Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T18:02:51.889Z Has data issue: false hasContentIssue false

Chapter 3 - The Role of the Cerebellum

from Section 1: - Basic Introduction

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

This chapter provides an overview of the basic features of the macroscopic and microscopic anatomy, physiology and potential functioning of the human cerebellum. Apart from its certain role in movement control by coordinating complex movements, additional hypotheses on the role of the cerebellum in adapting, conditioning and learning, or automating, movements are described. Views that portray the cerebellum as a timing device or as a structure that serves to optimize the quality of sensory input are also mentioned. As the cerebellum not only participates in movement control, understanding and appreciating its functioning may also explain its role in cognition, emotion, and autonomic functions. Finally, cerebellar disorders and clinical manifestations of cerebellar dysfunction in movement control are discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Marsden, JF. Cerebellar ataxia. Handb Clin Neurol 2018;159:261281.CrossRefGoogle ScholarPubMed
Schmahmann, JD, Caplan, D. Cognition, emotion and the cerebellum. Brain 2006;129(Pt 2):290292.CrossRefGoogle ScholarPubMed
Dirkx, MF, den Ouden, HE, Aarts, E, et al. Dopamine controls Parkinson’s tremor by inhibiting the cerebellar thalamus. Brain 2017;140(3):721734.Google ScholarPubMed
Helmich, RC, Janssen, MJ, Oyen, WJ, Bloem, BR, Toni, I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol 2011;69(2):269281.CrossRefGoogle ScholarPubMed
Silveri, MC. Contribution of the cerebellum and the basal ganglia to language production: speech, word fluency, and sentence construction – evidence from pathology. Cerebellum 2021;20(2):282294.CrossRefGoogle ScholarPubMed
Bostan, AC, Dum, RP, Strick, PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A 2010;107(18):84528456.CrossRefGoogle ScholarPubMed
Leto, K, Arancillo, M, Becker, EB, et al. Consensus paper: cerebellar development. Cerebellum 2016;15(6):789828.CrossRefGoogle ScholarPubMed
Voogd, J, Ruigrok, TJH. Cerebellum and precerebellar nuclei. In: Mai, JK, Paxinos, G, eds. The Human Nervous System, 3rd ed. Amsterdam: Elsevier; 2012: 471545.CrossRefGoogle Scholar
Bolk, L. Das cerebellum der Saugetiere. Jena: Bohn-Fischer; 1906.Google Scholar
Schmahmann, JD, Doyon, J, McDonald, D, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 1999;10(3 Pt 1):233260.CrossRefGoogle ScholarPubMed
Loukas, M, Pennell, C, Groat, C, Tubbs, RS, Cohen-Gadol, AA. Korbinian Brodmann (1868–1918) and his contributions to mapping the cerebral cortex. Neurosurgery 2011;68(1):611, discussion.CrossRefGoogle ScholarPubMed
Simat, M, Parpan, F, Fritschy, JM. Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum. J Comp Neurol 2007;500(1):7183.CrossRefGoogle ScholarPubMed
Ramón y Cajal, S. Histologie du système nerveux de l’homme et des vertébrés. Paris: Maloine; 1911.Google Scholar
Huang, CC, Sugino, K, Shima, Y, et al. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. Elife 2013;2:e00400.CrossRefGoogle ScholarPubMed
Mathews, PJ, Lee, KH, Peng, Z, Houser, CR, Otis, TS. Effects of climbing fiber driven inhibition on Purkinje neuron spiking. J Neurosci 2012;32(50):1798817997.CrossRefGoogle ScholarPubMed
Szapiro, G, Barbour, B. Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 2007;10(6):735742.CrossRefGoogle ScholarPubMed
