Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T18:53:05.516Z Has data issue: false hasContentIssue false

Chapter 40 - The Pathophysiology of Tremor

from Section 3: - Hyperkinetic Movement Disorders

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

Tremor, which is defined as an oscillatory and rhythmic movement of a body part, is the most common movement disorder worldwide. The most frequent tremor syndromes are tremor in Parkinson’s disease, essential tremor, and dystonic tremor syndromes, whereas Holmes tremor, orthostatic tremor, and palatal tremor are less common in clinical practice. The pathophysiology of tremor consists of enhanced oscillatory activity in brain circuits, which are ofen modulated by tremor-related afferent signals from the periphery. The cerebello-thalamo-cortical circuit and the basal ganglia play a key role in most neurologic tremor disorders, but with different roles in each disorder. Here we review the pathophysiology of tremor, focusing both on neuronal mechanisms that promote oscillations (automaticity and synchrony) and circuit-level mechanisms that drive and maintain pathologic oscillations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Helmich, RC, Hallett, M, Deuschl, G, Toni, I, Bloem, BR. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 2012;135:32063226.CrossRefGoogle ScholarPubMed
Helmich, RC, Toni, I, Deuschl, G, Bloem, BR. The pathophysiology of essential tremor and Parkinson’s tremor. Curr Neurol Neurosci Rep 2013;13:378.CrossRefGoogle ScholarPubMed
Helmich, RC. The cerebral basis of Parkinsonian tremor: a network perspective. Mov Disord 2018;33:219231.CrossRefGoogle ScholarPubMed
Matsumoto-Makidono, Y, Nakayama, H, Yamasaki, M, et al. Ionic basis for membrane potential resonance in neurons of the inferior olive. Cell Rep 2016;16:9941004.CrossRefGoogle ScholarPubMed
Brown, AM, White, JJ, van der Heijden, ME, et al. Purkinje cell misfiring generates high-amplitude action tremors that are corrected by cerebellar deep brain stimulation. eLife 2020;9:e51928.CrossRefGoogle ScholarPubMed
Yoshida, T, Katoh, A, Ohtsuki, G, Mishina, M, Hirano, T. Oscillating Purkinje neuron activity causing involuntary eye movement in a mutant mouse deficient in the glutamate receptor delta2 subunit. J Neurosci 2004;24:24402448.CrossRefGoogle Scholar
Dykstra, S, Engbers, JDT, Bartoletti, TM, Turner, RW. Determinants of rebound burst responses in rat cerebellar nuclear neurons to physiological stimuli. J Physiol (Lond) 2016;594:9851003.CrossRefGoogle ScholarPubMed
Bhatia, KP, Bain, P, Bajaj, N, et al. Consensus statement on the classification of tremors from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord 2017;33:7587.CrossRefGoogle ScholarPubMed
Nicoletti, V, Cecchi, P, Frosini, D, et al. Morphometric and functional MRI changes in essential tremor with and without resting tremor. J Neurol 2015;262:719728.CrossRefGoogle ScholarPubMed
Muthuraman, M, Deuschl, G, Anwar, AR, et al. Essential and aging-related tremor: differences of central control. Mov Disord 2015;30:16731680.CrossRefGoogle ScholarPubMed
Hopfner, F, Ahlf, A, Lorenz, D, et al. Early- and late-onset essential tremor patients represent clinically distinct subgroups. Mov Disord 2016;31:15601566.CrossRefGoogle ScholarPubMed
Jain, S, Lo, SE, Louis, ED. Common misdiagnosis of a common neurological disorder: how are we misdiagnosing essential tremor? Arch Neurol 2006;63:11001104.CrossRefGoogle ScholarPubMed
