Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T22:14:25.977Z Has data issue: false hasContentIssue false

Chapter 48 - Gait and Balance Disorders

from Section 4: - Dyscoordinative and Otherwise Inappropriate Motor Behaviors

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

Gait and balance are fundamental human abilities. When assessing a patient, a certain phenomenologic gait pattern is identified based on characteristic signs that we relate to anatomic systems (topo-diagnosis). According to their functional complexity, these systems can be categorized into lower-level systems (bones, muscles, nerves); intermediate-level systems (basal ganglia, cerebellum, sensory systems); and higher-level systems (cortex–basal ganglia loops). In a second step, we relate this to an underlying etiology, giving rise to a two-axis diagnosis. Gait examination can show direct stepping disturbances as well as indirect, i.e., compensatory changes mainly related to dysbalance (e.g., broad-based gait). The most common disorders include the “ataxias,” related to disturbances of the cerebellum or the sensory systems; basal ganglia gait disorders with parkinsonian or hyperkinetic phenomenology; and higher-level gait disorders, related to disturbances within the cortex–basal ganglia loops, which lead to inappropriate selection and organization of gait and balance programs, resulting in impaired stepping (with freezing of gait) and balance.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nutt, JG, Marsden, CD, Thompson, PD. Human walking and higher‐level gait disorders, particularly in the elderly. Neurology 1993;43(2):268279.CrossRefGoogle ScholarPubMed
Fasano, A, Bloem, BR. Gait disorders. Continuum (Minneap Minn) 2013;19(5):13441382.Google ScholarPubMed
Stolze, H, Klebe, S, Baecker, C, et al. Prevalence of gait disorders in hospitalized neurological patients. Mov Disord 2005;20(1):8994.CrossRefGoogle ScholarPubMed
Wenning, GK, Ebersbach, G, Verny, M, et al. Progression of falls in postmortem-confirmed Parkinsonian disorders. Mov Disord 1999;14(6):947950.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Mahlknecht, P, Kiechl, S, Bloem, BR, et al. Prevalence and burden of gait disorders in elderly men and women aged 60–97 years: a population-based study. PLoS One 2013;8(7):e69627.CrossRefGoogle ScholarPubMed
Bhatia, KP, Bain, P, Bajaj, N, et al. Consensus statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord 2018;33(1):7587.CrossRefGoogle ScholarPubMed
Capelli, P, Pivetta, C, Esposito, MS, Arber, S. Locomotor speed control circuits in the caudal brainstem. Nature 2017;551(7680):373377.CrossRefGoogle ScholarPubMed
Lawrence, DG, Kuypers, HG. The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain 1968;91(1):1536.CrossRefGoogle ScholarPubMed
Mori, S. Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Prog Neurobiol 1987;28(2):161195.CrossRefGoogle ScholarPubMed
Mackinnon, CD. Sensorimotor anatomy of gait, balance, and falls. Handb Clin Neurol 2018;159:326.CrossRefGoogle ScholarPubMed
Grillner, S, El Manira, A. Current principles of motor control, with special reference to vertebrate locomotion. Physiol Rev 2020;100(1):271320.CrossRefGoogle ScholarPubMed
Schniepp, R, Möhwald, K, Wuehr, M. Gait ataxia in humans: vestibular and cerebellar control of dynamic stability. J Neurol 2017;264(S1):8792.CrossRefGoogle ScholarPubMed
Tanaka, M, Kunimatsu, J, Suzuki, TW, et al. Roles of the cerebellum in motor preparation and prediction of timing. Neuroscience 2021;462:220234.CrossRefGoogle ScholarPubMed
da Silva, JA, Tecuapetla, F, Paixão, V, Costa, RM. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 2018;554(7691):244249.CrossRefGoogle ScholarPubMed
Takakusaki, K. Functional neuroanatomy for posture and gait control. J Mov Disord 2017;10(1):117.CrossRefGoogle ScholarPubMed
Wu, T, Hallett, M, Chan, P. Motor automaticity in Parkinson’s disease. Neurobiol Dis 2015;82:226234.CrossRefGoogle ScholarPubMed
Lehéricy, S, Benali, H, Van de Moortele, PF, et al. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci U S A 2005;102(35):1256612571.CrossRefGoogle ScholarPubMed
Lees, AJ. When did Ray Kennedy’s Parkinson’s disease begin? Mov Disord 1992;7(2):110116.CrossRefGoogle ScholarPubMed
Mori, S, Matsui, T, Kuze, B, et al. Cerebellar-induced locomotion: reticulospinal control of spinal rhythm generating mechanism in cats. Ann N Y Acad Sci 1998;860(1):94105.CrossRefGoogle ScholarPubMed
Fearon, C, Doherty, L, Lynch, T. How do I examine rigidity and spasticity? Mov Disord Clin Pract 2015;2(2):204.CrossRefGoogle ScholarPubMed
Abdo, WF, Borm, GF, Munneke, M, et al. Ten steps to identify atypical parkinsonism. J Neurol Neurosurg Psychiatry 2006;77(12):13671369.CrossRefGoogle ScholarPubMed
de Hoon, EW, Allum, JH, Carpenter, MG, et al. Quantitative assessment of the stops walking while talking test in the elderly. Arch Phys Med Rehabil 2003;84(6):838842.CrossRefGoogle ScholarPubMed
