Published online by Cambridge University Press: 27 July 2023
In this chapter we study the linear-Gaussian setting, where the forward model (·)is linear and both the prior on 𝑢 and the distribution of the observation noise 𝜂 are Gaussian. This setting is highly amenable to analysis and arises frequently in applications. Moreover, as we will see throughout these notes, many methods employed in nonlinear or non-Gaussian settings build on ideas from the linear- Gaussian case by performing linearization or invoking Gaussian approximations.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.