Louis, ED. Essential tremors: a family of neurodegenerative disorders? Arch Neurol 2009;66:12021208.CrossRefGoogle ScholarPubMed
Louis, ED. Environmental epidemiology of essential tremor. Neuroepidemiology 2008;31:139149.CrossRefGoogle ScholarPubMed
Pan, M-K, Ni, C-L, Wu, Y-C, Li, Y-S, Kuo, S-H. Animal models of tremor: relevance to human tremor disorders. Tremor Other Hyperkinet Mov (N Y) 2018;8:587.CrossRefGoogle ScholarPubMed
Louis, ED, Babij, R, Cortés, E, Vonsattel, J-PG, Faust, PL. The inferior olivary nucleus: a postmortem study of essential tremor cases versus controls. Mov Disord 2013;28:779786.CrossRefGoogle ScholarPubMed
Haubenberger, D, Hallett, M. Essential tremor. N Engl J Med 2018;378:18021810.CrossRefGoogle ScholarPubMed
Boecker, H, Weindl, A, Brooks, DJ, et al. GABAergic dysfunction in essential tremor: an 11C-flumazenil PET study. J Nucl Med 2010;51:10301035.CrossRefGoogle ScholarPubMed
Nietz, A, Krook-Magnuson, C, Gutierrez, H, et al. Selective loss of the GABAAα1 subunit from Purkinje cells is sufficient to induce a tremor phenotype. J Neurophysiol 2020;124:11831197.CrossRefGoogle ScholarPubMed
Paris-Robidas, S, Brochu, E, Sintes, M, et al. Defective dentate nucleus GABA receptors in essential tremor. Brain 2012;135:105116.CrossRefGoogle ScholarPubMed
Zhang, X, Santaniello, S. Role of cerebellar GABAergic dysfunctions in the origins of essential tremor. Proc Natl Acad Sci U S A 2019;116:1359213601.CrossRefGoogle ScholarPubMed
Louis, ED, Hernandez, N, Dyke, JP, Ma, RE, Dydak, U. In vivo dentate nucleus gamma-aminobutyric acid concentration in essential tremor vs. controls. Cerebellum 2018;17:165172.CrossRefGoogle ScholarPubMed
Louis, ED, Kerridge, CA, Chatterjee, D, et al. Contextualizing the pathology in the essential tremor cerebellar cortex: a patholog-omics approach. Acta Neuropathol 2019;138:859876.CrossRefGoogle ScholarPubMed
Pan, M-K, Li, Y-S, Wong, S-B, et al. Cerebellar oscillations driven by synaptic pruning deficits of cerebellar climbing fibers contribute to tremor pathophysiology. Sci Transl Med 2020;12(526):eaay1769.CrossRefGoogle ScholarPubMed
Wong, S-B, Wang, Y-M, Lin, C-C, et al. Cerebellar oscillations in familial and sporadic essential tremor. Cerebellum 2022;21:425431.CrossRefGoogle ScholarPubMed
Louis, ED. Essential tremor: evolving clinicopathological concepts in an era of intensive post-mortem enquiry. Lancet Neurol 2010;9:613622.CrossRefGoogle Scholar
Rajput, AH, Adler, CH, Shill, HA, Rajput, A. Essential tremor is not a neurodegenerative disease. Neurodegener Dis Manag 2012;2:259268.CrossRefGoogle Scholar
Louis, ED, Faust, PL, Vonsattel, JPG, et al. Neuropathological changes in essential tremor: 33 cases compared with 21 controls. Brain 2007;130:32973307.CrossRefGoogle ScholarPubMed
Shill, HA, Adler, CH, Sabbagh, MN, et al. Pathologic findings in prospectively ascertained essential tremor subjects. Neurology 2008;70:14521455.CrossRefGoogle ScholarPubMed
Lee, D, Gan, S-R, Faust, PL, Louis, ED, Kuo, S-H. Climbing fiber-Purkinje cell synaptic pathology across essential tremor subtypes. Parkinsonism Relat Disord 2018;51:2429.CrossRefGoogle ScholarPubMed
Gionco, JT, Hartstone, WG, Martuscello, RT, et al. Essential tremor versus “ET-plus”: a detailed postmortem study of cerebellar pathology. Cerebellum 2021;20:904912.CrossRefGoogle ScholarPubMed
