Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T10:47:59.718Z Has data issue: false hasContentIssue false

Chapter 25 - Non-Invasive Brain Stimulation for the Treatment of Parkinson’s Disease

from Section 2: - Hypokinetic Movement Disorders

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

Non-invasive brain stimulation (NIBS) is a powerful and typically painless technique to stimulate the human brain. Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) with different stimulus modes and parameters are well used patterns of NIBS. Long-term potentiation or long-term depression (LTP and LTD)-like effects can be induced by NIBS. NIBS with practical interventional protocols produces various forms of cortical plasticity and its application has promise for PD treatment. Many clinical trials have shown that rTMS and tDCS with established guidelines are safe, and the interventional protocols using these techniques produce modest therapeutic effects in the patients. Multiple sessions using combinations of different patterns of NIBS and with other therapeutic methods may be more effective for the patient than a single type of intervention. Disease-modifying therapies with long-term effects and development of treatment with benefit beyond conventional therapy in clinical practice using NIBS in PD are theoretically possible and deserve further physiologic studies and clinical trials with large sample size.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Poewe, W, Seppi, K, Tanner, CM, et al. Parkinson disease. Nat Rev Dis Primers 2017;3:17013.CrossRefGoogle ScholarPubMed
Kalia, LV, Lang, AE. Parkinson’s disease. Lancet 2015;386:896912.CrossRefGoogle ScholarPubMed
Espay, AJ, Brundin, P, Lang, AE. Precision medicine for disease modification in Parkinson disease. Nat Rev Neurol 2017;13:119126.CrossRefGoogle ScholarPubMed
Okun, MS. Deep-brain stimulation for Parkinson’s disease. N Engl J Med 2012;367:15291538.CrossRefGoogle ScholarPubMed
Lozano, AM, Dostrovsky, J, Chen, R, Ashby, A. Deep brain stimulation for Parkinson’s disease: disrupting the disruption. Lancet Neurol 2002;1:225231.CrossRefGoogle ScholarPubMed
Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 2016;539:180186.CrossRefGoogle ScholarPubMed
Polania, R, Nitsche, MA, Ruff, CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci 2018;21:174187.CrossRefGoogle ScholarPubMed
Hallett, M. Transcranial magnetic stimulation and the human brain. Nature 2000;406:147150.CrossRefGoogle ScholarPubMed
Eldaief, MC, Halko, MA, Buckner, RL, Pascual-Leone, A. Transcranial magnetic stimulation modulates the brain’s intrinsic activity in a frequency-dependent manner. Proc Natl Acad Sci U S A 2011;108:2122921234.CrossRefGoogle Scholar
Hallett, M. Clinical effects of non-invasive brain stimulation. Swiss Arch Neurol Psychiatr Psychother 2020;171:w03154.Google Scholar
Henley, JM, Wilkinson, KA. Synaptic AMPA receptor composition in development, plasticity and disease. Nat Rev Neurosci 2016;17:337350.CrossRefGoogle ScholarPubMed
Froemke, RC. Plasticity of cortical excitatory–inhibitory balance. Annu Rev Neurosci 2015;38:195219.CrossRefGoogle ScholarPubMed
Helfrich, RF, Schneider, TR, Rach, S, et al. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol 2014;24:333339.CrossRefGoogle ScholarPubMed
Lefaucheur, JP, Antal, A, Ayache, SS, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 2017;128:5692.CrossRefGoogle ScholarPubMed
Nitsche, MA, Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000;527:633639.CrossRefGoogle ScholarPubMed
Turrigiano, GG. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 2008;135:422435.CrossRefGoogle ScholarPubMed
Pasley, BN, Allen, EA, Freeman, RD. State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex. Neuron 2009;62:291303.CrossRefGoogle ScholarPubMed
Dayan, E, Censor, N, Buch, ER, Sandrini, M, Cohen, LG. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci 2013;16:838844.CrossRefGoogle ScholarPubMed
Barker, AT, Jalinous, R, Freeston, IL. Non-invasive stimulation of the human motor cortex. Lancet 1985;1(8437):11061107.CrossRefGoogle ScholarPubMed
