Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T05:31:51.240Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  29 August 2020

David Costantini
Affiliation:
Muséum National d'Histoire Naturelle, Paris
Giacomo Dell'Omo
Affiliation:
Ornis italica
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Kestrel
Ecology, Behaviour and Conservation of an Open-Land Predator
, pp. 176 - 211
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, I., Hernández, S., Gutiérrez, P. N., et al. (2010). Acuaroid nematodes in the common kestrel (Falco tinnunculus) in the south of Spain. Vet. J., 183, 234–7.Google Scholar
Adriaensen, F., Verwimp, N. and Dhondt, A. A. (1997). Are Belgian kestrels Falco tinnunculus migratory: an analysis of ringing recoveries. Ring. Migrat., 18, 91101.Google Scholar
Adriaensen, F., Verwimp, N. and Dhondt, A. A. (1998). Between cohort variation in dispersal distance in the European kestrel Falco tinnunculus as shown by ring recoveries. Ardea, 86, 147–52.Google Scholar
Afonso, S., Vanore, G. and Batlle, A. (1999). Protoporphyrin IX and oxidative stress. Free Radic. Res., 31, 161–70.Google Scholar
Agarwal, A. and Allamaneni, S.S. (2004). Role of free radicals in female reproductive diseases and assisted reproduction. Reprod. Biomed. Online, 9, 338–47.CrossRefGoogle ScholarPubMed
Albers, P. H., Koterba, M. T., Rossmann, R., et al. (2007). Effects of methylmercury on reproduction in American kestrels. Environ. Toxicol. Chem., 26, 1856–66.CrossRefGoogle ScholarPubMed
Alcaide, M., Negro, J. J., Serrano, D., Tella, J. L. and Rodríguez, C. (2005). Extra-pair paternity in the Lesser Kestrel Falco naumanni: a re-evaluation using microsatellite markers. Ibis, 147, 608–11.Google Scholar
Alcaide, M., Serrano, D., Negro, J. J., et al. (2009). Population fragmentation leads to isolation by distance but not genetic impoverishment in the philopatric lesser kestrel: a comparison with the widespread and sympatric Eurasian Kestrel. Heredity, 102, 190–8.Google Scholar
Alexander, B. (1898). Further notes on the ornithology of the Cape Verde Islands. Ibis, 277–85.Google Scholar
Allen, T. and Clarke, J. A. (2005). Social learning of food preferences by white-tailed ptarmigan chicks. Anim. Behav., 70, 305–10.CrossRefGoogle Scholar
Alonso-Alvarez, C., Bertrand, S., Faivre, B., Chastel, O. and Sorci, G. (2007). Testosterone and oxidative stress: the oxidation handicap hypothesis. Proc. R. Soc. Lond. B, 274, 819–25.Google Scholar
Amundsen, T. (2000). Why are female birds ornamented? Trends Ecol. Evol., 15, 149–55.Google Scholar
Andersson, M. (1994). Sexual selection. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Antoniazza, S., Burri, R., Fumagalli, L., Goudet, J. and Roulin, A. (2010). Local adaptation maintains clinal variation in melanin-based coloration of European barn owls (Tyto alba). Evolution, 64, 1944–54.Google ScholarPubMed
Anushiravani, S. and Roshan, Z. S. (2017). Identification of the breeding season diet of the Common Kestrel, Falco tinnunculus in the north of Iran. Zool. Ecol., 27, 114–6.CrossRefGoogle Scholar
Aparicio, J. M. (1994a). The effect of variation in the laying interval on proximate determination of clutch size in the European Kestrel. J. Avian Biol., 25, 275–80.Google Scholar
Aparicio, J. M. (1994b). The seasonal decline in clutch size: an experiment with supplementary food in the kestrel. Oikos, 71, 451–8.Google Scholar
Aparicio, J. M. (1998). Individual optimization may explain differences in breeding time in the European kestrel Falco tinnunculus. J. Avian Biol., 29, 121–8.Google Scholar
Aparicio, J. M. (1999). Intraclutch egg-size variation in the Eurasian kestrel: advantages and disadvantages of hatching from large eggs. The Auk, 116, 825–30.Google Scholar
Aparicio, J. M. (2000). Differences in the diets of resident and non-resident kestrels in Spain. Ornis Fenn., 77, 169–75.Google Scholar
Aparicio, J. M. and Bonal, R. (2002). Effects of food supplementation and habitat selection on timing of lesser kestrel breeding. Ecology, 83, 873–7.CrossRefGoogle Scholar
Avian Power Line Interaction Committee (APLIC) (2006). Suggested practices for avian protection on power lines: the state of the art in 2006. Washington, DC: Edison Electric Institute.Google Scholar
Ardia, D. R. (2006). Glycated hemoglobin and albumin reflect nestling growth and condition in American kestrels. Comp. Biochem. Physiol. Part A, 143, 62–6.Google Scholar
Ardia, D. R. and Bildstein, K. L. (1997). Sex-related differences in habitat selection in wintering American kestrels, Falco sparverius. Anim. Behav., 53, 1305–11.Google Scholar
Aschwanden, J., Birrer, S. and Jenni, L. (2005). Are ecological compensation areas attractive hunting sites for common kestrels (Falco tinnunculus) and long-eared owls (Asio otus)? J. Ornithol., 146, 279–86.Google Scholar
Ashmole, N. P. (1961). The biology of certain terns. PhD thesis, University of Oxford, Oxford, UK.Google Scholar
Aumann, T. (1988). The diet of the brown goshawk, Accipiter fasciatus, in south-eastern Australia. Aust. Wildl. Res., 15, 587–94.Google Scholar
Avilés, J. M., Sánchez, J. M. and Parejo, D. (2001). Breeding rates of Eurasian Kestrels Falco tinnunculus in relation to surrounding habitat in southwest Spain. J. Raptor Res., 35, 31–4.Google Scholar
Balfour, E. (1955). Kestrels nesting on the ground in Orkney. Bird Notes, 26, 245–53.Google Scholar
Balgooyen, T. (1976). Behaviour and ecology of the American kestrel (Falco sparverius) in the Sierra Nevada of California. Univ. Calif. Publ. Zool., 103, 183.Google Scholar
Barnard, P. (1987). Foraging site selection by three raptors in relation to grassland burning in a montane habitat. Afr. J. Ecol., 25, 3545.Google Scholar
Barrios, L. and Rodríguez, A. (2004). Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines. J. Appl. Ecol., 41, 7281.Google Scholar
Bauer, H. G., Bezzel, E. and Fiedler, W. (2005). Das kompendium der vögel mitteleuropas (Bd. 1: Nonpasseriformes). Wiebelsheim: Aula-Verlag.Google Scholar
Bautista, L. M., Alonso, J. C. and Alonso, J. (1995). A field test of ideal distribution of in flock feeding common cranes. J. Anim. Ecol., 64, 747–57.Google Scholar
Bautista, L. M., Alonso, J. C. and Alonso, J. (1998). Foraging site displacement in common crane flocks. Anim. Behav., 56, 1237–43.Google Scholar
Bayle, P. (1999). Preventing birds of prey problems at transmission lines in Western Europe. J. Raptor Res., 33, 43–8.Google Scholar
Baziz, B., Souttu, K., Doumandji, S. and Denys, C. (2001). Quelques aspects sur le régime alimentaire du faucon crécerelle Falco tinnunculus (Aves, Falconidae) en Algérie. Alauda, 69, 413–8.Google Scholar
Beamonte-Barrientos, R., Velando, A. and Torres, R. (2014). Age-dependent effects of carotenoids on sexual ornaments and reproductive performance of a long-lived seabird. Behav. Ecol. Sociobiol., 68, 115–26.CrossRefGoogle Scholar
Becker, J. J. (1987). Revision of ‘Falcoramenta Wetmore and the Neogene evolution of the Falconidae. The Auk, 104, 270–6.Google Scholar
Beichle, U. (1980). Siedlungsdichte, jagdreviere und jagdweise des turmfalken (Falco tinnunculus) im stadtgebiet von Kiel. Corax, 8, 312.Google Scholar
Benathan, M., Virador, V., Furumura, M., et al. (1999). Coregulation of melanin precursors and tyrosinase in human pigment cells: roles of cysteine and glutathione. Cell Mol. Biol., 45, 981–90.Google Scholar
Ben-David, M. and Flaherty, E. A. (2012). Stable isotope in mammalian research: a beginner’s guide. J. Mammal., 93, 312–28.Google Scholar
Benson, C. W. (1967). The birds of Aldabra and their status. Atoll Res. Bull., 118, 63111.Google Scholar
Benson, C. W. and Penny, M. J. (1971). The land birds of Aldabra. Phil. Trans. R. Soc. Lond. B, 206, 417527.Google Scholar
Bergier, P. (1987). Les rapaces diurnes du Maroc. Statut, répartition et ecologie. Aix-en-Provence: Annales du C.E.E.P. (ex-C.R.O.P.) nr. 3.Google Scholar
Bernardino, J., Zina, H., Passos, I., et al. (2012). Bird and bat mortality at Portuguese wind farms. In IAIA12 Conference Proceedings Energy Future: the Role of Impact Assessment. 32nd Annual Meeting of the International Association for Impact Assessment, 27 May–1 June 2012, Porto, Portugal (pp. 15). Fargo, ND: IAIA.Google Scholar
Beukeboom, L., Dijkstra, C., Daan, S. and Meijer, T. (1988). Seasonality of clutch size determination in the kestrel Falco tinnunculus: an experimental approach. Ornis Scandinav., 19, 41–8.Google Scholar
Bird, D. M. and Laguë, P. C. (1982a). Fertility, egg weight loss, hatchability, and fledging success in replacement clutches of captive American kestrels. Can. J. Zool., 60, 80–8.Google Scholar
Bird, D. M. and Laguë, P. C. (1982b). Influence of forced renesting, seasonal date of laying, and female characteristics on clutch size and egg traits in captive American kestrels. Can. J. Zool., 60, 71–9.Google Scholar
Bird, D. M., Weil, P. G. and Lague, P. C. (1980). Photoperiodic induction of multiple breeding seasons in captive American kestrels. Can. J. Zool., 58, 1022–6.CrossRefGoogle ScholarPubMed
BirdLife International (2015). European Red List of birds. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
BirdLife International (2016a). Falco alopex. The IUCN Red List of Threatened Species 2016: e.T22696402A93559888.Google Scholar
BirdLife International (2016b). Falco araeus. The IUCN Red List of Threatened Species 2016: e.T22696380A93558237.Google Scholar
BirdLife International (2016c). Falco ardosiaceus. The IUCN Red List of Threatened Species 2016: e.T22696406A93560247.Google Scholar
BirdLife International (2016d). Falco cenchroides. The IUCN Red List of Threatened Species 2016: e.T22696391A93558789.Google Scholar
BirdLife International (2016e). Falco dickinsoni. The IUCN Red List of Threatened Species 2016: e.T22696410A93560617.Google Scholar
BirdLife International (2016f). Falco moluccensis. The IUCN Red List of Threatened Species 2016: e.T22696388A93558606.Google Scholar
BirdLife International (2016g). Falco naumanni. The IUCN Red List of Threatened Species 2016: e.T22696357A87325202.Google Scholar
BirdLife International (2016h). Falco newtoni. The IUCN Red List of Threatened Species 2016: e.T22696368A93557702.Google Scholar
BirdLife International (2016i). Falco punctatus. The IUCN Red List of Threatened Species 2016: e.T22696373A93557909.Google Scholar
BirdLife International (2016j). Falco rupicoloides. The IUCN Red List of Threatened Species 2016: e.T22696398A93559628.Google Scholar
BirdLife International (2016k). Falco sparverius. The IUCN Red List of Threatened Species 2016: e.T22696395A93559037.Google Scholar
BirdLife International (2016l). Falco tinnunculus. The IUCN Red List of Threatened Species 2016: e.T22696362A93556429.Google Scholar
BirdLife International (2016m). Falco zoniventris. The IUCN Red List of Threatened Species 2016: e.T22696414A93560862.Google Scholar
BirdLife International (2017). European birds of conservation concern: populations, trends and national responsibilities. Cambridge, UK: BirdLife International.Google Scholar
BirdLife International and Handbook of the Birds of the World (2017). Bird species distribution maps of the world. Version 7.0. Available at http://datazone.birdlife.org/species/requestdis.Google Scholar