Voogd, J, Ruigrok, TJ. The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J Neurocytol 2004;33(1):521.CrossRefGoogle Scholar
Voogd, J, Glickstein, M. The anatomy of the cerebellum. Trends Neurosci 1998;2:305371.Google ScholarPubMed
Pijpers, A, Voogd, J, Ruigrok, TJ. Topography of olivo-cortico-nuclear modules in the intermediate cerebellum of the rat. J Comp Neurol 2005;492(2):193213.CrossRefGoogle ScholarPubMed
Ruigrok, TJ. Ins and outs of cerebellar modules. Cerebellum 2011;10(3):464474.CrossRefGoogle ScholarPubMed
Teune, TM, van der Burg, J, van der Moer, J, Voogd, J, Ruigrok, TJH. Topography of cerebellar nuclear projections to the brain stem in the rat. In: Gerrits, NM, Ruigrok, TJH, De Zeeuw, CI, eds. Cerebellar Modules: Molecules, Morphology and Function. Progress in Brain Research 124. Amsterdam: Elsevier Science B.V.; 2000: 141172.CrossRefGoogle Scholar
Pijpers, A, Apps, R, Pardoe, J, Voogd, J, Ruigrok, TJ. Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones. J Neurosci 2006;26(46):1206712080.CrossRefGoogle ScholarPubMed
Apps, R, Garwicz, M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 2005;6(4):297311.CrossRefGoogle ScholarPubMed
Apps, R, Hawkes, R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 2009;10(9):670681.CrossRefGoogle ScholarPubMed
Apps, R, Hawkes, R, Aoki, S, et al. Cerebellar modules and their role as operational cerebellar processing units: a consensus paper [corrected]. Cerebellum 2018;17(5):654682.CrossRefGoogle ScholarPubMed
De Zeeuw, CI. Bidirectional learning in upbound and downbound microzones of the cerebellum. Nat Rev Neurosci 2021;22(2):92110.CrossRefGoogle ScholarPubMed
Tang, T, Xiao, J, Suh, CY, et al. Heterogeneity of Purkinje cell simple spike–complex spike interactions: zebrin- and non-zebrin-related variations. J Physiol 2017;595(15):53415357.CrossRefGoogle ScholarPubMed
Zhou, H, Lin, Z, Voges, K, et al. Cerebellar modules operate at different frequencies. Elife 2014;3:e02536.CrossRefGoogle ScholarPubMed
Ito, M. The Cerebellum and Neural Control. New York: Raven Press; 1984.Google Scholar
Jorntell, H, Ekerot, CF. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 2002;34(5):797806.CrossRefGoogle ScholarPubMed
Kitazawa, S, Kimura, T, Yin, P-B. Cerebellar complex spikes encode both destinations and errors in arm movements. Nature 1998;392:494497.CrossRefGoogle ScholarPubMed
Lang, EJ. Organization of olivocerebellar activity in the absence of excitatory glutamatergic input. J Neurosci 2001;21(5):16631675.CrossRefGoogle ScholarPubMed
Linden, DJ. Cerebellar long-term depression as investigated in a cell culture preparation. Behav Brain Sci. 1996;19(3):339.CrossRefGoogle Scholar
Llinás, R, Sugimori, M. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 1980;305:171195.CrossRefGoogle ScholarPubMed
Llinas, R, Yarom, Y, Sugimori, M. Isolated mammalian brain in vitro: new technique for analysis of electrical activity of neuronal circuit function. Fed Proc 1981;40(8):22402245.Google ScholarPubMed
Eccles, JC, Llinás, R, Sasaki, K. The excitatory synaptic action of climbing fibers on the Purkinje cells of the cerebellum. J Physiol 1966;182:268296.CrossRefGoogle ScholarPubMed
Eccles, JC, Llinás, R, Sasaki, K. Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp Brain Res 1966;1:1739.CrossRefGoogle ScholarPubMed
Raman, IM, Bean, BP. Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J Neurosci 1997;17(12):45174526.CrossRefGoogle ScholarPubMed