Wassermann, EM. Risk and safety in repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 1998;108:116.CrossRefGoogle ScholarPubMed
Rossi, S, Hallett, M, Rossini, PM, Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009;120:20082039.CrossRefGoogle ScholarPubMed
Lefaucheur, JP, Andre-Obadia, N, Antal, A, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 2014;125:21502206.CrossRefGoogle ScholarPubMed
Chen, R, Classen, J, Gerloff, C, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 1997;48:13891403.CrossRefGoogle ScholarPubMed
Pascual-Leone, A, Valls-Solé, J, Wassermann, EM, Hallett, M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 1994;117:847858.CrossRefGoogle ScholarPubMed
Ni, Z, Müller-Dahlhaus, F, Chen, R, Ziemann, U. Triple-pulse TMS to study interactions between neural circuits in human cortex. Brain Stimul 2011;4:281293.CrossRefGoogle ScholarPubMed
Huang, YZ, Edwards, MJ, Rounis, E, Bhatia, KP, Rothwell, JC. Theta burst stimulation of the human motor cortex. Neuron 2005;45:201206.CrossRefGoogle ScholarPubMed
Hamada, M, Terao, Y, Hanajima, R, et al. Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. J Physiol 2008;586:39273947.CrossRefGoogle ScholarPubMed
Stefan, K, Kunesch, E, Cohen, LG, Benecke, R, Classen, J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 2000;123:572584.CrossRefGoogle ScholarPubMed
Udupa, K, Bahl, N, Ni, Z, et al. Cortical plasticity induction by pairing subthalamic nucleus deep-brain stimulation and primary motor cortical transcranial magnetic stimulation in Parkinson’s disease. J Neurosci 2016;36:396404.CrossRefGoogle ScholarPubMed
Ni, Z, Udupa, K, Hallett, M, Chen, R. Effects of deep brain stimulation on the primary motor cortex: insights from transcranial magnetic stimulation studies. Clin Neurophysiol 2019;130:558567.CrossRefGoogle ScholarPubMed
Strafella, AP, Paus, T, Fraraccio, M, Dagher, A. Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 2003;126:26092615.CrossRefGoogle ScholarPubMed
Strafella, AP, Ko, JH, Grant, J, Fraraccio, M, Monchi, O. Corticostriatal functional interactions in Parkinson’s disease: a rTMS/[11C]raclopride PET study. Eur J Neurosci 2005;22:29462952.CrossRefGoogle ScholarPubMed
Edwards, MJ, Talelli, P, Rothwell, JC. Clinical applications of transcranial magnetic stimulation in patients with movement disorders. Lancet Neurol 2008;7:827840.CrossRefGoogle ScholarPubMed
Elahi, B, Elahi, B, Chen, R. Effect of transcranial magnetic stimulation on Parkinson motor function – systematic review of controlled clinical trials. Mov Disord 2009;24:357363.CrossRefGoogle ScholarPubMed
Khedr, EM, Mohamed, KO, Soliman, RK, et al. The effect of high-frequency repetitive transcranial magnetic stimulation on advancing Parkinson’s disease with dysphagia: double blind randomized clinical trial. Neurorehabil Neural Repair 2019;33:442452.CrossRefGoogle ScholarPubMed
Brys, M, Fox, MD, Agarwal, S, et al. Multifocal repetitive TMS for motor and mood symptoms of Parkinson disease: a randomized trial. Neurology 2016;87:19071915.CrossRefGoogle ScholarPubMed
Makkos, A, Pál, E, Aschermann, Z, et al. High-frequency repetitive transcranial magnetic stimulation can improve depression in Parkinson’s disease: a randomized, double-blind, placebo-controlled study. Neuropsychobiology 2016;73:169177.CrossRefGoogle ScholarPubMed
Okabe, S, Ugawa, Y, Kanazawa, I. 0.2-Hz repetitive transcranial magnetic stimulation has no add-on effects as compared to a realistic sham stimulation in Parkinson’s disease. Mov Disord 2003;18:382388.CrossRefGoogle ScholarPubMed
Strafella, AP, Ko, JH, Monchi, O. Therapeutic application of transcranial magnetic stimulation in Parkinson’s disease: the contribution of expectation. Neuroimage 2006;31:16661672.CrossRefGoogle ScholarPubMed
Benninger, DH, Iseki, K, Kranick, S, et al. Controlled study of 50-Hz repetitive transcranial magnetic stimulation for the treatment of Parkinson disease. Neurorehabil Neural Repair 2012;26:10961105.CrossRefGoogle ScholarPubMed
