Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T20:53:35.992Z Has data issue: false hasContentIssue false

Chapter 32 - Corticobasal Degeneration and Corticobasal Syndrome

from Section 2: - Hypokinetic Movement Disorders

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

Corticobasal degeneration (CBD) is a neurodegenerative disease characterized by abnormal aggregation of hyperphosphorylated 4R-tau in cortical and subcortical areas of the brain. It is associated with various clinical phenotypes, such as the characteristic clinical phenotype corticobasal syndrome (CBS), which manifests with asymmetric akinetic–rigid, poorly levodopa-responsive parkinsonism, and cerebral cortical dysfunction. Other associated phenotypes are progressive supranuclear palsy (PSP) syndrome, frontotemporal dementia, Alzheimer’s disease (AD)-like dementia, and non-fluent/agrammatic variant of primary progressive aphasia. Precise use of terminology is critical for a common understanding in discussions of clinical phenotype, attempted clinical diagnosis of CBD with its many presenting phenotypes, and accurate pathologic diagnosis (which can only be made neuropathologically). Diagnosis of probable or possible CBS and the other CBD-associated syndromes is based on the presence of certain clinical features. Pathologic and neuroimaging findings and currently available biological markers are discussed. Treatment for CBD and CBS is symptomatic and supportive at present.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Doran, M, Du Plessis, DG, Enevoldson, TP, et al. Pathological heterogeneity of clinically diagnosed corticobasal degeneration. J Neurol Sci 2003;216(1):127134.CrossRefGoogle ScholarPubMed
Ling, H, O’Sullivan, SS, Holton, JL, et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain 2010;133(7):20452057.CrossRefGoogle ScholarPubMed
Coyle-Gilchrist, ITS, Dick, KM, Patterson, K, et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 2016;86(18):17361743.CrossRefGoogle ScholarPubMed
Josephs, K, Petersen, RC, Knopman, DS, et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology 2006;66(1):4148.CrossRefGoogle ScholarPubMed
Brown, J, Lantos, PL, Roques, P, Fidani, L, Rossor, MN. Familial dementia with swollen achromatic neurons and corticobasal inclusion bodies: a clinical and pathological study. J Neurol Sci 1996;135(1):2130.CrossRefGoogle ScholarPubMed
Spillantini, MG, Yoshida, H, Rizzini, C, et al. A novel tau mutation (N296N) in familial dementia with swollen achromatic neurons and corticobasal inclusion bodies. Ann Neurol 2000;48(6):939943.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Snowden, JS, Rollinson, S, Thompson, JC, et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 2012;135(3):693708.CrossRefGoogle ScholarPubMed
Ghetti, B, Oblak, AL, Boeve, BF, et al. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol Appl Neurobiol 2015;41(1):2446.CrossRefGoogle ScholarPubMed
Kouri, N, Ross, OA, Dombrowski, B, et al. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nat Commun 2015;6:7247.CrossRefGoogle ScholarPubMed
Miklossy, J, Steele, JC, Yu, S, McCall, S, Sandberg, G, McGeer, EG, et al. Enduring involvement of tau, β-amyloid, α-synuclein, ubiquitin and TDP-43 pathology in the amyotrophic lateral sclerosis/parkinsonism–dementia complex of Guam (ALS/PDC). Acta Neuropathol 2008;116(6):625637.CrossRefGoogle ScholarPubMed
Lee, SE, Rabinovici, GD, Mayo, MC, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol 2011;70(2):327340.CrossRefGoogle ScholarPubMed
Liu, F, Gong, C-X. Tau exon 10 alternative splicing and tauopathies. Mol Neurodegener 2008;3(1):8.CrossRefGoogle ScholarPubMed