Simpson, JI, Wylie, DR, De Zeeuw, CI. On climbing fiber signals and their consequence(s). Behav Brain Sci 1996;19(3):384398.CrossRefGoogle Scholar
Batini, C, Billard, JM, Daniel, H. Long term modification of cerebellar inhibition after inferior olive degeneration. Exp Brain Res 1985;59(2):404409.CrossRefGoogle ScholarPubMed
White, JJ, Sillitoe, RV. Genetic silencing of olivocerebellar synapses causes dystonia-like behaviour in mice. Nat Commun 2017;8:14912.CrossRefGoogle ScholarPubMed
Albus, JS. A theory on cerebellar function. Math Biosci 1971;10:2561.CrossRefGoogle Scholar
Marr, D. A theory of cerebellar cortex. J Physiol 1969;202:437470.CrossRefGoogle ScholarPubMed
Ito, M, Sakurai, M, Tongroach, P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 1982;324:113134.CrossRefGoogle ScholarPubMed
Sakurai, M. Synaptic modification of parallel fibre–Purkinje cell transmission in in vitro guinea-pig cerebellar slices. J Physiol 1987;394:463–80.CrossRefGoogle ScholarPubMed
Mathy, A, Ho, SS, Davie, JT, et al. Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 2009;62(3):388399.CrossRefGoogle ScholarPubMed
Coesmans, M, Weber, JT, De Zeeuw, CI, Hansel, C. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 2004;44(4):691700.CrossRefGoogle ScholarPubMed
van Beugen, BJ, Nagaraja, RY, Hansel, C. Climbing fiber-evoked endocannabinoid signaling heterosynaptically suppresses presynaptic cerebellar long-term potentiation. J Neurosci 2006;26(32):82898294.CrossRefGoogle ScholarPubMed
Badura, A, Schonewille, M, Voges, K, et al. Climbing fiber input shapes reciprocity of Purkinje cell firing. Neuron 2013;78(4):700713.CrossRefGoogle ScholarPubMed
Lisberger, SG. The rules of cerebellar learning: around the Ito hypothesis. Neuroscience 2021;462:175190.CrossRefGoogle ScholarPubMed
Ruigrok, TJ, Pijpers, A, Goedknegt-Sabel, E, Coulon, P. Multiple cerebellar zones are involved in the control of individual muscles: a retrograde transneuronal tracing study with rabies virus in the rat. Eur J Neurosci 2008;28(1):181200.CrossRefGoogle ScholarPubMed
Pijpers, A, Winkelman, BH, Bronsing, R, Ruigrok, TJ. Selective impairment of the cerebellar C1 module involved in rat hind limb control reduces step-dependent modulation of cutaneous reflexes. J Neurosci 2008;28(9):21792189.CrossRefGoogle ScholarPubMed
Ito, M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol 2006;78(3–5):272303.CrossRefGoogle ScholarPubMed
Kawato, M, Ohmae, S, Hoang, H, Sanger, T. 50 Years since the Marr, Ito, and Albus models of the cerebellum. Neuroscience 2021;462:151174.CrossRefGoogle Scholar
Boyden, ES, Katoh, A, Pyle, JL, et al. Selective engagement of plasticity mechanisms for motor memory storage. Neuron 2006;51(6):823834.CrossRefGoogle ScholarPubMed
Gao, Z, van Beugen, BJ, De Zeeuw, CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 2012;13(9):619635.CrossRefGoogle ScholarPubMed
Wulff, P, Schonewille, M, Renzi, M, et al. Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci 2009;12(8):10421049.CrossRefGoogle ScholarPubMed
De Zeeuw, CI, Yeo, CH. Time and tide in cerebellar memory formation. Curr Opin Neurobiol 2005;15(6):667674.CrossRefGoogle ScholarPubMed
Jirenhed, DA, Hesslow, G. Are Purkinje cell pauses drivers of classically conditioned blink responses? Cerebellum 2016;15(4):526534.CrossRefGoogle ScholarPubMed