Blanckenhorn, W. U. (2000). The evolution of body size: what keeps organisms small? Q. Rev. Biol., 75, 385407.Google Scholar
Blanco, G., Martínez-Padilla, J., Dávila, J. A., Serrano, D. and Viñuela, J. (2003a). First evidence of sex differences in the duration of avian embryonic period: consequences for sibling competition in sexually dimorphic birds. Behav. Ecol., 14, 702–6.Google Scholar
Blanco, G., Martínez-Padilla, J., Serrano, D., Dávila, J. A. and Viñuela, J. (2003b). Mass provisioning to different-sex eggs within the laying sequence: consequences for adjustment of reproductive effort in a sexually dimorphic bird. J. Anim. Ecol., 72, 831–8.Google Scholar
Blas, J., Perez-Rodriguez, L., Bortolotti, G. R., Vinuela, J. and Marchant, T. A. (2006). Testosterone increases bioavailability of carotenoids: insights into the honesty of sexual signalling. Proc. Natl Acad. Sci. USA, 103, 18633–7.CrossRefGoogle Scholar
Blévin, P., Angelier, F., Tartu, S., et al. (2017). Perfluorinated substances and telomeres in an Arctic seabird: cross-sectional and longitudinal approaches. Environ. Pollut., 230, 360–7.Google Scholar
Boev, Z. (1999). Falco bakalovi sp. n. – a Late Pliocene falcon (Falconidae, Aves) from Varshets (W Bulgaria). Geol. Balcan., 29, 131–5.Google Scholar
Boev, Z. (2011a). Falco bulgaricus sp. n. (Aves: Falconiformes) from the Late Miocene of Hadzhidimovo (SW Bulgaria). Acta Zool. Bulg., 63, 1735.Google Scholar
Boev, Z. (2011b). New fossil record of the Late Pliocene kestrel (Falco bakalovi Boev, 1999) from the type locality in Bulgaria. Geol. Balcan., 40, 1330.Google Scholar
Boev, Z. (2011c). Falco bulgaricus sp. n. (Aves: Falconiformes) from the Late Miocene of Hadzhidimovo (SW Bulgaria). Acta Zool. Bulg., 63, 1735.Google Scholar
Boileau, N. and Bretagnolle, V. (2014). Post-fleding dependence period in the Eurasian kestrel (Falco tinnunculus) in western Spain. J. Raptor. Res., 48, 248–56.Google Scholar
Boileau, N., Delelis, N. and Hoede, C. (2006). Utilisation de l’espace et de l’habitat par le Faucon crécerelle Falco tinnunculus en période de reproduction. Alauda, 74, 251–64.Google Scholar
Bonduriansky, R. and Day, T. (2009). Nongenetic inheritance and its evolutionary implications. Annu. Rev. Ecol. Evol. System, 40, 103–25.Google Scholar
Bonin, B. and Strenna, L. (1986). Sur la biologie du Faucon crécerelle Falco tinnunculus en Auxois. Alauda, 54, 241–62.Google Scholar
Bortolotti, G. R. and Iko, W. M. (1992). Non-random pairing in American kestrels: mate choice versus intra-sexual competition. Anim. Behav., 44, 811–21.Google Scholar
Bortolotti, G. R. and Wiebe, K. L. (1993). Incubation behaviour and hatching patterns in the American Kestrel Falco sparverius. Ornis Scand., 24, 41–7.Google Scholar
Bortolotti, G. R., Negro, J. J., Tella, J. L., Marchant, T. A. and Bord, D. (1996). Sexual dichromatism in birds independent of diet, parasites and androgens. Proc. R. Soc. Lond. B, 263, 1171–6.Google Scholar
Bortolotti, G. R., Tella, J. L., Forero, M. G., Dawson, R. D. and Negro, J. J. (2000). Genetics, local environment and health as factors influencing serum carotenoids in wild American kestrels (F. sparverius). Proc. R. Soc. Lond. B, 267, 1433–8.CrossRefGoogle Scholar
Bortolotti, G. R., Fernie, K. J. and Smits, J. E. (2003). Carotenoid concentration and coloration of American kestrels (Falco sparverius) disrupted by experimental exposure to PCBs. Funct. Ecol., 17, 651–7.CrossRefGoogle Scholar
Bounas, A., Tsaparis, D., Gustin, M., et al. (2018). Using genetic markers to unravel the origin of birds converging towards pre-migratory sites. Scient. Rep., 8, 8326.CrossRefGoogle ScholarPubMed
Bourne, W. R. P. (1955). A new race of kestrel Falco tinnunculus Linnaeus from the Cape Verde Islands. Bull. Brit. Ornith. Club, 75, 35–6.Google Scholar
Boyce, D. A. and White, C. W. (1987). Evolutionary aspects of kestrel systematics: a scenario. In Bird, D. M. and Bowman, R., eds., The ancestral kestrel (pp. 121). Quebec: Raptor Res. Found., Inc.Google Scholar
Brichetti, P. and Fracasso, G. (2003). Ornitologia italiana. Vol. 1. Bologna: Alberto Perdisa.Google Scholar
Brochet, J. (1993). Expérimentation de prototypes: spirale (SAAE) et piver (RAYCHEM) sur les lignes EDF MT 20 000 volts Compertrix – Haussimont (1991–92). Rochefort, France: LPO and EDF.Google Scholar
Brockmann, H. J. and Barnard, C. J. (1979). Kleptoparasitism in birds. Anim. Behav., 27, 487514.CrossRefGoogle Scholar
Brommer, J. E., Wilson, A. J. and Gustafsson, L. (2007). Exploring the genetics of aging in a wild passerine bird. Am. Nat, 170, 643–50.Google Scholar
Brown, L. H. and Amadon, D. (1968). Eagles, hawks and falcons of the world. London: Country Life Books.Google Scholar
Brown, R. G. B. (1969). Seed selection of pigeons. Behaviour, 34, 115–31.Google Scholar
Bryan, J. R. (1984). Factors influencing differential predation on house mice (Mus musculus) by American kestrels (Falco sparverius). Raptor Res., 18, 143–7.Google Scholar
Bush, N. G., Brown, M. and Downs, C. T. (2008). Seasonal effects on thermoregulatory responses of the Rock Kestrel, Falco rupicolis. J. Therm. Biol., 33, 404–12.Google Scholar
Bustamante, J. (1994). Behavior of colonial common kestrels (Falco tinnunculus) during the post-fledging dependence period in Southwestern Spain. J. Rapt. Res., 28, 7983.Google Scholar
Bustamante, J. and Negro, J. J. (1994). The post-fledging dependence period of the Lesser Kestrel (Falco naumanni) in southwestern Spain. J. Rapt. Res., 28, 158–63.Google Scholar
Bustnes, J. O., Erikstad, K. E., Lorentsen, S. H. and Herzke, D. (2008). Perfluorinated and chlorinated pollutants as predictors of demographic parameters in an endangered seabird. Environ. Pollut., 156, 414–24.Google Scholar
Butet, A., Michel, N., Rantier, Y., et al. (2010). Responses of common buzzard (Buteo buteo) and Eurasian kestrel (Falco tinnunculus) to land use changes in agricultural landscapes of Western France. Agricult. Ecosyst. Environm., 138, 152–9.Google Scholar
Byrne, M., Sewell, M. A. and Prowse, T. A. A. (2008). Nutritional ecology of sea urchin larvae: influence of endogenous and exogenous nutrition on echinopluteal growth and phenotypic plasticity in Tripneustes gratilla. Funct. Ecol., 22, 643–8.CrossRefGoogle Scholar
Cade, T. J. and Digby, D. R. (1982). The falcons of the world. New York: Cornell University Press.Google Scholar
Campbell, B. and Lack, E. (1985). A dictionary of birds. London: British Ornithologists’ Union.Google Scholar
Campbell, R. W. (1985). First record of the Eurasian kestrel for Canada. Condor, 87, 294.Google Scholar
Candolin, U. (2003). The use of multiple cues in mate choice. Biol. Rev., 78, 575–95.Google Scholar
Canestrelli, D., Bisconti, R. and Carere, C. (2016). Bolder takes all? The behavioral dimension of biogeography. Trends Ecol. Evol., 31, 3543.Google Scholar
Carere, C. and Maestripieri, D. (2013). Animal personalities: behavior, physiology, and evolution. Chicago: The University of Chicago Press.Google Scholar
Carrillo, J. (2004). Cernícalo vulgar (Falco tinnunculus dacotiae). In Madroño, A., González, C. and Atienza, J. C., eds., Libro rojo de las aves de España (pp. 164–6). Madrid: Dirección general da biodiversidad/Ministerio de Medio Ambiente–SEO/BirdLife.Google Scholar
Carrillo, J. (2007). Cernícalo vulgar, Falco tinnunculus. In Lorenzo, J. A., ed., Atlas de las aves nidificantes en el archipiélago canario (1997–2003) (pp. 173–8). Madrid: Dirección General de Conservación de la Naturaleza–Sociedad Española de Ornitología.Google Scholar
Carrillo, J. and Aparicio, J. M. (2001). Nest defence behaviour of the Eurasian kestrel (Falco tinnunculus) against human predators. Ethology, 107, 865–75.Google Scholar
Carrillo, J. and González-Dávila, E. (2005). Breeding biology and nest characteristics of the Eurasian Kestrel in different environments on an Atlantic island. Ornis Fenn., 82, 5562.Google Scholar
Carrillo, J. and González-Dávila, E. (2009). Latitudinal variation in breeding parameters of the common kestrel Falco tinnunculus. Ardeola, 56, 215–28.Google Scholar
Carrillo, J. and González-Dávila, E. (2010a). Geo-environmental influences on breeding parameters of the Eurasian kestrel (Falco tinnunculus) in the Western Palaearctic. Ornis Fenn., 87, 1525.Google Scholar
Carrillo, J. and González-Dávila, E. (2010b). Impact of weather on breeding success of the Eurasian kestrel Falco tinnunculus in a semi-arid island habitat. Ardea, 98, 51–8.CrossRefGoogle Scholar
Carrillo, J. and González-Dávila, E. (2013). Aggressive behaviour and nest-site defence during the breeding season in an island kestrel population. J. Ethol., 31, 211–8.Google Scholar
Carrillo, J., González-Dávila, E. and Ruiz, X. (2017). Breeding diet of Eurasian Kestrels Falco tinnunculus on the oceanic island of Tenerife. Ardea, 105, 99111.Google Scholar
Carson, R. (1962). Silent spring. Boston, MA: Houghton Mifflin.Google Scholar
Cartwright, S. J., Nicoll, M. A. C., Jones, C. G., Tatayah, V. and Norris, K. (2014). Anthropogenic natal environmental effects on life histories in a wild bird population. Curr. Biol., 24, 536–40.Google Scholar
Casagrande, S., Dell’Omo, G., Costantini, D. and Tagliavini, J. (2006a). Genetic differences between early- and late-breeding Eurasian kestrels. Evol. Ecol Res., 8, 1029–38.Google Scholar
Casagrande, S., Csermely, D., Pini, E., Bertacche, V. and Tagliavini, J. (2006b). Skin carotenoid concentration correlates with male hunting skill and territory quality in the kestrel (Falco tinnunculus). J. Avian Biol., 37, 190–6.Google Scholar
Casagrande, S., Costantini, D., Fanfani, A., Tagliavini, J. and Dell’Omo, G. (2007). Patterns of serum carotenoid accumulation and skin color variation in nestling kestrels in relation to breeding conditions and different terms of carotenoid supplementation. J. Comp. Physiol. B, 177, 237–45.Google Scholar
Casagrande, S., Nieder, L., Di Minin, E., La Fata, I. and Csermely, D. (2008). Habitat utilization and prey selection of the kestrel Falco tinnunculus in relation to small mammal abundance. Ital. J. Zool., 75, 401–9.Google Scholar
Casagrande, S., Costantini, D., Tagliavini, J. and Dell’Omo, G. (2009). Phenotypic, genetic, and environmental causes of variation in yellow skin pigmentation and serum carotenoids in Eurasian kestrel nestlings. Ecol. Res., 24, 273–9.Google Scholar
Casagrande, S., Dell’Omo, G., Costantini, D., Tagliavini, J. and Groothuis, T. (2011). Variation of a carotenoid-based trait in relation to oxidative stress and endocrine status during the breeding season in the Eurasian kestrel: a multi-factorial study. Comp. Biochem. Physiol. Part A, 160, 1626.Google Scholar
Casagrande, S., Costantini, D., Dell’Omo, G., Tagliavini, J. and Groothuis, T. G. G. (2012). Differential effects of testosterone metabolites oestradiol and dihydrotestosterone on oxidative stress and carotenoid-dependent colour expression in a bird. Behav. Ecol. Sociobiol., 66, 1319–31.Google Scholar
Catry, I., Dias, M., Catry, T., et al. (2011). Individual variation in migratory movements and winter behaviour of Iberian lesser kestrels Falco naumanni revealed by geolocators. Ibis, 153, 154–64.Google Scholar
