: premotor clinicopathological correlations. J Neural Transm (Vienna) 2006;S70:309320.Google Scholar
Truong, DD, Wolters, ECh. Recognition and management of Parkinson’s disease during the premotor (prodromal) phase. Exp Ther Neurol 2009;9:847857.Google ScholarPubMed
Oppenheimer, DR. Lateral horn cells in progressive autonomic failure. J Neurol Sci 1980;46:393404.CrossRefGoogle ScholarPubMed
Braak, H, Rub, U, Gai, WP, Del Tredici, K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm (Vienna) 2003;10:517536.CrossRefGoogle Scholar
Wolters, ECh, de Munter, H, Steinbusch, H. Parkinson’s disease. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Amsterdam: VU University Press; 2014: 149162.Google Scholar
De Pablo-Fernandez, E, Lees, AJ, Holton, JL, Warne, TT. Prognosis and neuropathologic correlation of clinical subtypes of Parkinson’s disease. JAMA Neurol 2019;176:470479.CrossRefGoogle Scholar
Erro, R, Picillo, M, Scannapieco, S, Cuoco, S, Pellecchia, MT. The role of disease duration and severity on novel clinical subtypes of Parkinson disease. Parkinsonism Rel Dis 2020;73:3134.CrossRefGoogle ScholarPubMed
Bosboom, JLW, Stoffers, D, Wolters, EC. Cognitive dysfunction and dementia in Parkinson’s disease. J Neural Transm (Vienna) 2004;111:13031315CrossRefGoogle ScholarPubMed
Mendoza-Velásquez, JJ, Flores-Vázquez, JF, Barrón-Velázquez, E, et al. Autonomic dysfunction in α-synucleinopathies. Front Neurol 2019;10:363.CrossRefGoogle ScholarPubMed
St Louis, EK, Boeve, BF. REM sleep behavior disorder: diagnosis, clinical implications, and future directions. Mayo Clin Proc 2017;92:17231736.CrossRefGoogle ScholarPubMed
Valkovic, P, Minar, M, Singliarova, H, et al. Pain in Parkinson’s disease: a cross-sectional study of its prevalence, types, and relationship to depression and quality of life. PLoS One 2015;10:e0136541.CrossRefGoogle ScholarPubMed
Ponsen, MM, Stoffers, D, Booij, J, et al. Idopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol 2004;56:173181.CrossRefGoogle Scholar
Linda, A. Hershey, LA, Coleman-Jackson, R. Pharmacological management of dementia with Lewy Bodies. Drugs Aging 2019;36:309319.Google Scholar
Hoehn, M, Yahr, M. Parkinsonism: onset, progression and mortality. Neurology 1967;244:28.Google Scholar
Wolters, ECh, van de Werf, Y, van de Heuvel, O. Parkinson’s disease-related impulsive-compulsive complex disorders. J Neurol 2008;255(S5):4856.CrossRefGoogle Scholar
Bougea, A, Maraki, MI, Yannakoulia, M, et al. Higher probability of prodromal Parkinson disease is related to lower cognitive performance. Neurology 2019;92:22612272.CrossRefGoogle ScholarPubMed
Ahn, J, Lee, J-Y, Kim, TW, et al. Retinal thinning associates with nigral dopaminergic loss in de novo Parkinson disease. Neurology 2018;91:10031012.CrossRefGoogle ScholarPubMed
Finberg, JPM, Schwartz, M, Jeries, R, et al. Sensor array for detection of early stage Parkinson’s disease before medication. ACS Chem Neurosci 2018;9(11):25482553.CrossRefGoogle ScholarPubMed
Kilzheimer, A, Hentrich, T, Burkhardt, S, Schulze-Hentrich, JM. The challenge and opportunity to diagnose Parkinson’s disease in midlife. Front Neurol 2019;10:1328.CrossRefGoogle ScholarPubMed
Hughes, AJ, Daniel, SE, Kilford, L, Lees, AJ. The accuracy of the clinical diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry 1992;55:181184.CrossRefGoogle Scholar
Jankovic, J. National Institute of Neurological Disorders and Stroke (NINDS) diagnostic criteria for Parkinson’s disease. J Neurol Neurosurg Psychiatry 2008;79:368376.CrossRefGoogle Scholar
Postuma, RB, Berg, D, Stern, M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 2015;30:15911601.CrossRefGoogle ScholarPubMed
Mosimann, UP, Muri, MR, Burn, DJ, et al. Saccadic eye movement changes in Parkinson’s disease dementia and dementia with Lewy bodies. Brain 2005; 128:12671276CrossRefGoogle ScholarPubMed
Ferrazzoli, D, Ortelli, P, Zivi, I, et al. Efficacy of intensive multidisciplinary rehabilitation in Parkinson’s disease: a randomised controlled study. J Neurol Neurosurg Psychiat 2017;89:828835.CrossRefGoogle Scholar
Garcia-Agundez, A, Folkerts, A, Konrad, R, et al. Recent advances in rehabilitation for Parkinson’s disease with exergames: a systematic review. J NeuroEngineering Rehabil 2019;16:17.CrossRefGoogle ScholarPubMed
Van der Kolk, NM,De Vries, NM,Kessels, RPC, et al.Effectiveness of home-based and remotely supervised aerobic exercise in Parkinson’s disease: a double-blind, randomised controlled trial. Lancet Neurol 2019;18:9981008.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×