Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T10:48:18.217Z Has data issue: false hasContentIssue false

Chapter 47 - Treatable Hereditary Cerebellar Ataxias

from Section 4: - Dyscoordinative and Otherwise Inappropriate Motor Behaviors

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

Hereditary cerebellar ataxia (HA) are a heterogeneous group of disorders characterized by the presence of slowly progressive gait ataxia, dysarthria and other cerebellar signs. Detailed clinical history and neurologic as well as systemic examination are key to accurate diagnosis and hierarchical diagnostic investigations. The initial diagnostic evaluation of patients with HA should include a detailed assessment to rule out acquired treatable etiologies. If such a detailed screening is inconclusive, investigations should be directed towards hereditary causes of cerebellar ataxias. Early diagnosis and treatment can lead to favorable outcomes. Disease-specific therapies have emerged for various cerebellar ataxia syndromes including hereditary ones. Despite these advances, management of the majority of HA remains symptomatic. Moreover, there are no US FDA-approved medications for HAs to date. However, there are a few progressive HA conditions that can improve with disease-specific treatment, particularly if initiated early in the disease course. Here, we discuss various hereditary cerebellar ataxia syndromes that are amenable to disease-specific/targeted treatment.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ramirez-Zamora, A, Zeigler, W, Desai, N, Biller, J. Treatable causes of cerebellar ataxia. Mov Disord 2015;30(5):614623.CrossRefGoogle ScholarPubMed
Mitoma, H, Manto, M, Gandini, J. Recent advances in the treatment of cerebellar disorders. Brain Sci 2019;10(1):E11.CrossRefGoogle ScholarPubMed
Mitoma, H, Manto, M. The physiological basis of therapies for cerebellar ataxias. Ther Adv Neurol Disord 2016;9(5):396413.CrossRefGoogle ScholarPubMed
Schmucker, S, Puccio, H. Understanding the molecular mechanisms of Friedreich’s ataxia to develop therapeutic approaches. Hum Mol Genet 2010;19(R1):R103–110.CrossRefGoogle ScholarPubMed
Cooper, JM, Korlipara, LVP, Hart, PE, Bradley, JL, Schapira, AHV. Coenzyme Q10 and vitamin E deficiency in Friedreich’s ataxia: predictor of efficacy of vitamin E and coenzyme Q10 therapy. Eur J Neurol 2008;15(12):13711379.CrossRefGoogle ScholarPubMed
Meier, T, Perlman, SL, Rummey, C, Coppard, NJ, Lynch, DR. Assessment of neurological efficacy of idebenone in pediatric patients with Friedreich’s ataxia: data from a 6-month controlled study followed by a 12-month open-label extension study. J Neurol 2012;259(2):284291.CrossRefGoogle ScholarPubMed
van de Warrenburg, BPC, van Gaalen, J, Boesch, S, et al. EFNS/ENS Consensus on the diagnosis and management of chronic ataxias in adulthood. Eur J Neurol 2014;21(4):552562.CrossRefGoogle ScholarPubMed
Seyer, L, Greeley, N, Foerster, D, et al. Open-label pilot study of interferon gamma-1b in Friedreich ataxia. Acta Neurol Scand 2015;132(1):715.CrossRefGoogle ScholarPubMed
Gotoda, T, Arita, M, Arai, H, et al. Adult-onset spinocerebellar dysfunction caused by a mutation in the gene for the alpha-tocopherol-transfer protein. N Engl J Med 1995;333(20):13131318.CrossRefGoogle ScholarPubMed
Gabsi, S, Gouider-Khouja, N, Belal, S, et al. Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol 2001;8(5):477481.CrossRefGoogle ScholarPubMed