Rochester, L, Yarnall, AJ, Baker, MR, et al. Cholinergic dysfunction contributes to gait disturbance in early Parkinson’s disease. Brain 2012;135(9):27792788.CrossRefGoogle ScholarPubMed
Rajan, R, Saini, A, Verma, B, et al. Anticholinergics may carry significant cognitive and gait burden in Parkinson’s disease. Mov Disord Clin Pract 2020;7(7):803809.CrossRefGoogle ScholarPubMed
Henderson, EJ, Lord, SR, Brodie, MA, et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 2016;15(3):249258.CrossRefGoogle ScholarPubMed
Giladi, N, McDermott, MP, Fahn, S, et al. Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology 2001;56(12):17121721.CrossRefGoogle ScholarPubMed
Fasano, A, Laganiere, SE, Lam, S, Fox, MD. Lesions causing freezing of gait localize to a cerebellar functional network. Ann Neurol 2017;81(1):129141.CrossRefGoogle ScholarPubMed
Nonnekes, J, Snijders, AH, Nutt, JG, et al. Freezing of gait: a practical approach to management. Lancet Neurol 2015;14(7):768778.CrossRefGoogle Scholar
Nonnekes, J, Růžička, E, Nieuwboer, A, et al. Compensation strategies for gait impairments in Parkinson disease: a review. JAMA Neurol 2019;76(6):718725.CrossRefGoogle ScholarPubMed
Moreau, C, Delval, A, Defebvre, L, et al. Methylphenidate for gait hypokinesia and freezing in patients with Parkinson’s disease undergoing subthalamic stimulation: a multicentre, parallel, randomised, placebo-controlled trial. Lancet Neurol 2012;11(7):589596.CrossRefGoogle ScholarPubMed
Nonnekes, J, Bereau, M, Bloem, BR. Freezing of gait and its levodopa paradox. JAMA Neurol 2020;77(3):287288.CrossRefGoogle Scholar
Elble, RJ. Gait and dementia: moving beyond the notion of gait apraxia. J Neural Transm (Vienna) 2007;114(10):1253.CrossRefGoogle ScholarPubMed
Nutt, JG. Higher-level gait disorders: an open frontier. Mov Disord 2013;28(11):15601565.CrossRefGoogle ScholarPubMed
Giladi, N, Huber-Mahlin, V, Herman, T, Hausdorff, JM. Freezing of gait in older adults with high level gait disorders: association with impaired executive function. J Neural Transm (Vienna) 2007;114(10):13491353.CrossRefGoogle ScholarPubMed
Graff-Radford, NR, Jones, DT. Normal pressure hydrocephalus. Continuum (Minneap Minn) 2019;25(1):165186.Google ScholarPubMed
Wang, Z, Zhang, Y, Hu, F, Ding, J, Wang, X. Pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus. CNS Neurosci Ther 2020;26(12):12301240.CrossRefGoogle ScholarPubMed
Ringstad, G, Emblem, KE, Eide, PK. Phase-contrast magnetic resonance imaging reveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus. J Neurosurg 2016;124(6):18501857.CrossRefGoogle ScholarPubMed
Townley, RA, Botha, H, Graff-Radford, J, et al. 18F-FDG PET-CT pattern in idiopathic normal pressure hydrocephalus. NeuroImage Clin 2018;18:897902.CrossRefGoogle ScholarPubMed
Lenfeldt, N, Larsson, A, Nyberg, L, et al. Idiopathic normal pressure hydrocephalus: increased supplementary motor activity accounts for improvement after CSF drainage. Brain 2008;131(11):29042912.CrossRefGoogle ScholarPubMed
Nakajima, M, Yamada, S, Miyajima, M, et al. Guidelines for management of idiopathic normal pressure hydrocephalus (third edition): endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol Med Chir (Tokyo) 2021;61(2):6397.CrossRefGoogle ScholarPubMed
Relkin, N, Marmarou, A, Klinge, P, Bergsneider, M, Black, PMcL. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 2005;57(Suppl 3):S24.CrossRefGoogle ScholarPubMed
Tan, C, Wang, X, Wang, Y, et al. The pathogenesis based on the glymphatic system, diagnosis, and treatment of idiopathic normal pressure hydrocephalus. Clin Interv Aging 2021;16:139153.CrossRefGoogle ScholarPubMed
Bae, YJ, Choi, BS, Kim, JM, et al. Altered glymphatic system in idiopathic normal pressure hydrocephalus. Parkinsonism Relat Disord 2021;82:5660.CrossRefGoogle ScholarPubMed
Saper, CB. Restoration: potential for compensatory changes in numbers of neurons in adult human brain. Ann Neurol 2013;74(6):762764.CrossRefGoogle ScholarPubMed
Espay, AJ, Da Prat, GA, Dwivedi, AK, et al. Deconstructing normal pressure hydrocephalus: ventriculomegaly as early sign of neurodegeneration. Ann Neurol 2017;82(4):503513.CrossRefGoogle Scholar
Müller-Schmitz, K, Krasavina-Loka, N, Yardimci, T, et al. Normal pressure hydrocephalus associated with Alzheimer’s disease. Ann Neurol 2020;88(4):703711.CrossRefGoogle ScholarPubMed
Baik, JS, Lang, AE. Gait abnormalities in psychogenic movement disorders. Mov Disord 2007;22(3):395399.CrossRefGoogle ScholarPubMed
Balint, B, Winsen, LML van, Bhatia, KP, Bloem, BR. Psychogenic movement disorders: gait is a give-away! Mov Disord Clin Pract 2014;1(2):110111.CrossRefGoogle ScholarPubMed
Aybek, S, Perez, DL. Diagnosis and management of functional neurological disorder. BMJ 2022;376:o64.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×