Buhmann, C, Gorsler, A, Bäumer, T, et al. Abnormal excitability of premotor-motor connections in de novo Parkinson’s disease. Brain 2004;127:27322746.CrossRefGoogle ScholarPubMed
Wagle-Shukla, A, Angel, MJ, Zadikoff, C, et al. Low-frequency repetitive transcranial magnetic stimulation for treatment of levodopa-induced dyskinesias. Neurology 2007;68:704705.CrossRefGoogle ScholarPubMed
Morgante, F, Espay, AJ, Gunraj, C, Lang, AE, Chen, R. Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain 2006;129:10591069.CrossRefGoogle ScholarPubMed
Enomoto, H, Terao, Y, Kadowaki, S, et al. Effects of L-Dopa and pramipexole on plasticity induced by QPS in human motor cortex. J Neural Transm (Vienna) 2015;122:12531261.CrossRefGoogle ScholarPubMed
Blumberger, DM, Vila-Rodriguez, F, Thorpe, KE, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet 2018;391:16831692.CrossRefGoogle ScholarPubMed
Pal, E, Nagy, F, Aschermann, Z, Balazs, E, Kovacs, N. The impact of left prefrontal repetitive transcranial magnetic stimulation on depression in Parkinson’s disease: a randomized, double-blind, placebo-controlled study. Mov Disord 2010;25:23112317.CrossRefGoogle ScholarPubMed
Benninger, DH, Berman, BD, Houdayer, E, et al. Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson disease. Neurology 2011;76:601609.CrossRefGoogle ScholarPubMed
Li, ZJ, Wu, Q, Yi, CJ. Clinical efficacy of istradefylline versus rTMS on Parkinson’s disease in a randomized clinical trial. Curr Med Res Opin 2015;31:20552058.CrossRefGoogle ScholarPubMed
Hamada, M, Ugawa, Y, Tsuji, S, Effectiveness of rTMS on Parkinson’s Disease Study Group J. High-frequency rTMS over the supplementary motor area for treatment of Parkinson’s disease. Mov Disord 2008;23:15241531.CrossRefGoogle Scholar
Shirota, Y, Ohtsu, H, Hamada, M, et al. Supplementary motor area stimulation for Parkinson disease: a randomized controlled study. Neurology 2013;80:14001405.CrossRefGoogle ScholarPubMed
Bradberry, TJ, Metman, LV, Contreras-Vidal, JL, et al. Common and unique responses to dopamine agonist therapy and deep brain stimulation in Parkinson’s disease: an H(2)(15)O PET study. Brain Stimul 2012;5:605615.CrossRefGoogle Scholar
Ma, J, Gao, L, Mi, T, et al. Repetitive transcranial magnetic stimulation does not improve the sequence effect in freezing of gait. Parkinsons Dis 2019;2019:2196195.Google Scholar
Hurley, MJ, Mash, DC, Jenner, P. Markers for dopaminergic neurotransmission in the cerebellum in normal individuals and patients with Parkinson’s disease examined by RT-PCR. Eur J Neurosci 2003;18:26682672.CrossRefGoogle ScholarPubMed
Ni, Z, Pinto, AD, Lang, AE, Chen, R. Involvement of the cerebellothalamocortical pathway in Parkinson disease. Ann Neurol 2010;68:816824.CrossRefGoogle ScholarPubMed
Koch, G, Brusa, L, Carrillo, F, et al. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology 2009;73:113119.CrossRefGoogle ScholarPubMed
Kishore, A, Popa, T, Balachandran, A, et al. Cerebellar sensory processing alterations impact motor cortical plasticity in Parkinson’s disease: clues from dyskinetic patients. Cereb Cortex 2014;24:20552067.CrossRefGoogle ScholarPubMed
Merton, PA, Morton, HB. Stimulation of the cerebral cortex in the intact human subject. Nature 1980;285:227.CrossRefGoogle ScholarPubMed
Nitsche, MA, Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001;57:18991901.CrossRefGoogle ScholarPubMed
Moret, B, Donato, R, Nucci, M, Cona, G, Campana, G. Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability. Sci Rep 2019;9:15150.CrossRefGoogle ScholarPubMed
Terney, D, Chaieb, L, Moliadze, V, Antal, A, Paulus, W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci 2008;28:1414714155.CrossRefGoogle ScholarPubMed
Yotnuengnit, P, Bhidayasiri, R, Donkhan, R, Chaluaysrimuang, J, Piravej, K. Effects of transcranial direct current stimulation plus physical therapy on gait in patients with Parkinson disease: a randomized controlled trial. Am J Phys Med Rehabil 2018;97:715.CrossRefGoogle ScholarPubMed