Louis, ED, Faust, PL. Essential tremor pathology: neurodegeneration and reorganization of neuronal connections. Nat Rev Neurol 2020;16:6983.CrossRefGoogle ScholarPubMed
Wilms, H, Sievers, J, Deuschl, G. Animal models of tremor. Mov Disord 1999;14:557571.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Buijink, AWG, Prent, N, Puts, NA, et al. GABA, glutamate, and NAA levels in the deep cerebellar nuclei of essential tremor patients. Front Neurol 2021;12:664735.CrossRefGoogle ScholarPubMed
Khedr, EM, Fawal El, B, Abdelwarith, A, et al. TMS excitability study in essential tremor: absence of gabaergic changes assessed by silent period recordings. Neurophysiol Clin 2019;49:309315.CrossRefGoogle ScholarPubMed
Schnitzler, A, Münks, C, Butz, M, Timmermann, L, Gross, J. Synchronized brain network associated with essential tremor as revealed by magnetoencephalography. Mov Disord 2009;24:16291635.CrossRefGoogle ScholarPubMed
Raethjen, J, Govindan, RB, Kopper, F, Muthuraman, M, Deuschl, G. Cortical involvement in the generation of essential tremor. J Neurophysiol 2007;97:32193228.CrossRefGoogle ScholarPubMed
Pedrosa, DJ, Reck, C, Florin, E, et al. Essential tremor and tremor in Parkinson’s disease are associated with distinct ‘tremor clusters’ in the ventral thalamus. Exp Neurol 2012;237:435443.CrossRefGoogle ScholarPubMed
Muthuraman, M, Heute, U, Arning, K, et al. Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference? NeuroImage 2012;60:13311339.CrossRefGoogle ScholarPubMed
Muthuraman, M, Raethjen, J, Koirala, N, et al. Cerebello-cortical network fingerprints differ between essential, Parkinson’s and mimicked tremors. Brain 2018;73:6912.Google Scholar
Jenkins, IH, Bain, PG, Colebatch, JG, et al. A positron emission tomography study of essential tremor: evidence for overactivity of cerebellar connections. Ann Neurol 1993;34:8290.CrossRefGoogle ScholarPubMed
Broersma, M, van der Stouwe, AMM, Buijink, AWG, et al. Bilateral cerebellar activation in unilaterally challenged essential tremor. Neuroimage Clin 2016;11:19.CrossRefGoogle ScholarPubMed
Buijink, AWG, van der Stouwe, AMM, Broersma, M, et al. Motor network disruption in essential tremor: a functional and effective connectivity study. Brain 2015;138:29342947.CrossRefGoogle ScholarPubMed
Neely, KA, Kurani, AS, Shukla, P, et al. Functional brain activity relates to 0–3 and 3–8 Hz Force oscillations in essential tremor. Cerebral Cortex 2015;25:41914202.CrossRefGoogle ScholarPubMed
Buijink, AWG, Broersma, M, van der Stouwe, AMM, et al. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor. Parkinsonism Relat Disord 2015;21:383388.CrossRefGoogle ScholarPubMed
Dupuis, MJ-M, Evrard, FL, Jacquerye, PG, Picard, GR, Lermen, OG. Disappearance of essential tremor after stroke. Mov Disord 2010;25:28842887.CrossRefGoogle ScholarPubMed
Joutsa, J, Shih, LC, Horn, A, et al. Identifying therapeutic targets from spontaneous beneficial brain lesions. Ann Neurol 2018;84:153157.CrossRefGoogle ScholarPubMed
Papengut, F, Raethjen, J, Binder, A, Deuschl, G. Rest tremor suppression may separate essential from parkinsonian rest tremor. Parkinsonism Relat Disord 2013;19:693697.CrossRefGoogle ScholarPubMed
Schwingenschuh, P, Ruge, D, Edwards, MJ, et al. Distinguishing SWEDDs patients with asymmetric resting tremor from Parkinson’s disease: a clinical and electrophysiological study. Mov Disord 2010;25:560569.CrossRefGoogle ScholarPubMed