Beaudin, M, Matilla-Dueñas, A, Soong, BW, et al. The classification of autosomal recessive cerebellar ataxias: a consensus statement from the Society for Research on the Cerebellum and Ataxias Task Force. Cerebellum 2019;18(6):10981125.CrossRefGoogle Scholar
Muller, DP, Lloyd, JK, Wolff, OH. The role of vitamin E in the treatment of the neurological features of abetalipoproteinaemia and other disorders of fat absorption. J Inherit Metab Dis 1985;8(1Suppl 1):8892.CrossRefGoogle ScholarPubMed
Lee, J, Hegele, RA. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: a framework for diagnosis and management. J Inherit Metab Dis 2014;37(3):333339.CrossRefGoogle ScholarPubMed
Vanier, MT, Millat, G. Niemann–Pick disease type C. Clin Genet 2003;64(4):269281.CrossRefGoogle ScholarPubMed
Vanier, MT. Niemann–Pick disease type C. Orphanet J Rare Dis 2010;5:16.CrossRefGoogle ScholarPubMed
Sévin, M, Lesca, G, Baumann, N, et al. The adult form of Niemann–Pick disease type C. Brain J Neurol 2007;130(Pt 1):120133.CrossRefGoogle ScholarPubMed
McKay Bounford, K, Gissen, P. Genetic and laboratory diagnostic approach in Niemann Pick disease type C. J Neurol 2014:261(Suppl 2):S569575.CrossRefGoogle ScholarPubMed
NP-C Guidelines Working Group, Wraith, JE, Baumgartner, MR, et al. Recommendations on the diagnosis and management of Niemann–Pick disease type C. Mol Genet Metab 2009;98(1–2):152165.CrossRefGoogle ScholarPubMed
Lyseng-Williamson, KA. Miglustat: a review of its use in Niemann–Pick disease type C. Drugs 2014;74:(1):6174.CrossRefGoogle ScholarPubMed
Patterson, MC, Vecchio, D, Prady, H, Abel, L, Wraith, JE. Miglustat for treatment of Niemann–Pick C disease: a randomised controlled study. Lancet Neurol 2007;6(9):765772.CrossRefGoogle ScholarPubMed
Moghadasian, MH, Salen, G, Frohlich, JJ, Scudamore, CH. Cerebrotendinous xanthomatosis: a rare disease with diverse manifestations. Arch Neurol 2002;59(4):527529.CrossRefGoogle ScholarPubMed
KP, D, Kishore, A. Treatable cerebellar ataxias. Clin Park Relat Disord 2020;3:100053.Google Scholar
Yahalom, G, Tsabari, R, Molshatzki, N, et al. Neurological outcome in cerebrotendinous xanthomatosis treated with chenodeoxycholic acid: early versus late diagnosis. Clin Neuropharmacol 2013;36(3):7883.CrossRefGoogle ScholarPubMed
Ito, S, Kuwabara, S, Sakakibara, R, et al. Combined treatment with LDL-apheresis, chenodeoxycholic acid and HMG-CoA reductase inhibitor for cerebrotendinous xanthomatosis. J Neurol Sci 2003;216(1):179182.CrossRefGoogle ScholarPubMed
Mukherji, M, Chien, W, Kershaw, NJ, et al. Structure–function analysis of phytanoyl-CoA 2-hydroxylase mutations causing Refsum’s disease. Hum Mol Genet 2001;10(18):19711982.CrossRefGoogle ScholarPubMed
Weinstein, R. Phytanic acid storage disease (Refsum’s disease): clinical characteristics, pathophysiology and the role of therapeutic apheresis in its management. J Clin Apheresis 1999;14(4):181184.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Masters-Thomas, A, Bailes, J, Billimoria, JD, et al. Heredopathia atactica polyneuritiformis (Refsum’s disease): 1. Clinical features and dietary management. J Hum Nutr 1980;34(4):245250.Google ScholarPubMed
Wills, AJ, Manning, NJ, Reilly, MM. Refsum’s disease. QJM Mon J Assoc Physicians 2001;94(8):403406.CrossRefGoogle ScholarPubMed
Emmanuele, V, López, LC, Berardo, A, et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch Neurol 2012;69(8):978983.CrossRefGoogle ScholarPubMed