Catry, I., Amano, T., Franco, A. M. A. and Sutherland, W. J. (2012). Influence of spatial and temporal dynamics of agricultural practices on the globally endangered lesser kestrel. J. Appl. Ecol., 144, 1111–9.Google Scholar
Catry, T., Moreira, F., Alcazar, R., Rocha, P. A. and Catry, I. (2017). Mechanisms and fitness consequences of laying decisions in a migratory raptor. Behav. Ecol., 28, 222–32.Google Scholar
Cavé, A. J. (1967). The breeding of the kestrel in the reclaimed area Oostelijk Flevoland. Nether. J. Zool., 18, 313407.Google Scholar
Cenizo, M., Noriega, J. I. and Reguero, M. A. (2016). A stem falconid bird from the Lower Eocene of Antarctica and the early southern radiation of the falcons. J. Ornithol., 157, 885–94.Google Scholar
Cerling, T. E., Harris, J. M., MacFadden, B. J., et al. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature, 389, 153–8.Google Scholar
Charter, M., Izhaki, I., Bouskila, A. and Leshem, Y. (2007a). Breeding success of the Eurasian kestrel (Falco tinnunculus) nesting on buildings in Israel. J. Rapt. Res., 41, 139–43.Google Scholar
Charter, M., Izhaki, I., Bouskila, A. and Leshem, Y. (2007b). The effect of different nest types on the breeding success of the Eurasian Kestrel (Falco tinnunculus) in a rural ecosystem. J. Rapt. Res., 41, 143–9.Google Scholar
Charter, M., Izhaki, I. and Leshem, Y. (2010). Effects of risk of competition and predation on large secondary cavity breeders. J. Ornithol., 151, 791–5.Google Scholar
Christians, J. K. (2002). Avian egg size: variation within species and inflexibility within individuals. Biol. Rev., 77, 126.Google Scholar
Clark, A. B. and Wilson, D. S. (1981). Avian breeding adaptations: hatching asynchrony, brood reduction and nest failure. Q. Rev. Biol., 56, 253–77.Google Scholar
Clegg, T. M. (1971). Kestrel hiding prey. Scot. Bird, 6, 276–7.Google Scholar
Clegg, T. M. and Henderson, D. S. (1971). Kestrel taking prey from short-eared owl. Brit. Birds, 64, 317–8.Google Scholar
Collar, N. J. and Stuart, S. N. (1985). Threatened birds of Africa and related islands: the ICBP/IUCN Red Data book. Cambridge, UK: International Council for Bird Preservation, and International Union for Conservation of Nature and Natural Resources.Google Scholar
Collopy, M. W. (1977). Food caching by female American kestrels in winter. Condor, 79, 63–8.Google Scholar
Cooke, A. S., Bell, A. A. and Haas, M. B. (1982). Predatory birds, pesticides and pollution. Cambridge, UK: Institute of Terrestrial Ecology.Google Scholar
Costantini, D. (2014). Oxidative stress and hormesis in evolutionary ecology and physiology: a marriage between mechanistic and evolutionary approaches (p. 348). Berlin: Springer-Verlag.Google Scholar
Costantini, D. and Dell’Omo, G. (2006a). Effects of T-cell-mediated immune response on avian oxidative stress. Comp. Biochem. Physiol. Part A, 145, 137–42.Google Scholar
Costantini, D. and Dell’Omo, G. (2006b). Environmental and genetic components of oxidative stress in wild kestrel nestlings (Falco tinnunculus). J. Comp. Physiol. B, 176, 575–9.Google Scholar
Costantini, D. and Dell’Omo, G. (2010). Sex-specific predation on two lizard species by kestrels. Russ. J. Ecol., 41, 99101.CrossRefGoogle Scholar
Costantini, D., Casagrande, S., Di Lieto, G., Fanfani, A. and Dell’Omo, G. (2005). Consistent differences in feeding habits between neighbouring breeding kestrels. Behaviour, 142, 1409–21.Google Scholar
Costantini, D., Casagrande, S., De Filippis, S., et al. (2006). Correlates of oxidative stress in wild kestrel nestlings (Falco tinnunculus). J. Comp. Physiol. B, 176, 329–37.Google Scholar
Costantini, D., Casagrande, S. and Dell’Omo, G. (2007a). MF magnitude does not affect body condition, pro-oxidants and anti-oxidants in Eurasian kestrel (Falco tinnunculus) nestlings. Environm. Res., 104, 361–6.Google Scholar
Costantini, D., Fanfani, A. and Dell’Omo, G. (2007b). Carotenoid availability does not limit the capability of nestling kestrels (Falco tinnunculus) to cope with oxidative stress. J. Exp. Biol., 210, 1238–44.Google Scholar
Costantini, D., Bruner, E., Fanfani, A. and Dell’Omo, G. (2007c). Male-biased predation of western green lizards by Eurasian kestrels. Naturwissenschaften, 94, 1015–20.Google Scholar
Costantini, D., Coluzza, C., Fanfani, A. and Dell’Omo, G. (2007d). Effects of carotenoid supplementation on colour expression, oxidative stress and body mass in rehabilitated captive adult kestrels (Falco tinnunculus). J. Comp. Physiol. B, 177, 723–31.Google Scholar
Costantini, D., Fanfani, A. and Dell’Omo, G. (2008). Effects of corticosteroids on oxidative damage and circulating carotenoids in captive adult kestrels (Falco tinnunculus). J. Comp. Physiol. B, 178, 829–35.Google Scholar
Costantini, D., Bertacche, V., Pastura, B. and Turk, A. (2009a). Dehydrolutein: a metabolically derived carotenoid never observed in raptors. Curr. Zool., 55, 238–42.Google Scholar
Costantini, D., Casagrande, S., Carello, L. and Dell’Omo, G. (2009b). Body condition variation in kestrel (Falco tinnunculus) nestlings in relation to breeding conditions. Ecol. Res., 24, 1213–21.CrossRefGoogle Scholar
Costantini, D., Carello, L. and Dell’Omo, G. (2010a). Patterns of covariation among weather conditions, winter North Atlantic Oscillation index, and reproductive traits in Mediterranean kestrels (Falco tinnunculus). J. Zool., 280, 177–84.Google Scholar
Costantini, D., Carello, L. and Dell’Omo, G. (2010b). Temporal covariation of egg volume and breeding conditions in the common kestrel (Falco tinnunculus) in the Mediterranean region. Ornis Fenn., 87, 144–52.Google Scholar
Costantini, D., Dell’Omo, G., La Fata, I. and Casagrande, S. (2014). Reproductive performance of Eurasian Kestrel Falco tinnunculus in an agricultural landscape with a mosaic of land uses. Ibis, 156, 768–76.Google Scholar
Costantini, D., Casasole, G., AbdElgawad, H., Asard, H. and Eens, M. (2016). Experimental evidence that oxidative stress influences reproductive decisions. Funct. Ecol., 30, 1169–74.Google Scholar
Costantini, D., Gustin, M., Ferrarini, A. and Dell’Omo, G. (2017a). Estimates of avian collision with power lines and carcass disappearance across differing environments. Anim. Cons., 20, 173–81.Google Scholar
Costantini, D., Sebastiano, M., Goossens, B. and Stark, D. (2017b). Jumping in the night: an investigation of leaping activity of western tarsier (Cephalopachus bancanus borneanus) using accelerometers. Folia Primatol., 88, 4656.CrossRefGoogle ScholarPubMed
Costantini, D., Blévin, P., Herzke, D., et al. (2019). Higher plasma oxidative damage and lower plasma antioxidant defences in an Arctic seabird exposed to longer perfluoroalkyl acids. Environ. Res., 168, 278–85.Google Scholar
Cramp, S. and Simmons, K. E. L. (1980). Handbook of the birds of Europe, the Middle East and North Africa. Vol. II, Hawks to bustards. Oxford, UK: Oxford University Press.Google Scholar
Csermely, D., Casagrande, S. and Calimero, A. (2006). Differential defensive response of common kestrels against a known or unknown predator. Ital. J. Zool., 73, 125–8.Google Scholar
Culina, A., Radersma, R. and Sheldon, B. C. (2015). Trading up: the fitness consequences of divorce in monogamous birds. Biol. Rev., 90, 1015–34.Google Scholar
Cunningham, E. J. A. and Birkhead, T. R. (1998). Sex roles and sexual selection. Anim. Behav., 56, 1311–21.Google Scholar
Daan, S. and Dijkstra, C. (1988). Date of birth and reproductive value of kestrel eggs: on the significance of early breeding (pp. 85114). In C. Dijkstra, ed., Reproductive tactics in the kestrel Falco tinnunculus: a study in evolutionary biology. PhD thesis, University of Groningen, Groningen, the Netherlands.Google Scholar
Daan, S., Dijkstra, C., Drent, R. and Meijer, T. (1989a). Food supply and the annual timing of avian reproduction. In Ouellet, H., ed., Acta XIX Congressus Internationalis Ornithologici. Volume I, Proceedings XIX International Ornithological Congress (pp. 392407). Ottawa: University of Ottawa Press.Google Scholar
Daan, S., Masman, D., Strijkstra, A. and Verhulst, S. (1989b). Intraspecific allometry of basal metabolic rate: relations with body size, temperature, composition and circadian phase in the kestrel. J. Biol. Rhythms, 4, 267–83.Google Scholar
Daan, S., Dijkstra, C. and Tinbergen, J. M. (1990). Family planning in the kestrel: the ultimate control of covariation of laying date and clutch size. Behaviour, 114, 83116.Google Scholar
Daan, S., Deerenberg, C. and Dijkstra, C. (1996). Increased daily work precipitates natural death in the kestrel. J. Anim. Ecol., 65, 539–44.Google Scholar
Danchin, E., Charmantier, A., Champagne, F. A., et al. (2011). Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat. Rev. Genet., 12, 475–86.Google Scholar
Darwin, C. (1871). The descent of man, and selection in relation to sex. London: John Murray.Google Scholar
Davies, T. (1975). Food of the kestrel in the winter and early spring. Bird Study, 22, 8592.Google Scholar
Dawkins, R. (1982). The extended phenotype. Oxford, UK: Oxford University Press.Google Scholar
Dawson, A. and Goldsmith, A. (1982). Prolactin and gona-dotrophin secretion in wild starlings (Sturnus vulgaris) during the annual cycle and in relation to nesting, incubation and rearing young. Gen. Comp. Endocrinol., 48, 213–21.Google Scholar
Dawson, A. and Goldsmith, A. (1985). Modulation of gonadotrophin and prolactin secretion by daylength and breeding behaviour in free-lining starlings, Sturnus vulgaris. J. Zool., 206, 241–52.Google Scholar
Dawson, R. D. and Bortolotti, G. R. (1997). Ecology of parasitism of nestling American kestrels by Carnus hemapterus (Diptera: Carnidae). Can. J. Zool., 75, 2021–6.Google Scholar
Dawson, R. D. and Bortolotti, G. R. (2000). Reproductive success of American kestrels: the role of prey abundance and weather. Condor, 102, 814–22.Google Scholar
Dawson, R. D. and Bortolotti, G. R. (2002). Experimental evidence for food limitation and sex-specific strategies of American kestrels (Falco sparverius) provisioning offspring. Behav. Ecol. Sociobiol., 52, 4352.Google Scholar
Dawson, R. D. and Bortolotti, G. R. (2003). Parental effort of American kestrels: the role of variation in brood size. Can. J. Zool., 81, 852–60.Google Scholar
Dawson, R. D. and Bortolotti, G. R. (2008). Experimentally prolonging the brood-rearing period reveals sex-specific parental investment strategies in American kestrels (Falco sparverius). The Auk, 125, 889–95.Google Scholar
De Neve, L., Fargallo, J. A., Vergara, P., et al. (2008). Effects of maternal carotenoid availability in relation to sex, parasite infection and health status of nestling kestrels (Falco tinnunculus). J. Exp. Biol., 211, 1414–25.Google Scholar
Deerenberg, C., Pen, I., Dijkstra, C., et al. (1995). Parental energy expenditure in relation to manipulated brood size in the European kestrel, Falco tinnunculus. Zoology, 99, 3847.Google Scholar
Delibes, M., Gaona, P. and Ferreras, P. (2001). Effects of an attractive sink leading into maladaptive habitat selection. Am. Nat., 158, 277–85.Google Scholar
Dell’Omo, G., Costantini, D., Di Lieto, G. and Casagrande, S. (2005). Gli uccelli e le linee elettriche. Alula, 12, 103–14.Google Scholar
Dell’Omo, G., Costantini, D., Wright, J., Casagrande, S. and Shore, R. F. (2008). PCBs in the eggs of Eurasian kestrels indicate exposure to local pollution. Ambio, 37, 452–6.Google Scholar