Dickson, DW, Kouri, N, Murray, ME, Josephs, KA. Neuropathology of frontotemporal lobar degeneration-tau (FTLD-Tau). J Mol Neurosci 2011;45(3):384389.CrossRefGoogle ScholarPubMed
Spillantini, MG, Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol 2013;12(6):609622.CrossRefGoogle ScholarPubMed
Yokoyama, JS, Karch, CM, Fan, CC, et al. Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia. Acta Neuropathol 2017;133(5):825837.CrossRefGoogle ScholarPubMed
Ling, H, Kovacs, GG, Vonsattel, JPG, et al. Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. Brain 2016;139(Pt 12):32373252.CrossRefGoogle ScholarPubMed
Kovacs, GG, Xie, SX, Robinson, JL,et al. Sequential stages and distribution patterns of aging-related tau astrogliopathy (ARTAG) in the human brain. Acta Neuropathol Commun 2018;6(1):50.CrossRefGoogle ScholarPubMed
Goedert, M. Tau proteinopathies and the prion concept. Prog Mol Biol Transl Sci 2020;175:239259.CrossRefGoogle ScholarPubMed
Dickson, DW, Bergeron, C, Chin, SS, et al. Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol 2002;61(11):935946.CrossRefGoogle ScholarPubMed
Saranza, GM, Whitwell, JL, Kovacs, GG, Lang, AE. Chapter Four – Corticobasal degeneration. In: Stamelou, M, Höglinger, GU, eds.Parkinsonism Beyond Parkinson’s Disease. New York: Academic Press; 2019: 87136.CrossRefGoogle Scholar
Robinson, JL, Lee, EB, Xie, SX,et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain 2018;141(7):21812193.CrossRefGoogle ScholarPubMed
Shi, Y, Zhang, W, Yang, Y, et al. Structure-based classification of tauopathies. Nature 2021;598(7880):359363.CrossRefGoogle ScholarPubMed
Lee, SE, Rabinovici, GD, Mayo, MC, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol 2011;70(2):327340.CrossRefGoogle ScholarPubMed
Armstrong, MJ, Litvan, I, Lang, AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013;80(5):496503.CrossRefGoogle ScholarPubMed
Stamelou, M, Alonso-Canovas, A, Bhatia, KP. Dystonia in corticobasal degeneration: a review of the literature on 404 pathologically proven cases. Mov Disord 2012;27(6):696702.CrossRefGoogle ScholarPubMed
Murray, R, Neumann, M, Forman, MS,et al. Cognitive and motor assessment in autopsy-proven corticobasal degeneration. Neurology 2007;68(16):12741283.CrossRefGoogle ScholarPubMed
Vanvoorst, WA, Greenaway, MC, Boeve, BF, et al. Neuropsychological findings in clinically atypical autopsy confirmed corticobasal degeneration and progressive supranuclear palsy. Parkinsonism Relat Disord 2008;14(4):376378.CrossRefGoogle ScholarPubMed
Josephs, KA, Duffy, JR, Clark, HM, et al. A molecular pathology, neurobiology, biochemical, genetic and neuroimaging study of progressive apraxia of speech. Nat Commun 2021;12(1):3452.CrossRefGoogle ScholarPubMed
Day, GS, Lim, TS, Hassenstab, J, et al. Differentiating cognitive impairment due to corticobasal degeneration and Alzheimer disease. Neurology 2017;88(13):12731281.CrossRefGoogle ScholarPubMed
Soliveri, P, Piacentini, S, Girotti, F. Limb apraxia in corticobasal degeneration and progressive supranuclear palsy. Neurology 2005;64(3):448453.CrossRefGoogle ScholarPubMed
Hassan, A, Josephs, KA. Alien hand syndrome. Curr Neurol Neurosci Rep 2016;16(8):73.CrossRefGoogle ScholarPubMed
Kertesz, A, McMonagle, P, Blair, M, Davidson, W, Munoz, DG. The evolution and pathology of frontotemporal dementia. Brain 2005;128(9):19962005.CrossRefGoogle ScholarPubMed
Ouchi, H, Toyoshima, Y, Tada, M,et al. Pathology and sensitivity of current clinical criteria in corticobasal syndrome. Mov Disord 2014;29(2):238244.CrossRefGoogle ScholarPubMed
Alexander, SK, Rittman, T, Xuereb, JH, et al. Validation of the new consensus criteria for the diagnosis of corticobasal degeneration. J Neurol Neurosurg Psychiatry 2014;85(8):923927.CrossRefGoogle ScholarPubMed
