Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T18:25:03.339Z Has data issue: false hasContentIssue false

Chapter 59 - Functional Imaging

from Section 5: - Objectifying Movement Disorders

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

The complexity of movement disorders poses challenges for clinical management and research. Functional imaging with PET or SPECT allows in-vivo assessment of the molecular underpinnings of movement disorders, and biomarkers can aid clinical decision making and understanding of pathophysiology, or determine patient eligibility and endpoints in clinical trials. Imaging targets traditionally include functional processes at the molecular level, typically neurotransmitter systems or brain metabolism, and more recently abnormal protein accumulation, a pathologic hallmark of neurodegenerative diseases. Functional neuroimaging provides complementary information to structural neuroimaging (e.g. anatomic MRI), as molecular/functional changes can present in the absence of, prior to, or alongside structural brain changes. Movement disorder specialists should be aware of the indications, advantages and limitations of molecular functional imaging. An overview is given of functional molecular imaging in movement disorders, covering methodologic background information, typical molecular changes in common movement disorders, and emerging topics with potential for greater future importance.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Morbelli, S, Esposito, G, Arbizu, J, et al. EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging 2020;47(8):18851912.CrossRefGoogle ScholarPubMed
Strafella, AP, Bohnen, NI, Perlmutter, JS, et al. Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: new imaging frontiers. Mov Disord 2017;32(2):181192.CrossRefGoogle ScholarPubMed
Kaasinen, V, Vahlberg, T, Stoessl, AJ, et al. Dopamine receptors in Parkinson’s disease: a meta-analysis of imaging studies. Mov Disord 2021;36(8):1781–191.CrossRefGoogle ScholarPubMed
Whitwell, JL. Tau imaging in parkinsonism: what have we learned so far? Mov Disord Clin Pract 2018;5(2):118130.CrossRefGoogle ScholarPubMed
Vingerhoets, FJ, Schulzer, M, Calne, DB, et al. Which clinical sign of Parkinson’s disease best reflects the nigrostriatal lesion? Ann Neurol 1997;41(1):5864.CrossRefGoogle ScholarPubMed
Nandhagopal, R, Kuramoto, L, Schulzer, M, et al. Longitudinal progression of sporadic Parkinson’s disease: a multi-tracer positron emission tomography study. Brain 2009;132(Pt 11):29702979.CrossRefGoogle ScholarPubMed
Snow, BJ, Tooyama, I, McGeer, EG, et al. Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels. Ann Neurol 1993;34(3):324330.CrossRefGoogle ScholarPubMed
Saari, L, Kivinen, K, Gardberg, M, et al. Dopamine transporter imaging does not predict the number of nigral neurons in Parkinson disease. Neurology 2017;88(15):14611467.CrossRefGoogle Scholar
Karimi, M, Tian, L, Brown, CA, et al. Validation of nigrostriatal positron emission tomography measures: critical limits. Ann Neurol 2013;73(3):390396.CrossRefGoogle ScholarPubMed
Marek, KL, Seibyl, JP, Zoghbi, SS, et al. [123I] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 1996;46(1):231237.CrossRefGoogle ScholarPubMed
Eisensehr, I, Linke, R, Noachtar, S, et al. Reduced striatal dopamine transporters in idiopathic rapid eye movement sleep behaviour disorder. Comparison with Parkinson’s disease and controls. Brain 2000;123(Pt 6):11551160.CrossRefGoogle ScholarPubMed