Ten Brinke, MM, Heiney, SA, Wang, X, et al. Dynamic modulation of activity in cerebellar nuclei neurons during pavlovian eyeblink conditioning in mice. Elife 2017;6.CrossRefGoogle ScholarPubMed
Llinás, R, Welsh, JP. On the cerebellum and motor learning. Curr Opin Neurobiol 1993;3:958965.CrossRefGoogle ScholarPubMed
Llinás, R, Yarom, Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol 1986;376:163182.CrossRefGoogle ScholarPubMed
Llinás, R, Baker, R, Sotelo, C. Electrotonic coupling between neurons in the cat inferior olive. J Neurophysiol 1974;37:560571.CrossRefGoogle ScholarPubMed
Lang, EJ. GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity. J Neurophysiol 2002;87(4):19932008.CrossRefGoogle ScholarPubMed
Bazzigaluppi, P, Ruigrok, T, Saisan, P, De Zeeuw, CI, de Jeu, M. Properties of the nucleo-olivary pathway: an in vivo whole-cell patch clamp study. PLoS One 2012;7(9):e46360.CrossRefGoogle Scholar
De Zeeuw, CI, Simpson, JI, Hoogenraad, CC, et al. Microcircuitry and function of the inferior olive. Trends Neurosci 1998;21:391400.CrossRefGoogle ScholarPubMed
Llinás, R, Sasaki, K. The functional organization of the olivo-cerebellar system as examined by multiple Purkinje cell recording. Eur J Neurosci 1989;1:587603.CrossRefGoogle Scholar
Blenkinsop, TA, Lang, EJ. Block of inferior olive gap junctional coupling decreases Purkinje cell complex spike synchrony and rhythmicity. J Neurosci 2006;26(6):17391748.CrossRefGoogle ScholarPubMed
Llinás, R, Volkind, R. The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Exp Brain Res 1973;18:6987.CrossRefGoogle ScholarPubMed
Llinás, R, Mühlethaler, M. Electrophysiology of guinea pig cerebellar nuclear cells in the in vitro brainstem-cerebellar preparation. J Physiol 1988;404:241258.CrossRefGoogle Scholar
Hoebeek, FE, Witter, L, Ruigrok, TJ, De Zeeuw, CI. Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proc Natl Acad Sci U S A 2011;107(18):84108415.CrossRefGoogle Scholar
Llinás, R. Rebound excitation as the physiological basis for tremor: a biophysical study of the oscillatory properties of mammalian central neurones in vitro. In: Findley, LJ, Capildeo, R, eds. Movement Disorders: Tremor. New York: Oxford University Press; 1984: 165182.CrossRefGoogle Scholar
Llinás, RR. The noncontinuous nature of movement execution. In: Humphrey, DR, Freund, H-J, eds. Motor Control: Concepts and Issues. Chichester: John Wiley & Sons; 1991: 223242.Google Scholar
Bower, JM. Perhaps it’s time to completely rethink cerebellar function. Behav Brain Sci 1996;19(3):438.CrossRefGoogle Scholar
Gao, J-H, Parsons, L, Bower, JM, et al. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 1996;272:545547.CrossRefGoogle ScholarPubMed
Voogd, J, Gerrits, NM, Ruigrok, TJ. Organization of the vestibulocerebellum. Ann N Y Acad Sci 1996;781:553579.CrossRefGoogle ScholarPubMed
Voogd, J, Barmack, NH. Oculomotor cerebellum. Progr Brain Res 2006;151:231268.CrossRefGoogle ScholarPubMed
Voogd, J, Feirabend, HKP, Schoen, JHR. Cerebellum and precerebellar nuclei. In: Paxinos, G, ed. The Human Nervous System. New York: Academic Press; 1990.Google Scholar
Arshavsky, YI, Gelfand, IM, Orlovsky, GN. Cerebellum and Rhythmical Movements. Berlin: Springer-Verlag; 1986.CrossRefGoogle Scholar
Suzuki, L, Coulon, P, Sabel-Goedknegt, EH, Ruigrok, TJ. Organization of cerebral projections to identified cerebellar zones in the posterior cerebellum of the rat. J Neurosci 2012;32(32):1085410869.CrossRefGoogle ScholarPubMed