Dell’Omo, G., Costantini, D., Lucini, V., et al. (2009). Magnetic fields produced by power lines do not affect growth, serum melatonin, leukocytes and fledging success in wild kestrels. Comp. Biochem. Physiol. Part C, 150, 372–6.Google Scholar
deMent, S. H., Rikard, S. T. and Wommack, E. A. (2014). Genetic evaluation for Falco sparverius paulus within breeding American Kestrels in the Midlands/Sandhills region of South Carolina. The Oriole, 79, 116.Google Scholar
DeNiro, M. J. and Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta, 42, 495506.CrossRefGoogle Scholar
DeNiro, M. J. and Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta, 45, 341–51.Google Scholar
Deschamps, P. (1980). Point local sur l’électrocution des rapaces (et autres oiseaux) sur les lignes à moyenne tension de la région grenobloise. La Niverolle, 5, 5966.Google Scholar
Dewar, S. M. and Shawyer, C. R. (1996). Boxes, baskets and platforms: artificial nest sites for owls and other birds of prey. London: Chelmsford Press.Google Scholar
Dhondt, A., Adriaensen, F. and Verwimp, N. (1997). Are Belgian kestrels Falco tinnunculus migratory: an analysis of ringing recoveries. Ring. Migrat., 18, 91101.Google Scholar
Dickinson, E. C. (2003). The Howard and Moore complete checklist of the birds of the world, 3rd edn. Princeton, NJ: Princeton University Press.Google Scholar
Dietz, M. W., Daan, S. and Masman, D. (1992). Energy requirements for molt in the kestrel Falco tinnunculus. Physiol. Zool., 65, 1217–35.Google Scholar
Dijkstra, C. (1988). Reproductive tactics in the kestrel, Falco tinnunculus. PhD thesis, University of Groningen, Groningen, the Netherlands.Google Scholar
Dijkstra, C., Vuursteen, L., Daan, S. and Masman, D. (1982). Clutch size and laying date in the kestrel Falco tinnunculus: effect of food supplementary food. Ibis, 124, 211–3.CrossRefGoogle Scholar
Dijkstra, C., Daan, S. and Buker, J. B. (1990a). Adaptive seasonal variation in the sex ratio of kestrel broods. Funct. Ecol., 4, 143–7.Google Scholar
Dijkstra, C., Bult, A., Bijlsma, S., Daan, S., Meijer, T. and Zijlstra, M. (1990b). Brood size manipulations in the kestrel Falco tinnunculus: effects on offspring and adult survival. J. Anim. Ecol., 59, 269–85.Google Scholar
Dixon, A., Rahman, Lutfor MD, Galtbalt, B., et al. (2019). Mitigation techniques to reduce avian electrocution rates. Wildlife Soc. Bull., 43, 476–83.Google Scholar
Dmitriew, C. M. (2011). The evolution of growth trajectories: what limits growth rate? Biol. Rev., 86, 97116.CrossRefGoogle ScholarPubMed
Dogliero, A., Rota, A., Lofiego, R., Mauthe, von Degerfeld, M. and Quaranta, G. (2016). Semen evaluation in four autochthonous wild raptor species using computer-aided sperm analyzer. Theriogenol., 85, 1113–7.Google Scholar
Drent, E. H. and Daan, S. (1980). The prudent parent: energetic adjustments in avian breeding. Ardea, 68, 225–52.Google Scholar
du Feu, C. R., Joys, A. C., Clark, J. A., et al. (2009). EURING Data Bank geographical index 2009 (www.euring.org/edb).Google Scholar
Duke, G. E., Evanson, O. A. and Jegers, A. (1976). Meal to pellet intervals in 14 species of captive raptors. Comp. Biochem. Physiol. Part A, 53, 16.Google Scholar
Duke, G. E., Tererick, A. L., Reynhout, J. K., Bird, D. M. and Place, A. E. (1996). Variability among individual American kestrels (Falco sparverius) in parts of day-old chicks eaten, pellet size, and pellet egestion frequency. J. Raptor Res., 30, 213–8.Google Scholar
Duncan, J. R. and Bird, D. M. (1989). The influence of relatedness and display effort on the mate choice of captive female American kestrels. Anim. Behav., 37, 112–7.Google Scholar
Durany, E., Garcia, S. and Santaeufemia, X. (2003). Los cernìcalos urbanos de Barcelona. Quercus, 204, 24–7.Google Scholar
Eagles-Smith, C. A., Silbergeld, E. K., Basu, N., et al. (2018). Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio, 47, 170–97.Google Scholar
Edwards, N. P., van Veelen, A., Anné, J., et al. (2016). Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy. Sci. Rep., 6, 34002.Google Scholar
Eens, M., Van Duyse, E. V., Berghman, L. and Pinxten, R. (2000). Shield characteristics are testosterone-dependent in both male and female moorhens. Horm. Behav., 37, 126–34.Google Scholar
Eeva, T., Sillanpää, S. and Salminen, J.-P. (2009). The effects of diet quality and quantity on plumage colour and growth of great tit Parus major nestlings: a food manipulation experiment along a pollution gradient. J. Avian Biol., 40, 491–9.Google Scholar
Ehleringer, J. R. and Rundel, P. W. (1988). Stable isotopes: history, units, and instrumentation. In Rundel, P. W., Ehleringer, J. R. and Nagy, K. A., eds., Stable isotopes in ecological research (Ecological Studies 68) (pp. 116). Berlin: Springer.Google Scholar
El Agamey, A., Lowe, G. M., McGarvey, D. J., et al. (2004). Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch. Biochem. Biophys., 430, 3748.Google Scholar
El Halawani, M. E., Silsby, J. L., Behnke, E. J. and Fehrer, S. C. (1986). Hormonal induction of incubation behavior in ovariectomized female turkeys (Meleagris gallopavo). Biol. Reprod., 35, 5967.Google Scholar
El Halawani, M. E., Silsby, J. L., Youngren, O. M. and Phillips, R. E. (1991). Exogenous prolactin delays photo-induced sexual maturity and suppresses ovariectomy-induced luteinizing hormone secretion in the turkey (Meleagris gallopavo). Biol. Reprod., 44, 420–4.Google Scholar
Elliott, D. (1971). Kestrel apparently robbing weasel of a vole. Brit. Birds, 64, 229.Google Scholar
Ericson, P. G. P. (2012). Evolution of terrestrial birds in three continents: biogeography and parallel radiations. J. Biogeogr., 39, 813–24.Google Scholar
Ericson, P. G. P., Anderson, C. L., Britton, T., et al. (2006). Diversification of Neoaves: integration of molecular sequence data and fossils. Biol. Lett., 2, 543–7.Google Scholar
Eriksson, U., Roos, A., Lind, Y., et al. (2016). Comparison of PFASs contamination in the freshwater and terrestrial environments by analysis of eggs from osprey (Pandion haliaetus), tawny owl (Strix aluco), and common kestrel (Falco tinnunculus). Environ. Res., 149, 40–7.Google Scholar
Erlinge, S., Göransson, G., Hansson, L., et al. (1983). Predation as a regulating factor on small rodent populations in southern Sweden. Oikos, 40, 3652.Google Scholar
Everett, M. J. (1968). Kestrel taking prey from barn owl. Brit. Birds, 61, 264.Google Scholar
Falconer, D. S. (1981). Introduction to quantitative genetics. London: Longman.Google Scholar
Fallacara, D. M., Halbrook, R. S. and French, J. B. (2011). Toxic effects of dietary methylmercury on immune function and hematology in American kestrels (Falco sparverius). Environ. Toxicol. Chem., 30, 1320–7.Google Scholar
Fargallo, J. A., Blanco, G., Potti, J. and Viñuela, J. (2001). Nestbox provisioning in a rural population of Eurasian kestrels: breeding performance, nest predation and parasitism. Bird Study, 48, 236–44.Google Scholar
Fargallo, J. A., Laaksonen, T., Pöyri, V. and Korpimäki, E. (2002). Inter-sexual differences in the immune response of Eurasian kestrel nestlings under food shortage. Ecol. Lett., 5, 95101.Google Scholar
Fargallo, J. A., Laaksonen, T., Korpimäki, E., et al. (2003). Size-mediated dominance and begging behaviour in Eurasian kestrel broods. Evol. Ecol. Res., 5, 549–58.Google Scholar
Fargallo, J. A., Laaksonen, T., Korpimäki, E. and Wakamatsu, K. (2007a). A melanin-based trait reflects environmental growth conditions of nestling male Eurasian kestrels. Evol. Ecol., 21, 157–71.Google Scholar
Fargallo, J. A., Martínez-Padilla, J., Toledano-Díaz, A., Santiago-Moreno, J. and Dávila, J. A. (2007b). Sex and testosterone effects on growth, immunity and melanin coloration of nestling Eurasian kestrels. J. Anim. Ecol., 76, 201–9.Google Scholar
Fargallo, J. A., Martínez-Padilla, J., Viñuela, J., et al. (2009). Kestrel–prey dynamic in a Mediterranean region: the effect of generalist predation and climatic factors. PLoS ONE, 4, e4311.Google Scholar
Fargallo, J. A., López-Rull, I., Mikšík, I., Eckhardt, A. and Peralta-Sánchez, J. M. (2014). Eggshell pigmentation has no evident effects on offspring viability in common kestrels. Evol. Ecol., 28, 627–37.Google Scholar
Farmer, G. C., McCarty, K., Robertson, S., Robertson, B. and Bildstein, K. L. (2006). Suspected predation by accipiters on radio-tracked American kestrels (Falco sparverius) in eastern Pennsylvania, U.S.A. J. Rapt. Res., 40, 294–7.Google Scholar
Fattorini, S., Manganaro, A., Piattella, E. and Salvati, L. (1999). Role of the beetles in raptor diets from a Mediterranean urban area. Fragm. Entomol., 31, 5769.Google Scholar
Fay, R., Michler, S., Laesser, J. and Schaub, M. (2019). Integrated population model reveals that kestrels breeding in nest boxes operate as a source population. Ecography, 42, 2122–31.Google Scholar
Feare, C. J., Temple, S. A. and Procter, J. (1974). The status, distribution and diet of the Seychelles kestrel (Falco araea). Ibis, 116, 548–51.Google Scholar
Fennel, C. M. (1954). Notes on the nesting of the kestrel in Japan. Condor, 56, 106–7.Google Scholar
Fernie, K. J. and Bird, D. M. (2000). Effects of electromagnetic fields on the growth of nestling American kestrels. Condor, 102, 461–5.Google Scholar
Fernie, K. J. and Bird, D. M. (2001). Evidence of oxidative stress in American kestrels exposed to electromagnetic fields. Environ. Res., 86, 198207.Google Scholar
Fernie, K. J. and Marteinson, S. C. (2016). Sex-specific changes in thyroid gland function and circulating thyroid hormones in nestling American kestrels (Falco sparverius) following embryonic exposure to polybrominated diphenyl ethers by maternal transfer. Environ. Toxicol. Chem., 35, 2084–91.Google Scholar
Fernie, K. J., Bird, D. M. and Petitclerc, D. (1999). Effects of electromagnetic fields on photophasic circulating melatonin levels in American kestrels. Environ. Health Perspect., 107, 901–4.Google Scholar
Fernie, K. J., Bird, D. M., Dawson, R. D. and Laguë, P. C. (2000). Effects of electromagnetic fields on the reproductive success of American kestrels. Physiol. Biochem. Zool., 73, 60–5.Google Scholar
Fernie, K. J., Smits, J. E., Bortolotti, G. R. and Bird, D. M. (2001). Reproduction success of American Kestrels exposed to dietary polychlorinated biphenyls. Environ. Toxicol. Chem., 20, 776–81.Google Scholar
Fernie, K. J., Mayne, G., Shutt, J. L., et al. (2005). Evidence of immunomodulation in nestling American kestrels (Falco sparverius) exposed to environmentally relevant PBDEs. Environ. Pollut., 138, 485–93.Google Scholar
Ferrer, M. (2012). Birds and power lines: from conflict to solution. Seville: Endesa S. A. and Fundación Migres.Google Scholar
Figueroa, R. and Corales, E. (2002). Winter diet of the American kestrel (Falco sparverius) in the forested Chilean Patagonia, and its relation to the availability of prey. Inter. Hawk-watcher, 5, 714.Google Scholar
Folstad, I. and Karter, A. J. (1992). Parasites bright males and the immunocompetence handicap. Am. Nat., 139, 603–22.Google Scholar
Forbes, N. A. and Fox, M. T. (2005). Field trial of a Caryospora species vaccine for controlling clinical coccidiosis in falcons. Veter. Rec., 156, 134–8.Google Scholar