Ponsen, MM, Stoffers, D, Booij, J, et al. Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol 2004;56(2):173181.CrossRefGoogle ScholarPubMed
Marshall, VL, Patterson, J, Hadley, DM, et al. Two-year follow-up in 150 consecutive cases with normal dopamine transporter imaging. Nucl Med Commun 2006;27(12):933937.CrossRefGoogle ScholarPubMed
de la Fuente-Fernández, R, Sossi, V, Huang, Z, et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 2004;127(Pt 12):2747–54.CrossRefGoogle ScholarPubMed
Pavese, N, Evans, AH, Tai, YF, et al. Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 2006;67(9):16121617.CrossRefGoogle ScholarPubMed
Steeves, TD, Miyasaki, J, Zurowski, M, et al. Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain 2009;132(Pt 5):13761385.CrossRefGoogle ScholarPubMed
Brooks, DJ, Ibanez, V, Sawle, GV, et al. Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 1990;28(4):547555.CrossRefGoogle ScholarPubMed
Plotkin, M, Amthauer, H, Klaffke, S, et al. Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J Neural Transm (Vienna) 2005;112(5):677692.CrossRefGoogle Scholar
Gilman, S, Koeppe, RA, Junck, L, et al. Decreased striatal monoaminergic terminals in multiple system atrophy detected with positron emission tomography. Ann Neurol 1999;45(6):769777.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Cilia, R, Rossi, C, Frosini, D, et al. Dopamine transporter SPECT imaging in corticobasal syndrome. PLoS One 2011;6(5):e18301.CrossRefGoogle ScholarPubMed
Eidelberg, D. Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci 2009;32(10):548557.CrossRefGoogle ScholarPubMed
Zalewski, N, Botha, H, Whitwell, JL, et al. FDG-PET in pathologically confirmed spontaneous 4R-tauopathy variants. J Neurol 2014;261(4):710716.CrossRefGoogle ScholarPubMed
Blin, J, Baron, JC, Dubois, B, et al. Positron emission tomography study in progressive supranuclear palsy. Brain hypometabolic pattern and clinicometabolic correlations. Arch Neurol 1990;47(7):747752.CrossRefGoogle ScholarPubMed
Pardini, M, Huey, ED, Spina, S, et al. FDG-PET patterns associated with underlying pathology in corticobasal syndrome. Neurology 2019;92(10):e1121e1135.CrossRefGoogle ScholarPubMed
Kwon, KY, Choi, CG, Kim, JS, et al. Comparison of brain MRI and 18F-FDG PET in the differential diagnosis of multiple system atrophy from Parkinson’s disease. Mov Disord 2007;22(16):23522358.CrossRefGoogle ScholarPubMed
Lim, SM, Katsifis, A, Villemagne, VL, et al. The 18F-FDG PET cingulate island sign and comparison to 123I-β-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med 2009;50(10):16381645.CrossRefGoogle ScholarPubMed
Nagayama, H, Hamamoto, M, Ueda, M, et al. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2005;76(2):249251.CrossRefGoogle ScholarPubMed
Oka, H, Yoshioka, M, Onouchi, K, et al. Characteristics of orthostatic hypotension in Parkinson’s disease. Brain 2007;130(Pt 9):24252432.CrossRefGoogle ScholarPubMed
Gjerloff, T, Fedorova, T, Knudsen, K, et al. Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with C-11-donepezil PET. Brain 2015;138:653663.CrossRefGoogle ScholarPubMed
Meyer, JH, Kruger, S, Wilson, AA, et al. Lower dopamine transporter binding potential in striatum during depression. Neuroreport 2001;12(18):41214125.CrossRefGoogle ScholarPubMed
Remy, P, Doder, M, Lees, AJ, Turjanski, N, Brooks, DJ. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 2005;128:13141322.CrossRefGoogle ScholarPubMed