Dirkx, MF, Zach, H, Bloem, BR, Hallett, M, Helmich, RC. The nature of postural tremor in Parkinson disease. Neurology 2018;90:e1095–1103.CrossRefGoogle ScholarPubMed
Zach, H, Dirkx, MF, Roth, D, et al. Dopamine-responsive and dopamine-resistant resting tremor in Parkinson disease. Neurology 2020;95:e1461–1470.CrossRefGoogle ScholarPubMed
Jellinger, KA. Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov Disord 2012;27:830.CrossRefGoogle ScholarPubMed
Hirsch, EC, Mouatt, A, Faucheux, B, et al. Dopamine, tremor, and Parkinson’s disease. Lancet 1992;340:125126.CrossRefGoogle ScholarPubMed
Bergman, H, Raz, A, Feingold, A, et al. Physiology of MPTP tremor. Mov Disord 1998;13(Suppl 3):2934.CrossRefGoogle ScholarPubMed
Deutch, AY, Elsworth, JD, Goldstein, M, et al. Preferential vulnerability of A8 dopamine neurons in the primate to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurosci Lett 1986;68:5156.CrossRefGoogle Scholar
German, DC, Dubach, M, Askari, S, Speciale, SG, Bowden, DM. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian syndrome in Macaca fascicularis: which midbrain dopaminergic neurons are lost? Neuroscience 1988;24:161174.CrossRefGoogle ScholarPubMed
Dirkx, MF, Ouden den, HEM, Aarts, E, et al. Dopamine controls Parkinson’s tremor by inhibiting the cerebellar thalamus. Brain 2017;140:721734.Google ScholarPubMed
Helmich, RC, Janssen, MJR, Oyen, WJG, Bloem, BR, Toni, I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol 2011;69:269281.CrossRefGoogle ScholarPubMed
Lee, J-Y, Lao-Kaim, NP, Pasquini, J, et al. Pallidal dopaminergic denervation and rest tremor in early Parkinson’s disease: PPMI cohort analysis. Parkinsonism Relat Disord 2018;51:101104.CrossRefGoogle ScholarPubMed
Pasquini, J, Ceravolo, R, Qamhawi, Z, et al. Progression of tremor in early stages of Parkinson’s disease: a clinical and neuroimaging study. Brain 2018;15:692611.Google Scholar
Dirkx, MF, Zach, H, van Nuland, AJ, et al. Cognitive load amplifies Parkinson’s tremor through excitatory network influences onto the thalamus. Brain 2020;143:14981511.CrossRefGoogle ScholarPubMed
Katzenschlager, R, Sampaio, C, Costa, J, Lees, A. Anticholinergics for symptomatic management of Parkinson’s disease. Cochrane Database Syst Rev 2003;2002(2):CD003735.Google ScholarPubMed
di Biase, L, Brittain, J-S, Shah, SA, et al. Tremor stability index: a new tool for differential diagnosis in tremor syndromes. Brain 2017;140:19771986.CrossRefGoogle ScholarPubMed
Lenz, FA, Tasker, RR, Kwan, HC, et al. Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic “tremor cells” with the 3–6 Hz component of parkinsonian tremor. J Neurosci 1988;8:754764.CrossRefGoogle ScholarPubMed
Hurtado, JM, Gray, CM, Tamas, LB, Sigvardt, KA. Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proc Natl Acad Sci U S A 1999;96:16741679.CrossRefGoogle ScholarPubMed
Levy, R, Hutchison, WD, Lozano, AM, Dostrovsky, JO. High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci 2000;20:77667775.CrossRefGoogle ScholarPubMed
Lenz, FA, Kwan, HC, Martin, RL, et al. Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain 1994;117(Pt 3):531543.CrossRefGoogle ScholarPubMed
Hirschmann, J, Schoffelen, JM, Schnitzler, A, van Gerven, MAJ. Parkinsonian rest tremor can be detected accurately based on neuronal oscillations recorded from the subthalamic nucleus. Clin Neurophysiol 2017;128:20292036.CrossRefGoogle ScholarPubMed
