Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T10:29:33.958Z Has data issue: false hasContentIssue false

8 - Muon spin rotation/relaxation/resonance: probing induced microscopic systems in condensed matter

Published online by Cambridge University Press:  22 October 2009

Kanetada Nagamine
Affiliation:
High Energy Accelerator Research Organization, Tsukuba, Japan
Get access

Summary

As mentioned at the beginning of Chapter 7, there have been two different attitudes in the experimenter's mind concerning the role of the μ+ in condensed matter, as shown schematically in Figure 8.1(a): at one extreme, the μ+ is treated as a gentle and passive probe to probe the condensed matter with minimal perturbation and to observe its intrinsic properties prior to the introduction of μ+; at the other extreme, the μ+ is treated as a violent and active probe introducing a perturbation in the host material so as to study new physics and chemistry created by the presence of the μ+. In this chapter, representative studies utilizing the second category, including similar studies of the μ, are described.

The role of this type of muon spin rotation/relaxation/resonance (μSR) studies is quite significant in its contribution to the growth of our human daily life: (1) the localization and diffusion of the light hydrogen isotope Mu (μ+ e) simulates a behavior of a dilute hydrogen atom in metals and other condensed matter which is quite difficult to monitor and important in various aspects of industrial constructions ; (2) a trace impurity hydrogen-like atom can “passivate” electrical activity of donors and acceptors or “hydrogenate” dangling bonds in semiconductors ; (3) the lightest hydrogen atom can explore the most fundamental mechanism of hydrogen chemical reaction in terms of mass dependence ; (4) the electron brought in by the energetic light hydrogen can be used to probe electron transport in conducting polymers and biological macromolecules.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brewer, J. H.et al. (1973). Phys. Rev. Lett., 31, 143CrossRef
Butler, M. A.et al. (1976). J. Chem. Phys., 64, 3592CrossRef
Cammarere, D.et al. (2000). Physica B, 289–90, 636CrossRef
Clawson, C. W.et al. (1983). Phys. Rev. Lett., 51, 114CrossRef
Cox, S. F. J. and Symons, M. C. R. (1986). Chem. Phys. Lett., 126, 516CrossRef
Fleming, D. G. et al. (1992). In Perspectives of Meson Science, ed. T. Yamazaki, K. Nakai, and K. Nagamine, p. 219. Amsterdam: North Holland
Flynn, C. P. and Stoneham, A. M. (1972). Phys. Rev., B1, 3966
Gurevich, I. I.et al. (1972). Phys. Lett., A40, 143CrossRef
Hartmann, O.et al. (1980). Phys. Rev. Lett., 44, 337CrossRef
Ishida, K.et al. (1985). Phys. Rev. Lett., 55, 2009CrossRef
Kadono, R. (1992). In Meson Science, ed. T. Yamazaki, K. Nakai, and K. Nagamine, p. 113. Amsterdam: North Holland
Kadono, R.et al. (1985). Phys. Lett., A109, 61CrossRef
Kadono, R.et al. (1989). Phys. Rev., B39, 23CrossRef
Kadono, R.et al. (1990). Phys. Rev. Lett., 64, 665CrossRef
Kadono, R.et al. (1994). Phys. Rev. Lett., 73, 2724CrossRef
Kadono, R.et al. (1999). Phys. Rev. Lett., 83, 987CrossRef
Kagan, Y. (1992). J. Low Temp. Phys., 87, 525CrossRef
Kagan, Yu. and Prokof'ev, N. V. (1990). Phys. Lett., A150, 320CrossRef
Kagan, Yu. and Prokof'ev, N. V. (1991). Phys. Lett., A159, 289CrossRef
Karlsson, E. B.et al. (1995). Phys. Rev., B52, 6417CrossRef
Kempton, J. R.et al. (1990). Hyperfine Interactions, 65, 811CrossRef
Kiefl, R. F.et al. (1984). Phys. Rev. Lett., 53, 90CrossRef
Kiefl, R. F.et al. (1986). Phys. Rev., A34, 681CrossRef
Kiefl, R. F.et al. (1988). Phys. Rev. Lett., 60, 224CrossRef
Kiefl, R. F.et al. (1989). Phys. Rev. Lett., 62, 792CrossRef
Kiefl, R. F. and Estle, T. L. (1990). In Hydrogen in Semiconductors, ed. J. Pankove, and N. M. Johnson, p. 547. New York: Academic Press
Kondo, J. (1984). Physica, B125, 279
Kondo, J. (1999). J. Phys. Soc. Jpn, 68, 3315CrossRef
Kreitzman, S. R.et al. (1995). Phys. Rev., 51, 13117CrossRef
Luke, G. M.et al. (1991). Phys. Rev., B43, 3284CrossRef
Meggers, E.et al. (1998). J. Am. Chem. Soc., 120, 12950CrossRef
Morozumi, Y.et al. (1986). Phys. Lett. A118, 93CrossRef
Nagamine, K.et al. (1984). Phys. Rev. Lett., 53, 1763CrossRef
Nagamine, K.et al. (2000). Physica, B289–90, 631CrossRef
Nishiyama, K. (1992). In Meson Science, ed. T. Yamazaki, K. Nakai, and K. Nagamine, p. 199. Amsterdam: North Holland
Nishiyama, K.et al. (1985). Phys. Lett., 111, 369CrossRef
Nishiyama, K.et al. (1986). Hyperfine Interactions, 32, 551CrossRef
Patterson, B. D. (1988). Rev. Mod. Phys., 60, 69CrossRef
Percival, P. (1980). Radiochimica Acta, 26, 1CrossRef
Pratt, F. L.et al. (1997). Phys. Rev. Lett., 179, 2855CrossRef
Risch, R. and Kehr, K. W. (1992). Phys. Rev., B46, 5246CrossRef
Roduner, E.et al. (1978). Chem. Phys. Lett., 57, 37CrossRef
Roduner, E.et al. (1981). Chem. Phys., 54, 2610CrossRef
Roduner, E. (1988). The Positive Muon as a Probe in Free Radical Chemistry. Lecture Notes in Chemistry 49. Heidelberg: SpringerCrossRef
Roduner, E. (1999). In Muon Science, ed. S. L. Lee, S. H. Kilcoyne, and R. Cywinski, p. 173. Berlin: NATO Advanced Study Institute
Sahoo, N.et al. (1983). Phys. Rev. Lett., 50, 913CrossRef
Scheicher, R. H.et al. (2001). Hyperfine Interactions, 136/137, 755CrossRef
Scheicher, R. H.et al. (2003). Physica B, 326, 30CrossRef
Shirakawa, H. and Ikeda, S. (1971). Polym. J., 2, 231CrossRef
Srinivas, S.et al. (1997). Hyperfine Interactions, 105, 167CrossRef
Storchak, V. G. and Prokof'ev, N. V. (1998). Rev. Mod. Phys., 70, 929CrossRef
Su, W. P.et al. (1979). Phys. Rev. Lett., 42, 1698CrossRef
Torikai, E.et al. (1993). Hyperfine Interactions, 79, 879CrossRef
Torikai, E.et al. (1994). Hyperfine Interactions, 97–8, 389
Torikai, E.et al. (2001). Hyperfine Interactions, 138, 509CrossRef
Van de Walle, C. G.et al. (1988). Phys. Rev. Lett., 60, 2761CrossRef
Yamada, K. (1984). Prog. Theor. Phys., 72, 195CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×