Politis, M, Wu, K, Loane, C, et al. Depressive symptoms in PD correlate with higher 5-HTT binding in raphe and limbic structures. Neurology 2010;75(21):19201927.CrossRefGoogle ScholarPubMed
Kim, SE, Choi, JY, Choe, YS, et al. Serotonin transporters in the midbrain of Parkinson’s disease patients: a study with 123I-beta-CIT SPECT. J Nucl Med 2003;44(6):870876.Google ScholarPubMed
Doder, M, Rabiner, EA, Turjanski, N, et al. Brain serotonin HT1A receptors in Parkinson’s disease with and without depression measured by positron emission tomography and 11C-WAY100635. Mov Disord 2000;15(Suppl 3):213.Google Scholar
Ballanger, B, Klinger, H, Eche, J, et al. Role of serotonergic 1A receptor dysfunction in depression associated with Parkinson’s disease. Mov Disord 2012;27(1):8489.CrossRefGoogle ScholarPubMed
Bohnen, NI, Kaufer, DI, Hendrickson, R, et al. Cortical cholinergic denervation is associated with depressive symptoms in Parkinson’s disease and parkinsonian dementia. J Neurol Neurosurg Psychiatry 2007;78(6):641643.CrossRefGoogle ScholarPubMed
Schifitto, G, Friedman, JH, Oakes, D, et al. Fatigue in levodopa-naive subjects with Parkinson disease. Neurology 2008;71(7):481485.CrossRefGoogle ScholarPubMed
Pavese, N, Metta, V, Bose, SK, et al. Fatigue in Parkinson’s disease is linked to striatal and limbic serotonergic dysfunction. Brain 2010;133(11):34343443.CrossRefGoogle ScholarPubMed
Happe, S, Baier, PC, Helmschmied, K, et al. Association of daytime sleepiness with nigrostriatal dopaminergic degeneration in early Parkinson’s disease. J Neurol 2007;254(8):10371043.CrossRefGoogle ScholarPubMed
Pavese, N. Imaging the aetiology of sleep disorders in dementia and Parkinson’s disease. Curr Neurol Neurosci Rep 2014;14(12):501.CrossRefGoogle ScholarPubMed
Wilson, H, Giordano, B, Turkheimer, FE, et al. Serotonergic dysregulation is linked to sleep problems in Parkinson’s disease. Neuroimage Clin 2018;18:630637.CrossRefGoogle ScholarPubMed
Sommerauer, M, Fedorova, TD, Hansen, AK, et al. Evaluation of the noradrenergic system in Parkinson’s disease: an 11C-MeNER PET and neuromelanin MRI study. Brain 2018;141(2):496504.CrossRefGoogle ScholarPubMed
Kotagal, V, Albin, RL, Muller, ML, et al. Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease. Ann Neurol 2012;71(4):560568.CrossRefGoogle ScholarPubMed
Firbank, MJ, Yarnall, AJ, Lawson, RA, et al. Cerebral glucose metabolism and cognition in newly diagnosed Parkinson’s disease: ICICLE-PD study. J Neurol Neurosurg Psychiatry 2017;88(4):310316.CrossRefGoogle ScholarPubMed
Yong, SW, Yoon, JK, An, YS, et al. A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol 2007;14(12):13571362.CrossRefGoogle ScholarPubMed
O’Brien, JT, Colloby, S, Fenwick, J, et al. Dopamine transporter loss visualized with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies. Arch Neurol 2004;61(6):919925.CrossRefGoogle ScholarPubMed
Ito, K, Nagano-Saito, A, Kato, T, et al. Striatal and extrastriatal dysfunction in Parkinson’s disease with dementia: a 6-[18F]fluoro-L-dopa PET study. Brain 2002;125(Pt 6):13581365.CrossRefGoogle ScholarPubMed
Rinne, JO, Portin, R, Ruottinen, H, et al. Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F]fluorodopa positron emission tomographic study. Arch Neurol 2000;57(4):470475.CrossRefGoogle ScholarPubMed
Bohnen, NI, Kaufer, DI, Ivanco, LS, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 2003;60(12):17451748.CrossRefGoogle Scholar
Bohnen, NI, Kaufer, DI, Hendrickson, R, et al. Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 2006;253(2):242247.CrossRefGoogle ScholarPubMed