Hirschmann, J, Hartmann, CJ, Butz, M, et al. A direct relationship between oscillatory subthalamic nucleus–cortex coupling and rest tremor in Parkinson’s disease. Brain 2013;136:36593670.CrossRefGoogle ScholarPubMed
Cagnan, H, Little, S, Foltynie, T, et al. The nature of tremor circuits in parkinsonian and essential tremor. Brain 2014;137:32233234.CrossRefGoogle ScholarPubMed
Timmermann, L, Gross, J, Dirks, M, et al. The cerebral oscillatory network of parkinsonian resting tremor. Brain 2003;126:199212.CrossRefGoogle ScholarPubMed
Fukuda, M. Thalamic stimulation for parkinsonian tremor: correlation between regional cerebral blood flow and physiological tremor characteristics. NeuroImage 2004;21:608615.CrossRefGoogle ScholarPubMed
Antonini, A, Moeller, JR, Nakamura, T, et al. The metabolic anatomy of tremor in Parkinson’s disease. Neurology 1998;51:803810.CrossRefGoogle ScholarPubMed
Mure, H, Hirano, S, Tang, CC, et al. Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. NeuroImage 2011;54:12441253.CrossRefGoogle ScholarPubMed
Dirkx, MF, Ouden den, H, Aarts, E, et al. The cerebral network of Parkinson’s tremor: an effective connectivity fMRI study. J Neurosci 2016;36:53625372.CrossRefGoogle ScholarPubMed
Dirkx, MF, Zach, H, Van Nuland, A, et al. Cerebral differences between dopamine-resistant and dopamine-responsive Parkinson’s tremor. Brain 2019;16:197114.Google Scholar
Krack, P, Pollak, P, Limousin, P, Benazzouz, A, Benabid, AL. Stimulation of subthalamic nucleus alleviates tremor in Parkinson’s disease. Lancet 1997;350:1675.CrossRefGoogle ScholarPubMed
Lozano, AM, Dostrovsky, J, Chen, R, Ashby, P. Deep brain stimulation for Parkinson’s disease: disrupting the disruption. Lancet Neurol 2002;1:225231.CrossRefGoogle ScholarPubMed
Milosevic, L, Kalia, SK, Hodaie, M, et al. Physiological mechanisms of thalamic ventral intermediate nucleus stimulation for tremor suppression. Brain 2018;15:10521014.Google Scholar
Cagnan, H, Pedrosa, D, Little, S, et al. Stimulating at the right time: phase-specific deep brain stimulation. Brain 2016;140:132145.CrossRefGoogle ScholarPubMed
Beudel, M, Brown, P. Adaptive deep brain stimulation in Parkinson’s disease. Parkinsonism Relat Disord 2016;22:S123126.CrossRefGoogle ScholarPubMed
Martínez-Fernández, R, Rodríguez-Rojas, R, Del Álamo, M, et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson’s disease: a pilot study. Lancet Neurol 2018;17:5463.CrossRefGoogle ScholarPubMed
Brittain, J-S, Probert-Smith, P, Aziz, TZ, Brown, P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol 2013;23:15.CrossRefGoogle ScholarPubMed
Helmich, RC, Van den Berg, KRE, Panyakaew, P, et al. Cerebello-cortical control of tremor rhythm and amplitude in Parkinson’s disease. Mov Disord 2021;36:17271729.CrossRefGoogle ScholarPubMed
Ni, Z, Pinto, AD, Lang, AE, Chen, R. Involvement of the cerebellothalamocortical pathway in Parkinson disease. Ann Neurol 2010;68:816824.CrossRefGoogle ScholarPubMed
Brittain, JS, Cagnan, H, Mehta, AR, et al. Distinguishing the central drive to tremor in Parkinson’s disease and essential tremor. J Neurosci 2015;35:795806.CrossRefGoogle ScholarPubMed
Hirschmann, J, Abbasi, O, Storzer, L, et al. Longitudinal recordings reveal transient increase of alpha/low-beta power in the subthalamic nucleus associated with the onset of parkinsonian rest tremor. Front Neurol 2019;10:V33–38.CrossRefGoogle ScholarPubMed