Forbes, N. A. and Simpson, G. N. (1997). Caryospora neofalconis: an emerging threat to captive bred raptors in the United Kingdom. J. Avian Med. Surg., 11, 110–4.Google Scholar
Fraissinet, M. (2008). La frequentazione urbana delle specie del genere Falco in Italia e in Europa. Una monografia. Ecol. Urb., 20, 2956.Google Scholar
Fransson, T., Jansson, L., Kolehmainen, T., Kroon, C. and Wenninger, T. (2017) EURING list of longevity records for European birds. Available from https://euring.org/data-and-codes/longevity-list.Google Scholar
Fritz, H. (1998). Wind speed as a determinant of kleptoparasitism by Eurasian Kestrel Falco tinnunculus on Short-eared Owl Asio flammeus. J. Avian Biol., 29, 331–3.Google Scholar
Fry, B. and Sherr, E. B. (1988). δI3C measurements as indicators of carbon flow in marine and freshwater ecosystems. In Rundel, P. W., Ehleringer, J. R. and Nagy, K. A., eds., Stable isotopes in ecological research (pp. 196229). New York: Springer-Verlag.Google Scholar
Fuchs, J., Johnson, J. A. and Mindell, D. P. (2012). Molecular systematics of the caracaras and allies (Falconidae: Polyborinae) inferred from mitochondrial and nuclear sequence data. Ibis, 154, 520–32.Google Scholar
Fuchs, J., Johnson, J. A. and Mindell, D. P. (2015). Rapid diversification of falcons (Aves: Falconidae) due to expansion of open habitats in the Late Miocene. Molec. Phylogen. Evol., 82, 166–82.Google Scholar
García-Borrón, J. C. and Olivares Sánchez, M. C. (2011). Biosynthesis of melanins. In Borovanský, J. and Riley, P. A., eds., Melanins and melanosomes: biosynthesis, biogenesis, physiological, and pathological functions (pp. 87116). Weinheim: Wiley-Blackwell.Google Scholar
Gard, N. W. and Bird, D. M. (1990). Breeding behavior of American kestrels raising manipulated brood sizes in years of varying prey abundance. Wilson Bull., 102, 605–14.Google Scholar
Garratt, C. M., Hughes, M., Eagle, G., et al. (2011). Foraging habitat selection by breeding common kestrels Falco tinnunculus on lowland farmland in England. Bird Study, 58, 90–8.Google Scholar
Gaymer, R. (1967). Observations on the birds of Aldabra in 1964 and 1965. Atoll Res. Bull., 118, 113–25.Google Scholar
Gaymer, R., Blackman, R. A. A., Dawson, P. G., Penny, M. J. and Penny, C. M. (1969). The endemic birds of Seychelles. Ibis, 111, 157–76.Google Scholar
Genelly, R. E. (1978). Observations of the Australian kestrel on northern Tablelands of New South Wales. Emu, 78, 137–44.Google Scholar
Geng, R., Zhang, X., Ou, W., et al. (2009). Diet and prey consumption of breeding common kestrel (Falco tinnunculus) in Northeast China. Prog. Nat. Sci., 19, 1501–7.Google Scholar
Géroudet, P. (1978). Les rapaces diurnes et nocturnes d’Europe. Paris: Delachaux and Niestlé.Google Scholar
Gil-Delgado, J. A., Verdejo, J. and Barba, E. (1995). Nestling diet and fledgling production of Eurasian kestrels (Falco tinnunculus) in eastern Spain. J. Raptor Res., 29, 240–4.Google Scholar
Gill, F. and Donsker, D. (2018). IOC World Bird List (v. 8.2). Doi:10.14344/IOC.ML.8.2.Google Scholar
Giraldeau, L.-A. and Lefebvre, L. (1985). Individual feeding preferences in feral groups of rock doves. Can. J. Zool., 63, 189–91.Google Scholar
Gomes, A. C. R. and Cardoso, G. C. (2018). Choice of high-quality mates versus avoidance of low-quality mates. Evolution, 72, 608–16.Google Scholar
Gómez-Ramírez, P., Shore, R. F., van den Brink, N. W., et al. (2014). An overview of existing raptor contaminant monitoring activities in Europe. Environ. Int., 67, 1221.Google Scholar
Goodland, R. (1973). Ecological perspectives of power transmission. In Goodland, R., ed., Power lines and the environment (pp. 135). Millbrook, NY: The Cary Arboretum of the New York Botanical Garden.Google Scholar
Gosler, A. G., Connor, O. R. and Bonser, R. H. C. (2011). Protoporphyrin and eggshell strength: preliminary findings from a passerine bird. Avian Biol. Res., 4, 214–23.Google Scholar
Graf, P. M., Wilson, R. P., Qasem, L., Hackländer, K. and Rosell, F. (2015). The use of acceleration to code for animal behaviours; a case study in free-ranging Eurasian beavers Castor fiber. PLoS ONE, 10, e0136751.Google Scholar
Graham, D. L., Maré, C. J., Ward, F. P. and Peckham, M. C. (1975). Inclusion body disease (herpesvirus infection) of falcons (IBDF). J. Wildl. Dis., 11, 8391.Google Scholar
Grant, C. H. B. and Mackworth-Praed, C. W. (1934). On the races and distribution of the African and Arabian Kestrels of the Falco tinnunculus group, with descriptions of two new races. Bull. Brit. Ornith. Club, 54, 7583.Google Scholar
Grant, P. R. (1982). Variation in the size and shape of Darwin’s finch eggs. Auk, 99, 1523.Google Scholar
Greenwood, A. G. and Cooper, J. E. (1982). Herpesvirus infections in falcons. Veter. Rec., 111, 514.Google Scholar
Greenwood, P. J. and Harvey, P. H. (1982). The natal and breeding dispersal of birds. Annu. Rev. Ecol. System., 13, 121.Google Scholar
Griffiths, C. S. (1999). Phylogeny of the Falconidae inferred from molecular and morphological data. The Auk, 116, 116–30.Google Scholar
Griffiths, C. S., Barrowclough, G. F., Groth, J. G. and Mertz, L. (2004). Phylogeny of the Falconidae (Aves): a comparison of the efficacy of morphological, mitochondrial, and nuclear data. Molec. Phylogen. Evol., 32, 101–9.Google Scholar
Griggio, M., Hamerstrom, F., Rosenfield, R. N. and Tavecchia, G. (2002). Seasonal variation in sex ratio of fledgling American Kestrels: a long term study. Wilson Bull., 114, 474–8.Google Scholar
Groombridge, J. J, Jones, C. G., Bruford, M. W. and Nichols, R. A. (2000). ‘Ghost’ alleles of the Mauritius kestrel. Nature, 403, 616.Google Scholar
Groombridge, J. J., Jones, C. G., Bayes, M. K., et al. (2002). A molecular phylogeny of African kestrels with reference to divergence across the Indian Ocean. Molec. Phylogen. Evol., 25, 267–77.Google Scholar
Groombridge, J. J., Dawson, D. A., Burke, T., et al. (2009). Evaluating the demographic history of the Seychelles Kestrel Falco araea: genetic evidence for recovery from a population bottleneck following minimal conservation management. Biol. Conserv., 142, 2250–7.Google Scholar
Grünewälder, S., Broekhuis, F., Macdonald, D. W., et al. (2012). Movement activity based classification of animal behaviour with an application to data from cheetah (Acinonyx jubatus). PLoS ONE, 7, e49120.Google Scholar
Guigueno, M. F., Karouna-Renier, N. K., Henry, P. F. P., et al. (2018). Sex-specific responses in neuroanatomy of hatchling American kestrels in response to embryonic exposure to the flame retardants bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate. Environ. Toxicol. Chem., 37, 3032–40.Google Scholar
Hachisuka, M. (1953). The dodo and kindred birds or the extinct birds of the Mascarene Islands. London: HF and G Witherby.Google Scholar
Hagen, I. (1969). Norske undersøkelser over avkomproduksjonen hos rovfugler og ugler sett i relasjon til smågnagerbestandens vekslinger. Fauna, 22, 73126.Google Scholar
Hagen, Y. (1952). Rovfuglene og viltpleien. Oslo: Gyldendal Norsk Forlag.Google Scholar
Hakkarainen, H. and Korpimäki, E. (1996). Competitive and predatory interactions among raptors: an observational and experimental study. Ecology, 77, 1134–42.Google Scholar
Hakkarainen, H., Korpimäki, E., Huhta, E. and Palokangas, P. (1993). Delayed maturation in plumage colour: evidence for the female-mimicry hypothesis in the kestrel. Behav. Ecol. Sociobiol., 33, 247–51.Google Scholar
Hakkarainen, H., Huhta, E., Lahti, K., et al. (1996). A test of male mating and hunting success in the kestrel: the advantages of smallness? Behav. Ecol. Sociobiol., 39, 375–80.Google Scholar
Hall, J. S., Ip, H. S., Franson, J. C., et al. (2009). Experimental infection of a North American raptor, American kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1). PLoS ONE, 4, e7555.Google Scholar
Hall, M. R. and Goldsmith, A. R. (1983). Factors affecting prolactin secretion during breeding and incubation in the domestic duck (Anas platyrhynchos). Gen. Comp. Endocrinol., 49, 270–6.Google Scholar
Hamilton, W. D. and Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites? Science, 218, 384–7.Google Scholar
Hammond, T. T., Springthorpe, D., Walsh, R. E. and Berg-Kirkpatrick, T. (2016). Using accelerometers to remotely and automatically characterize behavior in small animals. J. Exp. Biol., 219, 1618–24.Google Scholar
Hanski, I., Henttonen, H., Korpimäki, E., Oksanen, L. and Turchin, P. (2001). Small rodent dynamics and predation. Ecology, 82, 1505–20.Google Scholar
Hart, J. (1972). Food habits of American kestrels in a low vole year. Raptor Res., 6, 13.Google Scholar
Hartert, E. (19121921). Die Vögel der paläarktischen Fauna. Systematische Übersicht der in Europa, Nord-Asien und der Mittelmeerregion vorkommenden Vögel. Vol. II. Berlin: Verlag von R. Friedländer und Sohn.Google Scholar
Hartley, R. C. and Kennedy, M. W. (2004). Are carotenoids a red herring in sexual display? Trends Ecol. Evol., 19, 353–4.Google Scholar
Hasenclever, H., Kostrzewa, A. and Kostrzewa, R. (1989). Brutbiologie des turmfalken (Falco tinnunculus): 16 jährige untersuchungen in Westfalen. J. Ornith., 130, 229–37.Google Scholar
Hearing, V. J. (1993). Unraveling the melanocyte. Am. J. Hum. Genet., 52, 17.Google Scholar
Heath, J. (1997). Corticosterone levels during nest departure of juvenile American kestrels. The Condor, 99, 806–11.Google Scholar
Heim de Balsac, H. and Mayaud, N. (1962). Les oiseaux du Nord-Ouest de l’Afrique. Paris: Paul Lechevalier.Google Scholar
Hendry, A. P. and Day, T. (2005). Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol. Ecol., 14, 901–16.Google Scholar
Hernández-Lambraño, R. E., Sánchez-Agudo, J. A. and Carbonell, R. (2018). Where to start? Development of a spatial tool to prioritise retrofitting of power line poles that are dangerous to raptors. J. Appl. Ecol., 55, 2685–97.Google Scholar
Hernández-Matías, A., Real, J., Moleón, M., et al. (2013). From local monitoring to a broad-scale viability assessment: a case study for the Bonelli’s Eagle in western Europe. Ecol. Monogr., 83, 239–61.Google Scholar
Hernández-Pliego, J., Rodríguez, C., Dell’Omo, G. and Bustamante, J. (2017). Combined use of tri-axial accelerometers and GPS reveals the flexible foraging strategy of a bird in relation to weather conditions. PLoS ONE, 12, e0177892.Google Scholar
Hickey, J. J. and Anderson, D. W. (1968). Chlorinated hydrocarbons and eggshell changes in raptorial and fish-eating birds. Science, 162, 271–3.Google Scholar
Hill, G. E. and McGraw, K. J. (2006a). Bird coloration. Volume I. Mechanisms and measurements. Cambridge, MA: Harvard University Press.Google Scholar
Hill, G. E. and McGraw, K. J. (2006b). Bird coloration. Volume II. Function and evolution. Cambridge, MA: Harvard University Press.Google Scholar
Hille, S. M. (2002). Sexual dimorphism and niche differentiation in island populations of the kestrel. PhD thesis, University of Vienna, Vienna, Austria.Google Scholar
Hille, S. M., Nesje, M. and Segelbacher, G. (2003). Genetic structure of kestrel populations and colonization of the Cape Verde archipelago. Mol. Ecol., 12, 2145–51.Google Scholar
Hille, S. M., Nash, J. P. and Krone, O. (2007). Hematozoa in endemic subspecies of common kestrel in the Cape Verde Islands. J. Wildl. Dis., 43, 752–7.Google Scholar
