Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T18:16:11.584Z Has data issue: false hasContentIssue false

Chapter 16 - Pathology in Parkinson’s Disease

from Section 2: - Hypokinetic Movement Disorders

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

Parkinson’s disease has been recently redefined clinically and its underlying molecular biology determined. Although it is a neurodegenerative disease, loss of neurons is largely focal rather than large scale; symptoms are caused more by neurochemical deficits and dysfunctional cells than cell loss. The two main pathologic features are loss of dopamine neurons in the substantia nigra of the midbrain and the more widespread aggregation of a-synuclein in certain vulnerable neurons in the brain. Several triggers can cause the molecular cascade that kills dopamine neurons and makes the a-synuclein protein fibrilize and aggregate initially in brainstem neurons, including genetic variants and post-translational modification of the protein. The disease is slowly progressive with the propagation of aggregates from vulnerable synapses to the entire neuron, then from one neuron to other neurons and glial cells. Different propagation mechanisms have been identified for these different brain cells that work in concert to sustain the slow disease process. Current therapeutic delivery of dopamine or deep brain stimulation temporarily relieve the symptoms with disease-modifying treatments now able to be trialled due to identifying the underlying molecular biology.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Postuma, RB, Berg, D, Stern, M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 2015;30(12):15911601.CrossRefGoogle ScholarPubMed
Halliday, GM, Holton, JL, Revesz, T, Dickson, DW. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol 2011;122(2):187204.CrossRefGoogle ScholarPubMed
Dickson, DW, Braak, H, Duda, JE, et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 2009;8(12):11501157.CrossRefGoogle ScholarPubMed
Greffard, S, Verny, M, Bonnet, AM, Beinis, JY, Gallinari, C, Meaume, S, et al. Motor score of the Unified Parkinson Disease Rating Scale as a good predictor of Lewy body-associated neuronal loss in the substantia nigra. Arch Neurol 2006;63(4):584588.CrossRefGoogle ScholarPubMed
Buchman, AS, Shulman, JM, Nag, S, et al. Nigral pathology and parkinsonian signs in elders without Parkinson disease. Ann Neurol 2012;71(2):258266.CrossRefGoogle ScholarPubMed
Mitchell, T, Lehéricy, S, Chiu, SY, et al. Emerging neuroimaging biomarkers across disease stage in Parkinson disease: a review. JAMA Neurol 2021;78(10):12621272.CrossRefGoogle ScholarPubMed
Biondetti, E, Santin, MD, Valabrègue, R, et al. The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson’s disease. Brain 2021;144(10):31143125.CrossRefGoogle ScholarPubMed
Biondetti, E, Gaurav, R, Yahia-Cherif, L, et al. Spatiotemporal changes in substantia nigra neuromelanin content in Parkinson’s disease. Brain 2020;143(9):27572570.CrossRefGoogle ScholarPubMed
Kordower, JH, Olanow, CW, Dodiya, HB, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 2013;136(Pt 8):24192431.CrossRefGoogle ScholarPubMed
Huynh, B, Fu, Y, Kirik, D, Shine, JM, Halliday, GM. Comparison of locus coeruleus pathology with nigral and forebrain pathology in Parkinson’s disease. Mov Disord 2021;36(9):20852093.CrossRefGoogle ScholarPubMed
Song, YJ, Halliday, GM, Holton, JL, et al. Degeneration in different parkinsonian syndromes relates to astrocyte type and astrocyte protein expression. J Neuropathol Exp Neurol 2009;68(10):10731083.CrossRefGoogle ScholarPubMed
Braak, H, Sastre, M, Del Tredici, K. Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol 2007;114(3):231241.CrossRefGoogle ScholarPubMed
Tanriover, G, Bacioglu, M, Schweighauser, M, et al. Prominent microglial inclusions in transgenic mouse models of alpha-synucleinopathy that are distinct from neuronal lesions. Acta Neuropathol Commun 2020;8(1):133.CrossRefGoogle ScholarPubMed
Greffard, S, Verny, M, Bonnet, AM, et al. A stable proportion of lewy body bearing neurons in the substantia nigra suggests a model in which the Lewy body causes neuronal death. Neurobiol Aging 2010;31(1):99103.CrossRefGoogle Scholar
Hummel, T, Witt, M, Reichmann, H, Welge-Luessen, A, Haehner, A. Immunohistochemical, volumetric, and functional neuroimaging studies in patients with idiopathic Parkinson’s disease. J Neurol Sci 2010;289(1–2):119122.CrossRefGoogle ScholarPubMed