Kuhl, DE, Phelps, ME, Markham, CH, et al. Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scans. Ann Neurol 1982;12:425434.CrossRefGoogle Scholar
Young, AB, Penney, JB, Starosta-Rubinstein, S, et al. PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol 1986;20:296303.CrossRefGoogle ScholarPubMed
Berent, S, Giordani, B, Lehtinen, S, et al. Positron emission tomographic scan investigations of Huntington’s disease – cerebral metabolic correlates of cognitive function. Ann Neurol 1988;23:541546.CrossRefGoogle ScholarPubMed
Kuwert, T, Lange, HW, Langen, KJ, et al. Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 1990;113:14051423.CrossRefGoogle ScholarPubMed
Young, AB, Penney, JB, Starosta-Rubinstein, S, et al. Normal caudate glucose metabolism in persons at-risk for Huntington’s disease. Arch Neurol 1987;44:254257.CrossRefGoogle ScholarPubMed
Antonini, A, Leenders, KL, Spiegel, R, et al. Striatal glucose metabolism and dopamine D-2 receptor binding in asymptomatic gene carriers and patients with Huntington’s disease. Brain 1996;119:20852095.CrossRefGoogle Scholar
Dubinsky, RM, Hallett, M, Levey, R, et al. Regional brain glucose metabolism in neuroacanthocytosis. Neurology 1989;39:12531255.CrossRefGoogle ScholarPubMed
Hosokawa, S, Ichiya, Y, Kuwabara, Y, et al. Positron emission tomography in cases of chorea with different underlying diseases. J Neurol Neurosurg Psychiatry 1987;50:12841287.CrossRefGoogle ScholarPubMed
Guttman, M, Lang, AE, Garnett, ES, et al. Regional cerebral glucose metabolism in SLE chorea: further evidence that striatal hypometabolism is not a correlate of chorea. Mov Disord 1987;2:201210.CrossRefGoogle Scholar
Weindl, A, Kuwert, T, Leenders, KL, et al. Increased striatal glucose consumption in Sydenham chorea. Mov Disord 1993;8:437444.CrossRefGoogle Scholar
Pahl, JJ, Mazziotta, JC, Cummings, J, et al. Positron emission tomography in tardive dyskinesia and Huntington’s disease. J Cereb Blood Flow Metabol 1987;7:12531255.Google Scholar
Carbon, M, Eidelberg, D. Abnormal structure–function relationships in hereditary dystonia. Neuroscience 2009;164(1):220229.CrossRefGoogle ScholarPubMed
Carbon, M, Argyelan, M, Eidelberg, D. Functional imaging in hereditary dystonia. Eur J Neurol 2010;17(Suppl 1):5864.CrossRefGoogle ScholarPubMed
Hutchinson, M, Nakamura, T, Moeller, JR, et al. The metabolic topography of essential blepharospasm: a focal dystonia with general implications. Neurology 2000;55(5):673677.CrossRefGoogle ScholarPubMed
Playford, ED, Fletcher, NA, Sawle, GV, et al. Integrity of the nigro-striatal dopaminergic system in familial dystonia: an 18F-dopa PET study. Brain 1993;116:11911199.CrossRefGoogle Scholar
Naumann, M, Pirker, W, Reiners, K, et al. Imaging the pre- and postsynaptic side of striatal dopaminergic synapses in idiopathic cervical dystonia: a SPECT study using [123I]Epidepride and [123I]b-CIT. Mov Disord 1998;13:319323.CrossRefGoogle Scholar
Perlmutter, JS, Stambuk, MK, Markham, J, et al. Decreased [F-18] spiperone binding in putamen in idiopathic focal dystonia. J Neurosci 1997;17:843850.CrossRefGoogle ScholarPubMed
Sawle, GV, Leenders, KL, Brooks, DJ, et al. Dopa-responsive dystonia: [18F]dopa positron emission tomography. Ann Neurol 1991;30:2430.CrossRefGoogle ScholarPubMed
Naumann, M, Pirker, W, Reiners, K, et al. [123I]beta-CIT single-photon emission tomography in DOPA-responsive dystonia. Mov Disord 1997;12(3):448451.CrossRefGoogle ScholarPubMed