Lauro, PM, Lee, S, Akbar, U, Asaad, WF. Subthalamic–cortical network reorganization during Parkinson’s tremor. J Neurosci 2021;41:98449858.CrossRefGoogle ScholarPubMed
Deuschl, G, Wilms, H, Krack, P, Würker, M, Heiss, WD. Function of the cerebellum in Parkinsonian rest tremor and Holmes’ tremor. Ann Neurol 1999;46:126128.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Joutsa, J, Shih, LC, Fox, MD. Mapping holmes tremor circuit using the human brain connectome. Ann Neurol 2019;27:327329.Google Scholar
Nieuwhof, F, de Bie, RMA, Praamstra, P, van den Munckhof, P, Helmich, RC. The cerebral tremor circuit in a patient with Holmes tremor. Ann Clin Transl Neurol 2020;7:14531458.CrossRefGoogle Scholar
Gallea, C, Popa, T, Garcia-Lorenzo, D, et al. Orthostatic tremor: a cerebellar pathology? Brain 2016;139:21822197.CrossRefGoogle ScholarPubMed
Benito-León, J, Romero, JP, Louis, ED, et al. Diffusion tensor imaging in orthostatic tremor: a tract‐based spatial statistics study. Ann Clin Transl Neurol 2019;6:22122222.CrossRefGoogle ScholarPubMed
Schöberl, F, Feil, K, Xiong, G, et al. Pathological ponto-cerebello-thalamo-cortical activations in primary orthostatic tremor during lying and stance. Brain 2016;140:8397.CrossRefGoogle Scholar
Shaikh, AG, Beylergil, SB, Scorr, L, et al. Dystonia and tremor: a cross-sectional study of the dystonia coalition cohort. Neurology 2021;96:e563e574.CrossRefGoogle ScholarPubMed
Shaikh, AG, Zee, DS, Jinnah, HA. Oscillatory head movements in cervical dystonia: Dystonia, tremor, or both? Mov Disord 2015;30:834842.CrossRefGoogle ScholarPubMed
Sedov, A, Usova, S, Semenova, U, et al. Pallidal activity in cervical dystonia with and without head tremor. Cerebellum 2020;19:409418.CrossRefGoogle ScholarPubMed
Antelmi, E, Di Stasio, F, Rocchi, L, et al. Impaired eye blink classical conditioning distinguishes dystonic patients with and without tremor. Parkinsonism Relat Disord 2016;31:2327.CrossRefGoogle ScholarPubMed
Panyakaew, P, Cho, HJ, Lee, SW, Wu, T, Hallett, M. The pathophysiology of dystonic tremors and comparison with essential tremor. J Neurosci 2020;40:93179326.CrossRefGoogle ScholarPubMed
DeSimone, JC, Archer, DB, Vaillancourt, DE, Wagle Shukla, A. Network-level connectivity is a critical feature distinguishing dystonic tremor and essential tremor. Brain 2019;28:863816.Google Scholar
Nieuwhof, F, Toni, I, Dirkx, MF, et al. Cerebello-thalamic activity drives an abnormal motor network into dystonic tremor. Neuroimage Clin 2022;33:102919.CrossRefGoogle ScholarPubMed
Nieuwhof, F, Toni, I, Buijink, AWG, et al. Phase-locked transcranial electrical brain stimulation for tremor suppression in dystonic tremor syndromes. Clin Neurophysiol 2022;140:239250.CrossRefGoogle ScholarPubMed
Tsuboi, T, Wong, JK, Eisinger, RS, et al. Comparative connectivity correlates of dystonic and essential tremor deep brain stimulation. Brain 2021;144:17741786.CrossRefGoogle ScholarPubMed
Zeuner, KE, Deuschl, G. An update on tremors. Curr Opin Neurol 2012;25:475482.CrossRefGoogle ScholarPubMed
Shaikh, AG, Hong, S, Liao, K, et al. Oculopalatal tremor explained by a model of inferior olivary hypertrophy and cerebellar plasticity. Brain 2010;133:923940.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×