Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T12:57:53.896Z Has data issue: false hasContentIssue false

17 - IoT Analytics

Published online by Cambridge University Press:  09 January 2021

Sudip Misra
Affiliation:
Indian Institute of Technology, Kharagpur
Anandarup Mukherjee
Affiliation:
Indian Institute of Technology, Kharagpur
Arijit Roy
Affiliation:
Indian Institute of Technology, Kharagpur
Get access

Summary

Learning Outcomes

After reading this chapter, the reader will be able to:

  • Describe the common analytical tools and machine learning algorithms used with IoT data

  • Assess the importance and applicability of each algorithm

  • Understand the operating principle of each of these analytical methods

  • Assess the performance of various analytical and learning algorithms and methods through the use of various performance metrics

  • Relate to the uses of various learning algorithms through examples

Introduction

In previous chapters, we learned that sensors are an intrinsic part of IoT. These sensors collect data from the environment and serve different IoT-based applications. The raw data from a sensor require processing to draw inferences. However, an IoTbased system generates data with complex structures; therefore, conventional data processing on these data is not sufficient. Sophisticated data analytics are necessary to identify hidden patterns. In this chapter, we discuss a few traditional data analytics tools that are popular in the context of IoT applications. These tools include k-means, decision tree (DT), random forest (RF), k-nearest neighbor (KNN), and density-based spatial clustering of applications with noise (DBSCAN) algorithms. Before discussing these algorithms, let us understand some of the basics related to machine learning (ML).

Machine learning

The term “machine learning” was coined by Arthur Lee Samuel, in 1959. He defined machine learning as a “field of study that gives computers the ability to learn without being explicitly programmed”.

ML is a powerful tool that allows a computer to learn from past experiences and its mistakes and improve itself without user intervention. Typically, researchers envision IoT-based systems to be autonomous and self-adaptive, which enhances services and user experience. To this end, different ML models play a crucial role in designing intelligent systems in IoT by leveraging the massive amount of generated data and increasing the accuracy in their operations. The main components of ML are statistics, mathematics, and computer science for drawing inferences, constructing ML models, and implementation, respectively.

Points to ponder

  • ML is an important tool, which is used by different social networking websites such as facebook and twitter.

  • Autonomous vehicles use ML to determine their paths and speeds.

Type
Chapter
Information
Introduction to IoT , pp. 355 - 374
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×