Sugihara, I, Shinoda, Y. Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. J Neurosci 2004;24(40):87718785.CrossRefGoogle ScholarPubMed
Manni, E, Petrosini, L. A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci 2004;5(3):241249.CrossRefGoogle ScholarPubMed
Welker, W. Spatial organization of somatosensory projections to granule cell cerebellar cortex: functional and connectional implications of fractured somatotopy (summary of Wisconsin studies). In: King, JS, ed. New Concepts in Cerebellar Neurobiology. New York: Alan R. Liss, Inc.; 1987: 239280.Google Scholar
Fujita, H, Kodama, T, du Lac, S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. Elife 2020;9:e58613.CrossRefGoogle ScholarPubMed
Ruigrok, TJH. Cerebellar influences on descending spinal motor systems. In: Manto, M, Gruol, JD, Schmahmann, N, Koibuchi, N, Rossi, F, eds. Handbook of the Cerebellum and Cerebellum Disorders. Dordrecht: Springer; 2013: 497528.CrossRefGoogle Scholar
Sathyamurthy, A, Barik, A, Dobrott, CI, et al. Cerebellospinal neurons regulate motor performance and motor learning. Cell Rep 2020;31(6):107595.CrossRefGoogle ScholarPubMed
Hoover, JE, Strick, PL. The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 1999;19(4):14461463.CrossRefGoogle ScholarPubMed
Ruigrok, TJH. Precerebellar nuclei and red nucleus. In: Paxinos, G, ed. The Rat Nervous System, 3rd ed. San Diego: Elsevier Academic Press; 2004: 167204.CrossRefGoogle Scholar
Ruigrok, TJH, Voogd, J. Cerebellar influence on olivary excitability in the cat. Eur J Neurosci 1995;7:679693.CrossRefGoogle ScholarPubMed
Kennedy, PR. Corticospinal, rubrospinal and rubro-olivary projections: a unifying hypothesis. Trends Neurosci 1990;13:474479.CrossRefGoogle ScholarPubMed
Grafman, J, Litvan, I, Massaquoi, S, et al. Cognitive planning deficit in patients with cerebellar atrophy. Neurology 1992;42:14931496.CrossRefGoogle ScholarPubMed
Kelly, RM, Strick, PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 2003;23(23):8432–44.CrossRefGoogle ScholarPubMed
Guell, X, Schmahmann, JD, Gabrieli, J, Ghosh, SS. Functional gradients of the cerebellum. Elife. 2018;7:e36652.CrossRefGoogle ScholarPubMed
Thach, WT, Bastian, AJ. Role of the cerebellum in the control and adaptation of gait in health and disease. Progr Brain Res 2004;143:353366.CrossRefGoogle ScholarPubMed
Voogd, J, van Baarsen, K. The horseshoe-shaped commissure of Wernekinck or the decussation of the brachium conjunctivum methodological changes in the 1840s. Cerebellum 2014;13:113120.CrossRefGoogle ScholarPubMed
Schmahmann, JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 2004;16(3):367378.CrossRefGoogle ScholarPubMed
Schmahmann, JD, Sherman, JC. The cerebellar cognitive affective syndrome. Brain 1998;121(Pt 4):561579.CrossRefGoogle ScholarPubMed
Nieuwenhuys, R, Voogd, J, van Huijzen, C. The Human Central Nervous System. Berlin: Springer-Verlag; 1981.CrossRefGoogle Scholar
Jansen, J, Brodal, A. Das Kleinhirn. Handbuch der mikroskopischen Anatomie des Menschen 4/8. Berlin: Springer-Verlag; 1958.Google Scholar
Ruigrok, TJH. Role of the cerebellum. In Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Amsterdam: VU University Press; 2014: 79106.Google Scholar
Yeo, CH, Hesslow, G. Cerebellum and conditioned responses. Trends Neurosci. 1998;2:322330.CrossRefGoogle Scholar
Guell, X, Schmahmann, JD, Gabrieli, JDE, Ghosh, SS. Functional gradients of the cerebellum. eLife 2018;7:e36652.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×