Boyd, C, Tierney, M, Wassermann, E, et al. Sensitivity and specificity of new criteria for the diagnosis of corticobasal degeneration (P5.010). Neurology 2015;84(14 Suppl):P5.010.CrossRefGoogle Scholar
Weinstein, J, Irwin, D, Trojanowski, J, et al. Sensitivity and specificity of clinical criteria for 4-repeat tauopathies in autopsy-confirmed cases (S27.003). Neurology 2018;90(15 Suppl):S27.003.CrossRefGoogle Scholar
Sha, SJ, Ghosh, PM, Lee, SE, et al. Predicting amyloid status in corticobasal syndrome using modified clinical criteria, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography. Alzheimers Res Ther 2015;7(1):8.CrossRefGoogle ScholarPubMed
Koyama, M, Yagishita, A, Nakata, Y, et al.Imaging of corticobasal degeneration syndrome. Neuroradiology 2007;49(11):905912.CrossRefGoogle ScholarPubMed
Boxer, AL, Geschwind, MD, Belfor, N, et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch Neurol 2006;63(1):8186.CrossRefGoogle ScholarPubMed
Josephs, KA, Whitwell, JL, Dickson, DW, et al. Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol Aging 2008;29(2):280289.CrossRefGoogle ScholarPubMed
Whitwell, JL, Jack, CR, Boeve, BF, et al. Imaging correlates of pathology in corticobasal syndrome. Neurology 2010;75(21):18791887.CrossRefGoogle ScholarPubMed
Upadhyay, N, Suppa, A, Piattella, MC, et al. Gray and white matter structural changes in corticobasal syndrome. Neurobiol Aging 2016;37:8290.CrossRefGoogle ScholarPubMed
Whitwell, JL, Schwarz, CG, Reid, RI, et al. Diffusion tensor imaging comparison of progressive supranuclear palsy and corticobasal syndromes. Parkinsonism Relat Disord 2014;20(5):493498.CrossRefGoogle ScholarPubMed
Kaasinen, V, Gardberg, M, Röyttä, M, Seppänen, M, Päivärinta, M. Normal dopamine transporter SPECT in neuropathologically confirmed corticobasal degeneration. J Neurol 2013;260(5):14101411.CrossRefGoogle ScholarPubMed
Mille, E, Levin, J, Brendel, M, et al. Cerebral glucose metabolism and dopaminergic function in patients with corticobasal syndrome. J Neuroimaging 2017;27(2):255261.CrossRefGoogle ScholarPubMed
Whitwell, JL. Tau imaging in parkinsonism: what have we learned so far? Mov Disord Clin Pract 2018;5(2):118130.CrossRefGoogle ScholarPubMed
Sander, K, Lashley, T, Gami, P, et al. Characterization of tau positron emission tomography tracer [18F]AV-1451 binding to postmortem tissue in Alzheimer’s disease, primary tauopathies, and other dementias. Alzheimers Dement 2016;12(11):11161124.CrossRefGoogle ScholarPubMed
Whitwell, JL, Loewe, VJ, Tosakulwong, N, et al. [18F]AV-1451 tau positron emission tomography in progressive supranuclear palsy. Mov Disord 2017;32(1):124133.CrossRefGoogle ScholarPubMed
Tetzloff, KA, Duffy, JR, Strand, EA, et al. Clinical and imaging progression over 10 years in a patient with primary progressive apraxia of speech and autopsy-confirmed corticobasal degeneration. Neurocase 2018;24(2):111120.CrossRefGoogle Scholar
Hansson, O, Janelidze, S, Hall, S, et al. Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder. Neurology 2017;88(10):930937.CrossRefGoogle ScholarPubMed
Bridel, C, van Wieringen, WN, Zetterberg, H, et al. Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology. JAMA Neurol 2019;76(9):10351048.CrossRefGoogle ScholarPubMed
Jabbari, E, Holland, N, Chelban, V, et al. Diagnosis across the spectrum of progressive supranuclear palsy and corticobasal syndrome. JAMA Neurol 2020;77(3):377387.CrossRefGoogle ScholarPubMed
Hall, S, Öhrfelt, A, Constantinescu, R, et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol 2012;69(11):14451452.CrossRefGoogle ScholarPubMed
Magdalinou, NK, Paterson, RW, Schott, JM, et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry 2015;86(11):12401247.CrossRefGoogle ScholarPubMed