Turjanski, N, Bhatia, K, Burn, DJ, et al. Comparison of striatal 18F-dopa uptake in adult-onset dystonia–parkinsonism, Parkinson’s disease, and dopa-responsive dystonia. Neurology 1993;43:15631568.CrossRefGoogle ScholarPubMed
Benamer, HT, Patterson, J, Grosset, DG, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT Study Group. Mov Disord 2000;15(3):503–10.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Vlaar, AM, de Nijs, T, Kessels, AG, et al. Diagnostic value of 123I-ioflupane and 123I-iodobenzamide SPECT scans in 248 patients with parkinsonian syndromes. Eur Neurol 2008;59(5):258266.CrossRefGoogle ScholarPubMed
Sudmeyer, M, Antke, C, Zizek, T, et al. Diagnostic accuracy of combined FP-CIT, IBZM, and MIBG scintigraphy in the differential diagnosis of degenerative parkinsonism: a multidimensional statistical approach. J Nucl Med 2011;52(5):733740.CrossRefGoogle ScholarPubMed
Hellwig, S, Amtage, F, Kreft, A, et al. [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology 2012;79(13):13141322.CrossRefGoogle ScholarPubMed
Treglia, G, Cason, E, Stefanelli, A, et al. MIBG scintigraphy in differential diagnosis of Parkinsonism: a meta-analysis. Clin Auton Res 2012;22(1):4355.CrossRefGoogle ScholarPubMed
Eckert, T, Barnes, A, Dhawan, V, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005;26(3):912921.CrossRefGoogle ScholarPubMed
Tripathi, M, Dhawan, V, Peng, S, et al. Differential diagnosis of parkinsonian syndromes using F-18 fluorodeoxyglucose positron emission tomography. Neuroradiology 2013;55(4):483492.CrossRefGoogle ScholarPubMed
Smith, R, Schain, M, Nilsson, C, et al. Increased basal ganglia binding of 18F-AV-1451 in patients with progressive supranuclear palsy. Mov Disord 2017;32(1):108114.CrossRefGoogle ScholarPubMed
Schonhaut, DR, McMillan, CT, Spina, S, et al. 18F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: a multicenter study. Ann Neurol 2017;82(4):622634.CrossRefGoogle ScholarPubMed
Ghirelli, A, Tosakulwong, N, Weigand, SD, et al. Sensitivity-specificity of tau and amyloid β positron emission tomography in frontotemporal lobar degeneration. Ann Neurol 2020;88(5):10091022.CrossRefGoogle ScholarPubMed
Cho, H, Baek, MS, Choi, JY, et al. 18F-AV-1451 binds to motor-related subcortical gray and white matter in corticobasal syndrome. Neurology 2017;89(11):11701178.CrossRefGoogle ScholarPubMed
Brendel, M, Barthel, H, van Eimeren, T, et al. Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol 2020;77(11):14081419.CrossRefGoogle ScholarPubMed
Palleis, C, Brendel, M, Finze, A, et al. Cortical [18F]PI-2620 binding differentiates corticobasal syndrome subtypes. Mov Disord 2021;36(9):21042115.CrossRefGoogle ScholarPubMed
Tagai, K, Ono, M, Kubota, M, et al. High-contrast in vivo imaging of tau pathologies in Alzheimer’s and non-Alzheimer’s disease tauopathies. Neuron 2021;109(1):4258.CrossRefGoogle ScholarPubMed
Petrou, M, Dwamena, BA, Foerster, BR, et al. Amyloid deposition in Parkinson’s disease and cognitive impairment: a systematic review. Mov Disord 2015;30(7):928935.CrossRefGoogle ScholarPubMed
Gomperts, SN, Locascio, JJ, Rentz, D, et al. Amyloid is linked to cognitive decline in patients with Parkinson disease without dementia. Neurology 2013;80(1):8591.CrossRefGoogle ScholarPubMed
Müller, ML, Frey, KA, Petrou, M, et al. β-Amyloid and postural instability and gait difficulty in Parkinson’s disease at risk for dementia. Mov Disord 2013;28(3):296301.CrossRefGoogle ScholarPubMed