Beach, TG, Adler, CH, Sue, LI, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 2010;119(6):689702.CrossRefGoogle ScholarPubMed
Harding, AJ, Broe, GA, Halliday, GM. Visual hallucinations in lewy body disease relate to Lewy bodies in the temporal lobe. Brain 2002;125(Pt 2):391403.CrossRefGoogle ScholarPubMed
Smith, C, Malek, N, Grosset, K, et al. Neuropathology of dementia in patients with Parkinson’s disease: a systematic review of autopsy studies. J Neurol Neurosurg Psychiatry 2019;90(11):12341243.Google ScholarPubMed
Book, A, Guella, I, Candido, T, et al. A meta-analysis of alpha-synuclein multiplication in familial parkinsonism. Front Neurol 2018;9:1021.CrossRefGoogle ScholarPubMed
Tong, J, Wong, H, Guttman, M, et al. Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain 2010;133(Pt 1):172188.CrossRefGoogle ScholarPubMed
Zhou, J, Broe, M, Huang, Y, et al. Changes in the solubility and phosphorylation of alpha-synuclein over the course of Parkinson’s disease. Acta Neuropathol 2011;121(6):695704.CrossRefGoogle ScholarPubMed
Malfertheiner, K, Stefanova, N, Heras-Garvin, A. The concept of alpha-synuclein strains and how different conformations may explain distinct neurodegenerative disorders. Front Neurol 2021;12:737195.CrossRefGoogle ScholarPubMed
de Boni, L, Hays Watson, A, Zaccagnini, L, Wallis, A, Zhelcheska, K, Kim, N, et al. Brain region-specific susceptibility of lewy body pathology in synucleinopathies is governed by alpha-synuclein conformations. Acta Neuropathol 2022;143(4):453469.CrossRefGoogle ScholarPubMed
Gadhe, L, Sakunthala, A, Mukherjee, S, et al. Intermediates of alpha-synuclein aggregation: implications in Parkinson’s disease pathogenesis. Biophys Chem 2022;281:106736.CrossRefGoogle ScholarPubMed
Auluck, PK, Caraveo, G, Lindquist, S. Alpha-synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol 2010;26:211233.CrossRefGoogle ScholarPubMed
Tozzi, A, de Iure, A, Bagetta, V, et al. Alpha-synuclein produces early behavioral alterations via striatal cholinergic synaptic dysfunction by interacting with GluN2D N-methyl-d-aspartate receptor subunit. Biol Psychiatry 2016;79(5):402414.CrossRefGoogle ScholarPubMed
Fonseca-Ornelas, L, Viennet, T, Rovere, M, et al. Altered conformation of alpha-synuclein drives dysfunction of synaptic vesicles in a synaptosomal model of Parkinson’s disease. Cell Rep 2021;36(1):109333.CrossRefGoogle Scholar
Awa, S, Suzuki, G, Masuda-Sazukake, M, et al. Phosphorylation of endogenous alpha-synuclein induced by extracellular seeds initiates at the pre-synaptic region and spreads to the cell body. Sci Rep 2022;12(1):1163.CrossRefGoogle Scholar
Moors, TE, Maat, CA, Niedieker, DN, et al. The subcellular arrangement of alpha-synuclein proteoforms in the Parkinson’s disease brain as revealed by multicolor STED microscopy. Acta Neuropathol 2021;142(3):423448.CrossRefGoogle ScholarPubMed
McFarland, MA, Ellis, CE, Markey, SP, Nussbaum, RL. Proteomics analysis identifies phosphorylation-dependent alpha-synuclein protein interactions. Mol Cell Proteomics 2008;7(11):21232137.CrossRefGoogle ScholarPubMed
Kanazawa, T, Uchihara, T, Takahashi, A, et al. Three-layered structure shared between lewy bodies and Lewy neurites – three-dimensional reconstruction of triple-labeled sections. Brain Pathol 2008;18(3):415422.CrossRefGoogle ScholarPubMed
Kanazawa, T, Adachi, E, Orimo, S, et al. Pale neurites, premature alpha-synuclein aggregates with centripetal extension from axon collaterals. Brain Pathol 2012;22(1):6778.CrossRefGoogle ScholarPubMed
Raiss, CC, Braun, TS, Konings, IB, et al. Functionally different alpha-synuclein inclusions yield insight into Parkinson’s disease pathology. Sci Rep 2016;6:23116.CrossRefGoogle ScholarPubMed
Schaser, AJ, Osterberg, VR, Dent, SE, et al. Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for Lewy body disorders. Sci Rep 2019;9(1):10919.CrossRefGoogle ScholarPubMed
Dent, SE, King, DP, Osterberg, VR, et al. Phosphorylation of the aggregate-forming protein alpha-synuclein on serine-129 inhibits its DNA-bending properties. J Biol Chem 2022;298(2):101552.CrossRefGoogle ScholarPubMed
Wakabayashi, K, Tanji, K, Mori, F, Takahashi, H. The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology 2007;27(5):494506.CrossRefGoogle ScholarPubMed