Rojas, JC, Bang, J, Lobach, IV, et al. CSF neurofilament light chain and phosphorylated tau 181 predict disease progression in PSP. Neurology 2018;90(4):e273e281.CrossRefGoogle ScholarPubMed
Leuzy, A, Janelidze, S, Mattsson-Carlgren, N, et al. Comparing the clinical utility and diagnostic performance of CSF P-Tau181, P-Tau217, and P-Tau231 assays. Neurology 2021;97(17):e1681e1694.CrossRefGoogle ScholarPubMed
Saijo, E, Metrick, MA, Koga, S, et al, 4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol 2020;139(1):6377.CrossRefGoogle ScholarPubMed
Alcolea, D, Vilaplana, E, Suárez-Calvet, M, et al. CSF sAPPbeta, YKL-40, and neurofilament light in frontotemporal lobar degeneration. Neurology 2017;89(2):178188.CrossRefGoogle ScholarPubMed
Olsson, B, Constantinescu, R, Holmberg, B, et al. The glial marker YKL-40 is decreased in synucleinopathies. Mov Disord 2013;28(13):18821885.CrossRefGoogle ScholarPubMed
Jabbari, E, Woodside, J, Guo, T, et al. Proximity extension assay testing reveals novel diagnostic biomarkers of atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry 2019;90(7):768773.CrossRefGoogle ScholarPubMed
Lang, AE, Stebbins, GT, Wang, P,et al., The Cortical Basal ganglia Functional Scale (CBFS): development and preliminary validation. Parkinsonism Relat Disord 2020;79:121126.CrossRefGoogle ScholarPubMed
Boxer, AL, Yu, J-T, Golbe, LI, et al. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol 2017;16(7):552563.CrossRefGoogle ScholarPubMed
Tolosa, E, Litvan, I, Höglinger, GU, et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord 2014;29(4):470478.CrossRefGoogle ScholarPubMed
Boxer, AL, Lang, AE, Grossman, M, et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol 2014;13(7):676685.CrossRefGoogle ScholarPubMed
Tsai, RM, Miller, Z, Koestler, M, et al. Reactions to multiple ascending doses of the microtubule stabilizer TPI-287 in patients with Alzheimer disease, progressive supranuclear palsy, and corticobasal syndrome: a randomized clinical trial. JAMA Neurol 2020;77(2):215224.CrossRefGoogle ScholarPubMed
Dam, T, Boxer, AL, Golbe, LI, et al. Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial. Nat Med 2021;27(8):14511457.CrossRefGoogle ScholarPubMed
Höglinger, GU, Litvan, I, Mendonca, N, et al. Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial. Lancet Neurol 2021;20(3):182192.CrossRefGoogle ScholarPubMed
Kompoliti, K, Goetze, CE, Boeve, BF, et al. Clinical presentation and pharmacological therapy in corticobasal degeneration. Arch Neurol 1998;55(7):957961.CrossRefGoogle ScholarPubMed
Bluett, B, Pantelyat, AY, Litvan, I, et al. Best practices in the clinical management of progressive supranuclear palsy and corticobasal syndrome: a consensus statement of the CurePSP Centers of Care. Front Neurol 2021;12:694872.CrossRefGoogle ScholarPubMed
VandeVrede, L, Ljubenkov, PA, Rojas, JC, Welch, AE, Boxer, AL. Four-repeat tauopathies: current management and future treatments. Neurotherapeutics 2020;17(4):15631581.CrossRefGoogle ScholarPubMed
Saranza, G, Villanueva, EQ III, Lang, AE. Preferences for communication about end-of-life care in atypical parkinsonism. Mov Disord 2021;36(9):21162125.CrossRefGoogle ScholarPubMed
Forman, MS, Farmer, J, Johnson, JK, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol 2006;59(6):952962.CrossRefGoogle ScholarPubMed
Wenning, GK, Litvan, I, Jankovic, J, et al. Natural history and survival of 14 patients with corticobasal degeneration confirmed at postmortem examination. J Neurol Neurosurg Psychiatry 1998;64(2):184189.CrossRefGoogle ScholarPubMed
Hansson, O, Janelidze, S, Hall, S, et al. Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder. Neurology 2017;88(10):930937.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×