Hoffman, D. J., Melancon, M. J., Klein, P. N., et al. (1996). Developmental toxicity of PCB 126 (3,3′,4,4′,5-pentachlorobiphenyl) in nestling American kestrels (Falco sparverius). Fundam. Appl. Toxicol., 34, 188200.Google Scholar
Hoffman, D. J., Melancon, M. J., Klein, P. N., Eisemann, J. D. and Spann, J. W. (1998). Comparative and developmental toxicity of planar polychlorinated biphenyl congeners in chickens, American kestrels, and common terns. Environ. Toxicol. Chem., 17, 747–57.Google Scholar
Holte, D., Köppen, U., and Schmitz-Ornés, A. (2016). Partial migration in a central European raptor species: an analysis of ring re-encounter data of common kestrels Falco tinnunculus. Acta Ornithol., 51, 3954.Google Scholar
Hoogenboom, I. and Dijkstra, C. (1987). Sarcocystis cernae: a parasite increasing the risk of predation of its intermediate host, Microtus arvalis. Oecologia, 74, 8692.Google Scholar
Hunt, K. and Wingfield, J. (2004). Effect of estradiol implants on reproductive behavior of female Lapland longspurs (Calcarius lapponicus). Gen. Comp. Endocrinol., 137, 248–62.Google Scholar
Hustler, K. (1983). Breeding biology of the Greater Kestrel. Ostrich, 54, 129–40.Google Scholar
Hyuga, I. (1956). Breeding colonies of Japanese kestrels. Tori, 14, 1724.Google Scholar
Ille, R., Hoi, H., Grinschgl, F. and Zink, R. (2002). Paternity assurance in two species of colonially breeding falcon: the kestrel Falco tinnunculus and the red-footed falcon Falco vespertinus. Etologia, 10, 11–5.Google Scholar
Inger, R. and Bearhop, S. (2008). Applications of stable isotope analyses to avian ecology. Ibis, 150, 447–61.Google Scholar
Janss, G. F. E. (2000). Avian mortality from power lines: a morphologic approach of a species-specific mortality. Biol. Cons., 95, 353–9.Google Scholar
Jàrvinen, A. and Vaisanen, R. A. (1983). Egg size and related reproductive traits in a southern passerine Ficedula hypoleuca breeding in an extreme northern environment. Ornis Scand., 14, 253–62.Google Scholar
Jeanniard-du-Dot, T., Guinet, C., Arnould, J. P. Y., Speakman, J. R. and Trites, A. W. (2017). Accelerometers can measure total and activity-specific energy expenditures in free-ranging marine mammals only if linked to time–activity budgets. Funct. Ecol., 31, 377–86.Google Scholar
Jensen, A. A. and Leffers, H. (2008). Emerging endocrine disrupters: perfluoroalkylated substances. Int. J. Androl., 31, 161–9.Google Scholar
Johne, R. and Müller, H. (1998). Avian polyomavirus in wild birds: genome analysis of isolates from Falconiformes and Psittaciformes. Arch. Virol., 143, 1501–12.Google Scholar
Johnstone, R. A. (1996). Multiple displays in animal communication: ‘backup signals’ and ‘multiple messages’. Phil. Trans. R. Soc. B, 351, 329–38.Google Scholar
Jokimäki, J., Suhonen, J. and Kaisanlahti-Jokimäki, M.-L. (2018). Urban core areas are important for species conservation: a European-level analysis of breeding bird species. Land. Urban. Plann., 178, 7381.Google Scholar
Jones, C. G. (1984). Feeding ecology of the Mauritius kestrel. In Mendelsohn, J. and Sapsford, C. W., eds., Proceedings of the second symposium on African predatory birds (p. 209). Durban, South Africa: Natal Bird Club.Google Scholar
Jones, C. G. (1987). The larger land birds of Mauritius. In Diamond, A. W., ed., Studies of Mascarene island birds (pp. 208300). Cambridge: Cambridge University Press.Google Scholar
Jones, C. G. and Owadally, A. W. (1985). The status ecology and conservation of the Mauritius kestrel. In Newton, I. and Chancellor, R. D., eds., Conservation studies on raptors (pp. 211–22). Cambridge: International Council for Bird Preservation.Google Scholar
Jones, C. G., Heck, W., Lewis, R. E., et al. (1995). The restoration of the Mauritius kestrel Falco punctatus population. Ibis, 137, 173–80.Google Scholar
Jones, C. G., Burgess, M. D., Groombridge, J. J., et al. (2013). Mauritius Kestrel Falco punctatus. In Safford, R. J. and Hawkins, A. F. A., eds., The birds of Africa. Volume VIII, The Malagasy region. London: Christopher Helm.Google Scholar
Jönsson, K. I., Korpimäki, E., Pen, I. and Tolonen, P. (1996). Daily energy expenditure and short-term reproductive costs in free-ranging Eurasian kestrels (Falco tinnunculus). Funct. Ecol., 10, 475–82.Google Scholar
Jönsson, K. I., Wiehn, J. and Korpimäki, E. (1999). Body reserves and unpredictable breeding conditions in the Eurasian kestrel, Falco tinnunculus. Ecoscience, 6, 406–14.Google Scholar
Kabouche, B. (1999). Le niveau d’impact des lignes électriques Moyenne-Tension sur l’avifaune dans le secteur occidental du Var (St-Victoire–St-Baume–Mt-Faron). Rapport et carte CEEP – EDF services de distribution EDF Var.Google Scholar
Kaf, A., Saheb, M. and Bensaci, E. (2015). Preliminary data on breeding, habitat use and diet of common kestrel, Falco tinnunculus, in urban area in Algeria. Zool. Ecol., 25, 203–10.Google Scholar
Kal’avský, M. and Pospíšilová, B. (2010). The ecology of ectoparasitic species Carnus hemapterus on nestlings of common kestrel (Falco tinnunculus) in Bratislava. Slovak Raptor J., 4, 45–8.Google Scholar
Kangas, V.-M., Carrillo, J., Debray, P. and Kvist, L. (2018). Bottlenecks, remoteness and admixture shape genetic variation in island populations of Atlantic and Mediterranean common kestrels Falco tinnunculus. J. Avian Biol., 49, e01768.Google Scholar
Karell, P., Ahola, K., Karstinen, T., Valkama, J. and Brommer, J. E. (2011). Climate change drives microevolution in a wild bird. Nat. Comm., 2, 208.Google Scholar
Kay, S., Millet, J., Watson, J. and Shah, N. J. (2002). Status of the Seychelles kestrel Falco araea: a reassessment of the populations on Mahé and Praslin 2001–2002. Report by BirdLife Seychelles, Victoria, Mahé, Republic of Seychelles.Google Scholar
Kemp, A. C. (1995). A comparison of hunting behaviour by each sex of adult Greater Kestrels Falco rupicoloides resident near Pretoria, South Africa. Ostrich, 66, 2133.Google Scholar
Kemp, A. C. (1999). Plumage development and visual communication in the Greater Kestrel Falco rupicoloides near Pretoria, South Africa. Ostrich, 70, 220–4.Google Scholar
Kettel, E. F., Gentle, L. K., Quinn, J. L. and Yarnell, R. W. (2018). The breeding performance of raptors in urban landscapes: a review and meta-analysis. J. Ornithol., 159, 118.Google Scholar
Khaleghizadeh, A. and Javidkar, M. (2006). On the breeding season diet of the Common Kestrel, Falco tinnunculus, in Tehran, Iran. Zool. Middle East, 37, 113–4.Google Scholar
Kim, S.-Y., Fargallo, J. A., Vergara, P. and Martínez-Padilla, J. (2013). Multivariate heredity of melanin-based coloration, body mass and immunity. Heredity, 111, 139–46.Google Scholar
Kimball, R. T. (2006). Hormonal control of coloration. In Hill, G. E. and McGraw, K. J., eds., Bird coloration Vol. 1. Mechanisms and measurements (pp. 431–68). Cambridge, MA: Harvard University Press.Google Scholar
King, A. J. and Cowlishaw, G. (2009). Foraging opportunities drive interspecific associations between rock kestrels and desert baboons. J. Zool., 277, 111–8.Google Scholar
Kirkwood, J. K. (1979). The partition of food energy for existence in the kestrel (Falco tinnunculus) and the barn owl (Tyto alba). Comp. Biochem. Physiol. Part A, 63, 495–8.Google Scholar
Kitowski, I. (2005). Sex skewed kleptoparasitic exploitation of common kestrel Falco tinnunculus: the role of hunting costs to victims and tactics of kleptoparasites. Folia Zool., 54, 371–8.Google Scholar
Kitzing, D. (1980). Neuere erkenntnisse ueber das falkenpockenvirus. Der Praktische Tierazt., 61, 952–6.Google Scholar
Kochanek, H.-M. (1990). Ernährung des turmfalken (Falco tinnunculus): ergebnisse von nestinhaltsanalysen und automatischer registrierung. J. Ornithol., 131, 291304.Google Scholar
Koenig, A. (1890). Ornithologische forschungsergebnisse einer reise nach Madeira und den Canarischen Inseln. J. Ornithol., 38, 257488.Google Scholar
Koivula, M., Viitala, J. and Korpimäki, E. (1999). Kestrels prefer scent marks according to species and reproductive status of voles. Ecoscience, 6, 415–20.Google Scholar
Komen, J. and Myer, E. (1989). Observation on post-fledging dependence of kestrels (Falco tinnunculus rupicolus) in an urban environment. J. Rapt. Res., 23, 94–8.Google Scholar
Korpimäki, E. (1985a). Diet of the kestrel Falco tinnunculus in the breeding season. Ornis Fenn., 62, 130–7.Google Scholar
Korpimäki, E. (1985b). Prey choice strategies of the kestrel Falco tinnunculus in relation to available small mammals and other Finnish birds of prey. Ann. Zool. Fenn., 22, 91104.Google Scholar
Korpimäki, E. (1986). Diet variation, hunting habitat and reproductive output of the kestrel Falco tinnunculus in the light of the optimal diet theory. Ornis Fenn., 63, 8490.Google Scholar
Korpimäki, E. (1987). Dietary shifts, niche relationships and reproductive output of coexisting Kestrels and Long eared Owls. Oecologia, 74, 277–85.Google Scholar
Korpimäki, E. (1988). Factors promoting polygyny in European birds of prey – a hypothesis. Oecologia, 77, 278–85.Google Scholar
Korpimäki, E. (1994). Rapid or delayed tracking of multi-annual vole cycles by avian predators? J. Anim. Ecol., 63, 619–28.Google Scholar
Korpimäki, E. and Norrdahl, K. (1991). Numerical and functional responses of kestrels, short-eared owls, and long-eared owls to vole densities. Ecology, 72, 814–26.Google Scholar
Korpimäki, E. and Rita, H. (1996). Effects of brood size manipulations on offspring and parental survival in the European kestrel under fluctuating food conditions. Ecoscience, 3, 264–73.Google Scholar
Korpimäki, E. and Wiehn, J. (1998). Clutch size of kestrels: seasonal decline and experimental evidence for food limitation under fluctuating food conditions. Oikos, 83, 259–72.Google Scholar
Korpimäki, E., Tolonen, P. and Valkama, J. (1994). Functional responses and load-size effect in central place foragers: data from the kestrel and some general comments. Oikos, 69, 504–10.Google Scholar
Korpimäki, E., Tolonen, P. and Bennett, G. F. (1995). Blood parasites, sexual selection and reproductive success of European kestrels. Écoscience, 2, 335–43.Google Scholar
Korpimäki, E., Lahti, K., May, C. A., et al. (1996). Copulatory behaviour and paternity determined by DNA fingerprinting in kestrels: effects of cyclic food abundance. Anim. Behav., 51, 945–55.Google Scholar
Korpimäki, E., May, C. A., Parkin, D. T., Wetton, J. H. and Wiehn, J. (2000). Environmental- and parental condition-related variation in sex ratio of kestrel broods. J. Avian Biol., 31, 128–34.Google Scholar
Korpimäki, E., Oksanen, L., Oksanen, T., et al. (2005). Vole cycles and predation in temperate and boreal zones of Europe. J. Anim. Ecol., 74, 1150–9.Google Scholar
Kostrzewa, A. (1991). Interspecific interference competition in three European raptor species. Ethol. Ecol. Evol., 3, 127–43.Google Scholar
Kostrzewa, R. (1989). Achtjährige Untersuchungen zur Brutbiologie und Ökologie der Turmfalken Falco tinnunculus in der Niederrheinischen Bucht im Vergleich mit verschiedenen Gebieten in der Bundesrepublik Deutschland und Wets-Berlin. PhD thesis, Universität Köln, Köln, Germany.Google Scholar