Valentino, F, Cosentino, G, Brighina, F, et al. Transcranial direct current stimulation for treatment of freezing of gait: a cross-over study. Mov Disord 2014;29:10641069.CrossRefGoogle Scholar
Cosentino, G, Valentino, F, Todisco, M, et al. Effects of more-affected vs. less-affected motor cortex tDCS in Parkinson’s disease. Front Hum Neurosci 2017;11:309.CrossRefGoogle ScholarPubMed
Salimpour, Y, Mari, ZK, Shadmehr, R. Altering effort costs in Parkinson’s disease with noninvasive cortical stimulation. J Neurosci 2015;35:1228712302.CrossRefGoogle ScholarPubMed
Krause, V, Wach, C, Sudmeyer, M, et al. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease. Front Hum Neurosci 2013;7:928.Google ScholarPubMed
Brittain, JS, Probert-Smith, P, Aziz, TZ, Brown, P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol 2013;23:436440.CrossRefGoogle ScholarPubMed
Benussi, A, Alberici, A, Cantoni, V, et al. Modulating risky decision-making in Parkinson’s disease by transcranial direct current stimulation. Eur J Neurol 2017;24:751754.CrossRefGoogle ScholarPubMed
Forogh, B, Rafiei, M, Arbabi, A, et al. Repeated sessions of transcranial direct current stimulation evaluation on fatigue and daytime sleepiness in Parkinson’s disease. Neurol Sci 2017;38:249254.CrossRefGoogle ScholarPubMed
Del Felice, A, Castiglia, L, Formaggio, E, et al. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’s disease: a randomized cross-over trial. Neuroimage Clin 2019;22:101768.CrossRefGoogle ScholarPubMed
Shill, HA, Obradov, S, Katsnelson, Y, Pizinger, R. A randomized, double-blind trial of transcranial electrostimulation in early Parkinson’s disease. Mov Disord 2011;26:14771480.CrossRefGoogle ScholarPubMed
Benninger, DH, Lomarev, M, Lopez, G, et al. Transcranial direct current stimulation for the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2010;81:11051111.CrossRefGoogle ScholarPubMed
Dagan, M, Herman, T, Harrison, R, et al. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson’s disease. Mov Disord 2018;33:642646.CrossRefGoogle ScholarPubMed
Costa-Ribeiro, A, Maux, A, Bosford, T, et al. Transcranial direct current stimulation associated with gait training in Parkinson’s disease: a pilot randomized clinical trial. Dev Neurorehabil 2017;20:121128.CrossRefGoogle ScholarPubMed
Chang, WH, Kim, MS, Park, E, et al. Effect of dual-mode and dual-site noninvasive brain stimulation on freezing of gait in patients with Parkinson disease. Arch Phys Med Rehabil 2017;98:12831290.CrossRefGoogle ScholarPubMed
Bienenstock, EL, Cooper, LN, Munro, PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 1982;2:3248.CrossRefGoogle ScholarPubMed
Abraham, WC, Bear, MF. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 1996;19:126130.CrossRefGoogle ScholarPubMed
Siebner, HR, Lang, N, Rizzo, V, et al. Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 2004;24:33793385.CrossRefGoogle ScholarPubMed
Gruner, U, Eggers, C, Ameli, M, et al. 1 Hz rTMS preconditioned by tDCS over the primary motor cortex in Parkinson’s disease: effects on bradykinesia of arm and hand. J Neural Transm (Vienna) 2010;117:207216.CrossRefGoogle ScholarPubMed
Eggers, C, Gruner, U, Ameli, M, Sarfeld, AS, Nowak, DA. 1Hz rTMS preconditioned by tDCS over the primary motor cortex in Parkinson’s disease: absence of effect on arm lift and hand grip force control. Motor Control 2012;16:284292.CrossRefGoogle ScholarPubMed
von Papen, M, Fisse, M, Sarfeld, AS, Fink, GR, Nowak, DA. The effects of 1 Hz rTMS preconditioned by tDCS on gait kinematics in Parkinson’s disease. J Neural Transm (Vienna) 2014;121:743754.CrossRefGoogle ScholarPubMed
Ziemann, U, Siebner, HR. Modifying motor learning through gating and homeostatic metaplasticity. Brain Stimul 2008;1:6066.CrossRefGoogle ScholarPubMed
Chung, CL, Mak, MK, Hallett, M. Transcranial magnetic stimulation promotes gait training in Parkinson disease. Ann Neurol 2020;88:933945.CrossRefGoogle ScholarPubMed
Yang, YR, Tseng, CY, Chiou, SY, et al. Combination of rTMS and treadmill training modulates corticomotor inhibition and improves walking in Parkinson disease: a randomized trial. Neurorehabil Neural Repair 2013;27:7986.CrossRefGoogle ScholarPubMed