Wakabayashi, K, Takahashi, H, Oyanagi, K, Ikuta, F. [Incidental occurrence of Lewy bodies in the brains of elderly patients – the relevance to aging and Parkinson’s disease]. No To Shinkei 1993;45(11):10331038.Google Scholar
Del Tredici, K, Rüb, U, De Vos, RAI, Bohl, JRE, Braak, H. Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 2002;61(5):413426.CrossRefGoogle ScholarPubMed
Braak, H, Del Tredici, K, Rüb, U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24(2):197211.CrossRefGoogle ScholarPubMed
Mahlknecht, P, Marini, K, Werkmann, M, Poewe, W, Seppi, K. Prodromal Parkinson’s disease: hype or hope for disease-modification trials? Transl Neurodegener 2022;11(1):11.CrossRefGoogle ScholarPubMed
Attems, J, Toledo, JB, Walker, L, et al. Neuropathological consensus criteria for the evaluation of Lewy pathology in post-mortem brains: a multi-centre study. Acta Neuropathol 2021;141(2):159172.CrossRefGoogle ScholarPubMed
Halliday, GM, McCann, H. The progression of pathology in Parkinson’s disease. Ann N Y Acad Sci 2010;1184:188195.CrossRefGoogle ScholarPubMed
Geut, H, Hepp, DH, Foncke, E, et al. Neuropathological correlates of parkinsonian disorders in a large Dutch autopsy series. Acta Neuropathol Commun 2020;8(1):39.CrossRefGoogle Scholar
Toledo, JB, Gopal, P, Raible, K, et al. Pathological alpha-synuclein distribution in subjects with coincident Alzheimer’s and Lewy body pathology. Acta Neuropathol 2016;131(3):393409.CrossRefGoogle ScholarPubMed
Raunio, A, Kaivola, K, Tuimala, J, et al. Lewy-related pathology exhibits two anatomically and genetically distinct progression patterns: a population-based study of Finns aged 85. Acta Neuropathol 2019;138(5):771782.CrossRefGoogle ScholarPubMed
Kordower, JH, Chu, Y, Hauser, RA, Freeman, TB, Olanow, CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 2008;14(5):504506.CrossRefGoogle ScholarPubMed
Li, JY, Englund, E, Holton, JL, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 2008;14(5):501503.CrossRefGoogle ScholarPubMed
Melki, R. How the shapes of seeds can influence pathology. Neurobiol Dis 2018;109(Pt B):201208.CrossRefGoogle ScholarPubMed
Jaunmuktane, Z, Brandner, S. Invited review: the role of prion-like mechanisms in neurodegenerative diseases. Neuropathol Appl Neurobiol 2020;46(6):522545.CrossRefGoogle ScholarPubMed
Tsunemi, T, Ishiguro, Y, Yoroisaka, A, et al. Astrocytes protect human dopaminergic neurons from alpha-synuclein accumulation and propagation. J Neurosci 2020;40(45):86188628.CrossRefGoogle ScholarPubMed
Rostami, J, Holmqvist, S, Lindström, V, et al. Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. J Neurosci 2017;37(49):1183511853.CrossRefGoogle ScholarPubMed
Lindström, V, Gustafsson, G, Sanders, LH, et al. Extensive uptake of alpha-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage. Mol Cell Neurosci 2017;82:143156.CrossRefGoogle ScholarPubMed
Lim, S, Kim, HJ, Kim, DK, Lee, SJ. Non-cell-autonomous actions of alpha-synuclein: implications in glial synucleinopathies. Prog Neurobiol 2018;169:158171.CrossRefGoogle ScholarPubMed
Xia, Y, Zhang, G, Kou, L, Yin, S, Han, C, Hu, J, et al. Reactive microglia enhance the transmission of exosomal alpha-synuclein via toll-like receptor 2. Brain 2021;144(7):20242037.CrossRefGoogle ScholarPubMed
Verma, DK, Seo, BA, Ghosh, A, et al. Alpha-synuclein preformed fibrils induce cellular senescence in Parkinson’s disease models. Cells 2021;10(7):1694.CrossRefGoogle ScholarPubMed
Day, JO, Mullin, S. The genetics of Parkinson’s disease and implications for clinical practice. Genes (Basel) 2021;12(7):1006.CrossRefGoogle ScholarPubMed
Vazquez-Velez, GE, Zoghbi, HY. Parkinson’s disease genetics and pathophysiology. Annu Rev Neurosci 2021;44:87108.CrossRefGoogle Scholar
Dawson, TM, Golde, TE, Lagier-Tourenne, C. Animal models of neurodegenerative diseases. Nat Neurosci 2018;21(10):13701379.CrossRefGoogle ScholarPubMed
Hart, CG, Karimi-Abdolrezaee, S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 2021;99(10):24272462.CrossRefGoogle ScholarPubMed
Surmeier, DJ, Obeso, JA, Halliday, GM. Selective neuronal vulnerability in parkinson disease. Nat Rev Neurosci 2017;18(2):101113.CrossRefGoogle ScholarPubMed
Nadalutti, CA, Ayala-Peña, S, Santos, JH. Mitochondrial DNA damage as driver of cellular outcomes. Am J Physiol Cell Physiol 2022;322(2):C136C150.CrossRefGoogle Scholar
Morimoto, RI. Cell-nonautonomous regulation of proteostasis in aging and disease. Cold Spring Harb Perspect Biol 2020;12(4):a034074.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×