Kostrzewa, R. and Kostrzewa, A. (1990). Relationship of spring and summer weather to density and breeding performance of the common buzzard Buteo buteo, goshawk Accipiter gentilis and kestrel Falco tinnunculus. Ibis, 132, 550–8.Google Scholar
Kostrzewa, R. and Kostrzewa, A. (1991). Winter weather, spring and summer density, and subsequent breeding success of Eurasian kestrels, common buzzards, and northern goshawks. Auk, 108, 342–7.Google Scholar
Kostrzewa, R. and Kostrzewa, A. (1997). Der bruterfolg des turmfalken Falco tinnunculus in Deutchland: Ergebnisse 1985–1994. J. Ornithol., 138, 7382.Google Scholar
Kraaijeveld, K., Kraaijeveld-Smit, F. J. L. and Komdeur, J. (2007). The evolution of mutual ornamentation. Anim. Behav., 74, 657–77.Google Scholar
Kreiderits, A., Gamauf, A., Krenn, H. W. and Sumasgutner, P. (2016). Investigating the influence of local weather conditions and alternative prey composition on the breeding performance of urban Eurasian Kestrels Falco tinnunculus. Bird Study, 63, 369–79.Google Scholar
Krueger, T. E. Jr. (1998). The use of electrical transmission pylons as nesting sites by the kestrel Falco tinnunculus in North-East Italy. In Chancellor, R. C., Meyburg, B.-U. and Ferrero, J. J., eds., Holarctic birds of prey (pp. 141–8). Berlin: The World Working Group on Birds of Prey and Owls.Google Scholar
Kübler, S., Kupko, S. and Zeller, U. (2005). The kestrel (Falco tinnunculus) in Berlin: investigation of breeding biology and feeding ecology. J. Ornithol., 146, 271–8.Google Scholar
Kurth, D. (1970). Der turmfalke (Falco tinnunculus) im Münchener Stadtgebiet. Anz. Orn. Ges. Bayern, 9, 212.Google Scholar
Kuusela, S. (1983). Breeding success of the Kestrel Falco tinnunculus in different habitats in Finland. Proc. Third Nordic Congress Ornithol., 1981, 53–8.Google Scholar
Laaksonen, T., Lyytinen, S. and Korpimäki, E. (2004a). Sex-specific recruitment and brood sex ratios of Eurasian kestrels in a seasonally and annually fluctuating northern environment. Evol. Ecol., 18, 215–30.Google Scholar
Laaksonen, T., Fargallo, J. A., Korpimäki, E., et al. (2004b). Year- and sex-dependent effects of experimental brood sex ratio manipulation on fledging condition of Eurasian kestrels. J. Anim. Ecol., 73, 342–52.Google Scholar
Laaksonen, T., Ahola, M., Eeva, T., Väisänen, R. A. and Lehikoinen, E. (2006). Climate change, migratory connectivity and changes in laying date and clutch size of the pied flycatcher. Oikos, 114, 277–90.Google Scholar
Laaksonen, T., Negro, J. J., Lyytinen, S., et al. (2008). Effects of experimental brood size manipulation and gender on carotenoid levels of Eurasian kestrels Falco tinnunculus. PLoS ONE, 3, e2374.Google Scholar
Lack, D. (1947). The significance of clutch size. Ibis, 89, 302–52.Google Scholar
Lack, D. (1954). The natural regulation of animal numbers. London: Oxford University Press.Google Scholar
Lambrechts, M. M., Wiebe, K. L., Sunde, P., et al. (2012). Nest box design for the study of diurnal raptors and owls is still an overlooked point in ecological, evolutionary and conservation studies: a review. J. Ornithol., 153, 2334.Google Scholar
Leaver, D. (1951). Autumn behaviour of kestrels. Brit. Birds, 44, 27–8.Google Scholar
Lee, K. P., Simpson, S. J. and Wilson, K. (2008). Dietary protein-quality influences melanization and immune function in an insect. Funct. Ecol., 22, 1052–61.Google Scholar
Lemus, J. A., Fargallo, J. A., Vergara, P., Parejo, D. and Banda, E. (2010). Natural cross chlamydial infection between livestock and free-living bird species. PLoS ONE, 5, e13512.Google Scholar
Li, Z., Zhou, Z., Deng, D., Li, Q. and Clarke, J. A. (2014). A falconid from the Late Miocene of Northwestern China yields further evidence of transition in Late Neogene steppe communities. The Auk, 131, 335–50.Google Scholar
Lihu, X., Jianjian, L., Chunfu, T. and Wenshan, H. (2007). Foraging area and hunting technique selection of common kestrel (Falco tinnunculus) in winter: the role of perch sites. Acta Ecol. Sinica, 27, 2160–6.Google Scholar
Liminana, R., Romero, M., Mellone, U. and Urios, V. (2012). Mapping the migratory routes and wintering areas of lesser kestrels Falco naumanni: new insights from satellite telemetry. Ibis, 154, 389–99.Google Scholar
Lin, J. Y. and Fisher, D. E. (2007). Melanocyte biology and skin pigmentation. Nature, 445, 843–50.Google Scholar
Lind, O., Mitkus, M., Olsson, P. and Kelber, A. (2013). Ultraviolet sensitivity and colour vision in raptor foraging. J. Exp. Biol., 216, 1819–26.Google Scholar
Londei, T. (2002). The fox kestrel (Falco alopex) hovers. J. Rapt. Res., 36, 236–7.Google Scholar
López-Idiáquez, D., Vergara, P., Fargallo, J. A. and Martinez-Padilla, J. (2016a). Female plumage coloration signals status to conspecifics. Anim. Behav., 121, 101–6.Google Scholar
López-Idiáquez, D., Vergara, P., Fargallo, J. A. and Martinez-Padilla, J. (2016b). Old males reduce melanin‐pigmented traits and increase reproductive outcome under worse environmental conditions in common kestrels. Ecol. Evol., 6, 1224–35.Google Scholar
López-Idiáquez, D., Vergara, P., Fargallo, J. A. and Martinez-Padilla, J. (2018). Providing longer post-fledging periods increases offspring survival at the expense of future fecundity. PLoS ONE, 13, e0203152.Google Scholar
López-Idiáquez, D., Fargallo, J. A., López-Rull, I. and Martínez-Padilla, J. (2019). Plumage coloration and personality in early life: sexual differences in signalling. Ibis, 161, 216–21.Google Scholar
López-Rull, I., Vergara, P., Martínez-Padilla, J. and Fargallo, J. A. (2016). Early constraints in sexual dimorphism: survival benefits of feminized phenotypes. J. Evol. Biol., 29, 231–40.Google Scholar
Loreau, M., Daufresne, T., Gonzalez, A., et al. (2013). Unifying sources and sinks in ecology and Earth sciences. Biol. Rev., 88, 365–79.Google Scholar
Love, O. P., Bird, D. M. and Shutt, L. J. (2003a). Corticosterone levels during post-natal development in captive American kestrels (Falco sparverius). Gen. Comp. Endocrinol., 130, 135–41.Google Scholar
Love, O. P., Shutt, L. J., Silfies, J. S., et al. (2003b). Effects of dietary PCB exposure on adrenocortical function in captive American kestrels (Falco sparverius). Ecotoxicol., 12, 199208.Google Scholar
Lozano, G. A. (1994). Carotenoids, parasites, and sexual selection. Oikos, 70, 309–11.Google Scholar
Lozano, G. A. (2009). Multiple cues in mate selection: the sexual interference hypothesis. BioSci. Hypoth., 2, 3742.Google Scholar
MacDonald, M. A. (1973). Bigamy in kestrel. British Birds, 66, 77–8.Google Scholar
Madroño, A., González, C. and Atienza, J. C. (2004). Libro rojo de las aves de España. Madrid: Dirección General da Biodiversidad, Ministerio de Medio Ambiente, SEO/BirdLife.Google Scholar
Malher, F. and Lesaffre, G. (2007). L’histoire des oiseaux nicheurs à Paris. Alauda, 75, 309–18.Google Scholar
Malher, F., Lesaffre, G., Zucca, M. and Coatmeur, J. (2010). Oiseaux nicheurs de Paris. Un atlas urbain. Paris: Delachauxet and Niestlé.Google Scholar
Manganaro, A., Ranazzi, L., Ranazzi, R. and Sorace, A. (1990). La dieta dell’allocco, Strix aluco, nel parco di Villa Doria Pamphili (Roma). Riv. Ital. Orn., 60, 3752.Google Scholar
Marasco, V. and Costantini, D. (2016). Signaling in a polluted world: oxidative stress as an overlooked mechanism linking contaminants to animal communication. Front. Ecol. Evol., 4, 95.Google Scholar
Marteinson, S. C., Palace, V., Letcher, R. J. and Fernie, K. J. (2017) Disruption of thyroxine and sex hormones by 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (DBE-DBCH) in American kestrels (Falco sparverius) and associations with reproductive and behavioral changes. Environ. Res., 154, 389–97.Google Scholar
Martin, L. B., Hawley, D. M. and Ardia, D. R. (2011). An introduction to ecological immunology. Funct. Ecol., 25, 14.Google Scholar
Martínez, J. E. and Calvo, J. F. (2006). Rapaces diurnas y nocturnas de la Región de Murcia. Serie técnica 1/06. Dirección General del Medio Natural. Murcia: Consejería de Industria y Medio Ambiente.Google Scholar
Martínez-Padilla, J. (2006). Prelaying maternal condition modifies the association between egg mass and T cell-mediated immunity in kestrels. Behav. Ecol. Sociobiol., 60, 510–5.Google Scholar
Martínez-Padilla, J. and Viñuela, J. (2011). Hatching asynchrony and brood reduction influence immune response in common kestrel Falco tinnunculus nestlings. Ibis, 153, 601–10.Google Scholar
Martínez-Padilla, J., Martínez, J., Dávila, J. A., et al. (2004). Within-brood size differences, sex and parasites determine blood stress protein levels in Eurasian kestrel nestlings. Funct. Ecol., 18, 426–34.Google Scholar
Martínez-Padilla, J., Dixon, H., Vergara, P., Pérez-Rodríguez, L. and Fargallo, J. A. (2010). Does egg colouration reflect male condition in birds? Naturwissenschaften, 97, 469–77.Google Scholar
Martínez-Padilla, J., Vergara, P. and Fargallo, J. A. (2017a). Increased lifetime reproductive success of first-hatched siblings in common kestrels Falco tinnunculus. Ibis, 159, 803–11.Google Scholar
Martínez-Padilla, J., López-Idiáquez, D., López-Perea, J. J., et al. (2017b). A negative association between bromadiolone exposure and nestling body condition in common kestrels: management implications for vole outbreaks. Pest Manag. Sci., 73, 364–70.Google Scholar
Masman, D. (1986). The annual cycle of the kestrel Falco tinnunculus: a study in behavioural energetics. PhD thesis, University of Groningen, Groningen, the Netherlands.Google Scholar
Masman, D., Gordijn, M., Daan, S. and Dijkstra, C. (1986). Ecological energetics of the kestrel: field estimates of energy intake throughout the year. Ardea, 74, 2439.Google Scholar
Masman, D., Daan, S. and Beldhuis, H. J. A. (1988a). Ecological energetics of the kestrel: daily energy expenditure throughout the year based on time-energy budget, food intake and doubly labeled water methods. Ardea, 76, 6481.Google Scholar
Masman, D., Daan, S. and Dijkstra, C. (1988b). Time allocation in the kestrel (Falco tinnunculus), and the principle of energy minimization. J. Anim. Ecol., 57, 411–32.Google Scholar
Masman, D., Dijkstra, C., Daan, S. and Bult, A. (1989). Energetic limitation of an avian parental effort: field experiments in the kestrel (Falco tinnunculus). J. Evol. Biol., 2, 435–55.Google Scholar
Massemin, S., Korpimäki, E., Pöyri, V. and Zorn, T. (2002). Influence of hatching order on growth rate and resting metabolism of kestrel nestlings. J. Avian Biol., 33, 235–44.Google Scholar
Massemin, S., Korpimäki, E., Zorn, T., Pöyri, V. and Speakman, J. R. (2003). Nestling energy expenditure of Eurasian kestrels Falco tinnunculus in relation to food intake and hatching order. Avian Sci., 3, 112.Google Scholar
Mattson, M. P. and Calabrese, E. J. (2010). Hormesis: a revolution in biology, toxicology and medicine. New York: Springer.Google Scholar
McClure, C. J. W., Schulwitz, S. E., van Buskirk, R., Pauli, B. P. and Heath, J. A. (2017). Commentary: research recommendations for understanding the decline of American kestrels (Falco sparverius) across much of North America. J. Raptor Res., 51, 455–64.Google Scholar
McDonald, P., Olsen, P. D. and Cockburn, A. (2004). Weather dictates reproductive success and survival in the Australian brown falcon Falco berigora. J. Anim. Ecol., 73, 683–92.Google Scholar