Manenti, R, Cotelli, MS, Cobelli, C, et al. Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson Disease: A randomized, placebo-controlled study. Brain Stimul 2018;11:1251-1262.CrossRefGoogle ScholarPubMed
Huang, YZ, Rothwell, JC, Lu, CS, Chuang, WL. Reversal of plasticity-like effects in the human motor cortex. J Physiol 2010;588:36833693.CrossRefGoogle ScholarPubMed
Ni, Z, Gunraj, C, Kailey, P, Cash, RF, Chen, R. Heterosynaptic modulation of motor cortical plasticity in human. J Neurosci 2014;34:73147321.CrossRefGoogle ScholarPubMed
Huang, YZ, Rothwell, JC, Lu, CS, Chudakov, B, Chen, RS. Abnormal bidirectional plasticity-like effects in Parkinson’s disease. Brain 2011;134:23122320.CrossRefGoogle ScholarPubMed
Rossini, PM, Burke, D, Chen, R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015;126:10711107.CrossRefGoogle ScholarPubMed
Madrid, J, Benninger, DH. Non-invasive brain stimulation for Parkinson’s disease: clinical evidence, latest concepts and future goals: a systematic review. J Neurosci Methods 2021;347:108957.CrossRefGoogle ScholarPubMed
Lefaucheur, JP, Aleman, A, Baeken, C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin Neurophysiol 2020;131:474528.CrossRefGoogle ScholarPubMed
Latorre, A, Rocchi, L, Berardelli, A, Bhatia, KP, Rothwell, JC. The use of transcranial magnetic stimulation as a treatment for movement disorders: a critical review. Mov Disord 2019;34:769782.CrossRefGoogle ScholarPubMed
Fregni, F, Pascual-Leone, A. Technology insight: noninvasive brain stimulation in neurology – perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 2007;3:383393.CrossRefGoogle ScholarPubMed
Schulz, KF, Moher, D, Altman, DG. CONSORT 2010 comments. Lancet 2010;376:12221223.CrossRefGoogle ScholarPubMed
McKinnon, C, Gros, P, Lee, DJ, et al. Deep brain stimulation: potential for neuroprotection. Ann Clin Transl Neurol 2019;6:174185.CrossRefGoogle ScholarPubMed
Legon, W, Sato, TF, Opitz, A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci 2014;17:322329.CrossRefGoogle ScholarPubMed
Folloni, D, Verhagen, L, Mars, RB, et al. Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation. Neuron 2019;101:11091116.CrossRefGoogle ScholarPubMed
Xia, X, Fomenko, A, Nankoo, JF, et al. Time course of the effects of low-intensity transcranial ultrasound on the excitability of ipsilateral and contralateral human primary motor cortex. Neuroimage 2021;243:118557.CrossRefGoogle ScholarPubMed
Szablowski, JO, Lee-Gosselin, A, Lue, B, Malounda, D, Shapiro, MG. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat Biomed Eng 2018;2:475484.CrossRefGoogle ScholarPubMed
Brown, P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 2003;18:357363.CrossRefGoogle Scholar
Brown, P, Oliviero, A, Mazzone, P, et al. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 2001;21:10331038.CrossRefGoogle ScholarPubMed
Kuhn, AA, Kempf, F, Brucke, C, et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci 2008;28:61656173.CrossRefGoogle ScholarPubMed
Pogosyan, A, Gaynor, LD, Eusebio, A, Brown, P. Boosting cortical activity at Beta-band frequencies slows movement in humans. Curr Biol 2009;19:16371641.CrossRefGoogle ScholarPubMed
Little, S, Pogosyan, A, Neal, S, et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 2013;74:449457.CrossRefGoogle ScholarPubMed
Gong, R, Wegscheider, M, Muhlberg, C, et al. Spatiotemporal features of beta-gamma phase-amplitude coupling in Parkinson’s disease derived from scalp EEG. Brain 2021;144:487503.CrossRefGoogle ScholarPubMed
Cash, RFH, Cocchi, L, Lv, J, Fitzgerald, PB, Zalesky, A. Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiatry 2021;78:337339.CrossRefGoogle ScholarPubMed
Cash, RFH, Weigand, A, Zalesky, A, et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biol Psychiatry 2021;90:689-700.CrossRefGoogle ScholarPubMed
Kim, SJ, Udupa, K, Ni, Z, et al. Effects of subthalamic nucleus stimulation on motor cortex plasticity in Parkinson disease. Neurology 2015;85:425432.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×