Lamperti, C, Naini, A, Hirano, M, et al. Cerebellar ataxia and coenzyme Q10 deficiency. Neurology 2003;60(7):12061208.CrossRefGoogle ScholarPubMed
Pineda, M, Montero, R, Aracil, A, et al. Coenzyme Q(10)-responsive ataxia: 2-year-treatment follow-up. Mov Disord 2010;25(9):12621268.CrossRefGoogle ScholarPubMed
Gatti, RA, Berkel, I, Boder, E, et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22–23. Nature 1988;336(6199):577580.CrossRefGoogle ScholarPubMed
Zannolli, R, Buoni, S, Betti, G, et al. A randomized trial of oral betamethasone to reduce ataxia symptoms in ataxia telangiectasia. Mov Disord 2012;27(10):13121316.CrossRefGoogle ScholarPubMed
Jen, JC, Graves, TD, Hess, EJ, et al. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain J Neurol 2007;130(Pt 10):24842493.CrossRefGoogle ScholarPubMed
Jen, J, Kim, GW, Baloh, RW. Clinical spectrum of episodic ataxia type 2. Neurology 2004;62(1):1722.CrossRefGoogle ScholarPubMed
Baloh, RW, Yue, Q, Furman, JM, Nelson, SF. Familial episodic ataxia: clinical heterogeneity in four families linked to chromosome 19p. Ann Neurol 1997;41(1):816.CrossRefGoogle ScholarPubMed
Strupp, M, Kalla, R, Dichgans, M, Freilinger, T, Glasauer, S, Brandt, T. Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology 2004;62(9):16231625.CrossRefGoogle ScholarPubMed
Scoggan, KA, Friedman, JH, Bulman, DE. CACNA1A mutation in a EA-2 patient responsive to acetazolamide and valproic acid. Can J Neurol Sci 2006;33(1):6872.CrossRefGoogle Scholar
Zanni, G, Bertini, E. X-linked ataxias. Handb Clin Neurol 2018;155:175189.CrossRefGoogle ScholarPubMed
Zanni, G, Bertini, ES. X-linked disorders with cerebellar dysgenesis. Orphanet J Rare Dis 2011;6:24.CrossRefGoogle ScholarPubMed
Muzar, Z, Lozano, R. Current research, diagnosis, and treatment of fragile X-associated tremor/ataxia syndrome. Intractable Rare Dis Res 2014;3(4):101109.CrossRefGoogle ScholarPubMed
Yang, J-C, Niu, Y-Q, Simon, C, et al. Memantine effects on verbal memory in fragile X-associated tremor/ataxia syndrome (FXTAS): a double-blind brain potential study. Neuropsychopharmacology 2014;39(12):27602768.CrossRefGoogle ScholarPubMed
dos Santos Ghilardi, MG, Gisbert Cury, M, Silva dos Ângelos, J, et al. Long-term improvement of tremor and ataxia after bilateral DBS of VoP/zona incerta in FXTAS. Neurology 2015;84(18):19041906.CrossRefGoogle ScholarPubMed
Di Nuzzo, C, Ruggiero, F, Cortese, F, et al. Non-invasive cerebellar stimulation in cerebellar disorders. CNS Neurol Disord Drug Targets 2018;17(3):193198.CrossRefGoogle ScholarPubMed
Grimaldi, G, Oulad Ben Taib, N, Manto, M, Bodranghien, F. Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: tremor reduction and re-programming of the timing of antagonist commands. Front Syst Neurosci 2014;8:9.CrossRefGoogle ScholarPubMed
Benussi, A, Koch, G, Cotelli, M, Padovani, A, Borroni, B. Cerebellar transcranial direct current stimulation in patients with ataxia: a double-blind, randomized, sham-controlled study. Mov Disord 2015;30(12):17011705.CrossRefGoogle ScholarPubMed
Benussi, A, Dell’Era, V, Cotelli, MS, et al. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimulat 2017;10(2):242250.CrossRefGoogle ScholarPubMed
Zesiewicz, TA, Wilmot, G, Kuo, SH, et al. Comprehensive systematic review summary: treatment of cerebellar motor dysfunction and ataxia: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018;90(10):464471.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×