Gomperts, SN, Locascio, JJ, Makaretz, SJ, et al. Tau positron emission tomographic imaging in the Lewy body diseases. JAMA Neurol 2016;73(11):13341341.CrossRefGoogle ScholarPubMed
Hansen, AK, Damholdt, MF, Fedorova, TD, et al. In vivo cortical tau in Parkinson’s disease using 18F-AV-1451 positron emission tomography. Mov Disord 2017;32(6):922927.CrossRefGoogle ScholarPubMed
Lee, SH, Cho, H, Choi, JY, et al. Distinct patterns of amyloid-dependent tau accumulation in Lewy body diseases. Mov Disord 2018;33(2):262272.CrossRefGoogle ScholarPubMed
Kikuchi, A, Takeda, A, Okamura, N, et al. In vivo visualization of alpha-synuclein deposition by carbon-11-labelled 2-[2-(2-dimethylaminothiazol-5-yl)ethenyl]-6-[2-(fluoro)ethoxy]benzoxazole positron emission tomography in multiple system atrophy. Brain 2010;133(Pt 6):17721778.CrossRefGoogle ScholarPubMed
Shah, M, Seibyl, J, Cartier, A, et al. Molecular imaging insights into neurodegeneration: focus on alpha-synuclein radiotracers. J Nucl Med 2014;55(9):13971400.CrossRefGoogle ScholarPubMed
Smith, R, Capotosti, F, Schain, M, et al. Initial clinical scans using [18F]ACI-12589, a novel α-synuclein PET-tracer. Alzheimers Dement 2022;18(S6):e065394.CrossRefGoogle Scholar
Matsuoka, K, Ono, M, Takado, Y, et al. High-contrast imaging of α-synuclein pathologies in living patients with multiple system atrophy. Mov Disord 2022;37(10):21592161.CrossRefGoogle ScholarPubMed
Pavese, N, Brooks, DJ. Imaging neurodegeneration in Parkinson’s disease. Biochim Biophys Acta 2009;1792(7):722729.CrossRefGoogle ScholarPubMed
Whone, AL, Watts, RL, Stoessl, AJ, et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann Neurol 2003;54(1):93101.CrossRefGoogle ScholarPubMed
Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 2002;287(13):16531661.CrossRefGoogle Scholar
Parkinson Study Group. Pramipexole vs levodopa as initial therapy for Parkinson’s disease. JAMA 2000;284:19311938.CrossRefGoogle Scholar
Fahn, S, Oakes, D, Shoulson, I, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med 2004;351(24):24982508.Google ScholarPubMed
Schapira, AHV, McDermott, MP, Barone, P, et al. Pramipexole in patients with early Parkinson’s disease (PROUD): a randomised delayed-start trial. Lancet Neurol 2013;12(8):747755.CrossRefGoogle Scholar
Verschuur, CVM, Suwijn, SR, Boel, JA, et al. Randomized delayed-start trial of levodopa in Parkinson’s disease. N Engl J Med 2019;380(4):315324.CrossRefGoogle ScholarPubMed
Piccini, P, Brooks, DJ, Bjorklund, A, et al. Dopamine release from nigral transplants visualised in vivo in a Parkinson’s patient. Nature Neurosci 1999;2:11371140.CrossRefGoogle Scholar
Freed, CR, Greene, PE, Breeze, RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001;344(10):710719.CrossRefGoogle ScholarPubMed
Olanow, CW, Goetz, CG, Kordower, JH, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 2003;54(3):403414.CrossRefGoogle ScholarPubMed
Gill, SS, Patel, NK, Hotton, GR, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003;9(5):589595.CrossRefGoogle ScholarPubMed
Lang, AE, Gill, S, Patel, NK, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 2006;59(3):459466.CrossRefGoogle ScholarPubMed
Pagano, G, Taylor, KI, Anzures-Cabrera, J, et al. Trial of prasinezumab in early-stage Parkinson’s disease. N Engl J Med 2022;387(5):421432.CrossRefGoogle ScholarPubMed
Lang, AE, Siderowf, AD, Macklin, EA, et al. Trial of cinpanemab in early Parkinson’s disease. N Engl J Med 2022;387(5):408420.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×