McEwen, B. S. and Stellar, E. (1993). Stress and the individual – mechanisms leading to disease. Arch. Int. Med., 153, 2093–101.Google Scholar
McGraw, K. J., Correa, S. M. and Adkins-Regan, E. (2006). Testosterone upregulates lipoprotein status to control sexual attractiveness in a colorful songbird. Behav. Ecol. Sociobiol., 60, 117–22.Google Scholar
McKelvey, D. S. (1977). The Mauritius kestrel some notes on its breeding biology behaviour and survival potential. Hawk Trust Annual Report, 8, 1921.Google Scholar
Mebs, T. and Schmidt, D. (2006). Die Greifvögel Europas, Nordafrikas und Vorderasiens. Stuttgart: Kosmos Verlag.Google Scholar
Meijer, T. (1988). Reproductive decisions in the kestrel Falco tinnunculus. PhD thesis, University of Groningen, Groningen, the Netherlands.Google Scholar
Meijer, T. (1989). Photoperiodic control of reproduction and molt in the kestrel, Falco tinnunculus. J. Biol. Rhyth., 4, 351–64.Google Scholar
Meijer, T. and Schwabl, H. (1989). Hormonal patterns in breeding and non-breeding kestrels: field and laboratory studies. Gen. Comp. Endocrinol., 74, 148–60.Google Scholar
Meijer, T., Daan, S. and Dijkstra, C. (1988). Female condition and reproductive decisions: the effect of food manipulations in free-living and captive kestrels. Ardea, 76, 141–54.Google Scholar
Meijer, T., Masman, D. and Daan, S. (1989). Energetics of reproduction in female kestrels. Auk, 106, 549–59.Google Scholar
Meijer, T., Daan, S. and Hall, M. (1990). Family planning in the kestrel (Falco tinnunculus): the proximate control of covariation of laying date and clutch size. Behaviour, 114, 117–36.Google Scholar
Meijer, T., Deerenberg, C., Daan, S. and Dijkstra, C. (1992). Egg-laying and photorefractoriness in the European Kestrel Falco tinnunculus. Ornis Scand., 23, 405–10.Google Scholar
Metcalfe, N. B. and Alonso-Alvarez, C. (2010). Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Funct. Ecol., 24, 984–96.Google Scholar
Metcalfe, N. B. and Monaghan, P. (2001). Compensation for a bad start: grow now, pay later? Trends Ecol. Evol., 16, 254–60.Google Scholar
Meyer, R. L. and Balgooyen, T. G. (1987). A study and implications of habitat separation by sex of wintering American kestrels (Falco sparverius). In Bird, D. M. and Bowman, R., eds., Ancestral kestrel (pp. 107–23). Ste. Anne de Bellevue, Quebec: Raptor Research Foundation and MacDonald Raptor Research Centre of McGill University.Google Scholar
Mikeš, V. (2003). Feeding behaviour of urban and farmland kestrels (Falco tinnunculus). BSc thesis, Faculty of Biological Sciences, University of South Bohemia, České Budějovice.Google Scholar
Mikula, P., Hromada, M., and Tryjanowski, P. (2013). Bats and swifts as food of the European kestrel (Falco tinnunculus) in a small town in Slovakia. Ornis Fenn., 90, 178–85.Google Scholar
Miller, M. P., Mullins, T. D., Parrish, J. W. Jr, Walters, J. R. and Haig, S. M. (2012). Variation in migratory behavior influences regional genetic diversity and structure among American kestrel populations (Falco sparverius) in North America. J. Hered., 103, 503–14.Google Scholar
Millon, A. and Bretagnolle, V. (2004). Les populations nicheuses de rapaces en France: analyse des résultats de l’enquête Rapaces 2000. In Thiollay, J. M. and Bretagnolle, V., eds., Rapaces nicheurs de France (pp. 129–40). Paris: Delachaux and Niestlé.Google Scholar
Mock, D. W. and Parker, G. A. (1997). The evolution of sibling rivalry. Oxford, UK: Oxford University Press.Google Scholar
Mohammed, A. H. H. (1958). Systematic and experimental studies on protozoal blood parasites of Egyptian birds. Part 1. Cairo: Cairo University Press.Google Scholar
Møller, A. P. (1994). Facts and artefacts in nest box studies: implications for studies of birds of prey. J. Raptor Res., 28, 143–8.Google Scholar
Møller, A. P. and Pomiankoski, A. (1993). Why have birds got multiple sexual ornaments? Behav. Ecol. Sociobiol., 32, 167–76.Google Scholar
Møller, A. P., Sorci, G. and Erritzøe, J. (1998). Sexual dimorphism in immune defense. Am. Nat., 152, 605–19.Google Scholar
Møller, A. P., Biard, C., Blount, J. D., et al. (2000). Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence or detoxification ability? Avian Poult. Biol. Rev., 11, 137–59.Google Scholar
Montier, D. (1977). Atlas of breeding birds of the London area. London: Batsford.Google Scholar
Moreau, R. E. (1972). The Palaearctic–African bird migration systems. London: Academic Press.Google Scholar
Moreno, J. and Osorno, J. L. (2003). Avian egg colour and sexual selection: does eggshell pigmentation reflect female condition and genetic quality? Ecol. Lett., 6, 803–6.Google Scholar
Morganti, M., Franzoi, A., Bontempo, L. and Sarà, M. (2016). An exploration of isotopic variability in feathers and claws of lesser kestrel Falco naumanni chicks from southern Sicily. Avocetta, 40, 2332.Google Scholar
Morinha, F., Travassos, P., Seixas, F., et al. (2014) Differential mortality of birds killed at wind farms in Northern Portugal. Bird Study, 61, 255–9.Google Scholar
Motti, C., Leshem, Y., Izhaki, I. and Halevi, S. (2008). A case of polygamy or co-operative breeding in the common kestrel Falco tinnunculus in Israel. Sandgrouse, 30, 164–5.Google Scholar
Mougeot, F., Perez-Rodriguez, L., Martinez-Padilla, J., Leckie, F. and Redpath, S. M. (2007). Parasites testosterone and honest carotenoid-based signalling of health. Funct. Ecol., 21, 886–98.Google Scholar
Mueller, H. C. (1971). Oddity and specific searching image more important than conspicuousness in prey selection. Nature, 233, 345–6.Google Scholar
Mueller, H. C. (1973). The relationship of hunger to predatory behaviour in hawks (Falco sparverius and Buteo platypterus). Anim. Behav., 21, 513–20.Google Scholar
Mueller, H. C. (1974). Food caching behaviour in the American kestrel. Z. Tierphsychol., 34, 105–14.Google Scholar
Mueller, H. C. (1987). Prey selection by kestrels: a review. In Bird, D. M. and Bowman, R., eds., Ancestral kestrel (pp. 83106). Ste. Anne de Bellevue, Quebec: Raptor Research Foundation and MacDonald Raptor Research Centre of McGill University.Google Scholar
Muir, D. C. and de Wit, C. A. (2010). Trends of legacy and new persistent organic pollutants in the circumpolar arctic: overview, conclusions, and recommendations. Sci. Total Environ., 408, 3044–51.Google Scholar
Müller, C., Jenni-Eiermann, S. and Jenni, L. (2009). Effects of a short period of elevated circulating corticosterone on postnatal growth in free-living Eurasian kestrels Falco tinnunculus. J. Exp. Biol., 212, 1405–12.Google Scholar
Müller, C., Jenni-Eiermann, S. and Jenni, L. (2010). Development of the adrenocortical response to stress in Eurasian kestrel nestlings: defence ability, age, brood hierarchy and condition. Gen. Comp. Endocrinol., 168, 474–83.Google Scholar
Müller, C., Jenni-Eiermann, S. and Jenni, L. (2011). Heterophils/lymphocytes-ratio and circulating corticosterone do not indicate the same stress imposed on Eurasian kestrel nestlings. Funct. Ecol., 25, 566–76.Google Scholar
Munck, A., Guyre, P. M. and Holbrook, N. J. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. End. Rev., 5, 2544.Google Scholar
Muñoz, E., Molina, R. and Ferrer, D. (1999). Babesia shortti infection in a common kestrel (Falco tinnunculus) in Catalonia (northeast Spain). Avian Pathol., 28, 207–9.Google Scholar
Nagy, G. G., Ladányi, M., Arany, I., Aszalós, R. and Czúcz, B. (2017). Birds and plants: comparing biodiversity indicators in eight lowland agricultural mosaic landscapes in Hungary. Ecol. Indic. 73, 566–73.Google Scholar
Nantón, D. P. (2011). Factors determining the large-scale seasonal abundance of the common kestrel in Central Spain. Ardeola, 58, 87101.Google Scholar
Nathan, R., Spiegel, O., Fortmann-Roe, S., et al. (2012). Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures. J. Exp. Biol., 215, 986–96.Google Scholar
Navarro-López, J. and Fargallo, J. A. (2015). Trophic niche in a raptor species: the relationship between diet diversity, habitat diversity and territory quality. PLoS ONE, 10, e0128855.Google Scholar
Navarro‑López, J., Vergara, P. and Fargallo, J. A. (2014). Trophic niche width, offspring condition and immunity in a raptor species. Oecologia, 174, 1215–24.Google Scholar
Negro, J. J. and Grande, J. M. (2001). Territorial signalling: a new hypothesis to explain frequent copulation in raptorial birds. Anim. Behav., 62, 803–9.Google Scholar
Negro, J. J., Donázar, J. A. and Hiraldo, F. (1992). Copulatory behaviour in a colony of lesser kestrels: sperm competition and mixed reproductive strategies. Anim. Behav., 43, 921–30.Google Scholar
Negro, J. J., Villarroel, M. R., Tella, J. L., et al. (1996). DNA fingerprinting reveals a low incidence of extra-pair fertilizations and intraspecific brood parasitism in the lesser kestrel. Anim. Behav., 51, 935–43.Google Scholar
Negro, J. J., Bortolotti, G. R., Tella, J. L., Fernie, K. J. and Bird, D. M. (1998). Regulation of integumentary colour and plasma carotenoids in American kestrels consistent with sexual selection theory. Funct. Ecol., 12, 307–12.Google Scholar
Newton, E. (1867). On the land birds of the Seychelles archipelago. Ibis, 3, 335–60.Google Scholar
Newton, I. (1979). Population ecology of raptors. Berkhamsted: T. and A. D. Poyser.Google Scholar
Newton, I. (1998). Population limitation in birds. London: Academic Press.Google Scholar
Newton, I. (2013). Organochlorine pesticides and birds. Brit. Birds, 106, 189205.Google Scholar
Newton, I. and Marquiss, M. (1981). Effect of additional food on laying dates and clutch sizes of sparrowhawks. Ornis Scandin., 12, 224–9.Google Scholar
Newton, I., Wyllie, I. and Dale, L. (1999). Trends in the numbers and mortality patterns of sparrowhawks (Accipiter nisus) and kestrels (Falco tinnunculus) in Britain, as revealed by carcass analyses. J. Zool., 248, 139–47.Google Scholar
Nichols, R. A., Bruford, M. W. and Groombridge, J. J. (2001). Sustaining genetic variation in a small population: evidence from the Mauritius kestrel. Mol. Ecol., 10, 593602.Google Scholar
Nicoll, M. A. C., Jones, C. G. and Norris, K. (2006). The impact of harvesting on a formerly endangered tropical bird: insight from life-history theory. J. Appl. Ecol., 43, 567–75.Google Scholar
Noer, H. and Secher, H. (1983). Survival of Danish Kestrels Falco tinnunculus in relation to protection of birds of prey. Ornis Scand., 14, 104–14.Google Scholar
Nore, T. (1979). Rapaces diurnes communs en Limousin pendant la période de nidification (II: Autour, Epervier et Faucon crécerelle). Alauda, 47, 259–69.Google Scholar
Olendorff, R. R. and Stoddart, J. W. Jr. (1974). The potential for management of raptor populations in western grassland. In Hamerstrom, F. N., Harrell, B. E. and Olendorff, R. R., eds., Management of raptors (pp. 105–17). Vermillion, SD: Raptor Research Foundation, Inc. Raptor Report, 2.Google Scholar
Olsen, P. (1995). Australian birds of prey: the biology and ecology of raptors. Baltimore: John Hopkins University Press.Google Scholar
Olsen, P. and Baker, G. B. (2001). Daytime incubation temperatures in nests of the Nankeen Kestrel, Falco cenchroides. Emu, 101, 255–8.Google Scholar
Olsen, P. and Olsen, J. (1980). Observations on development, nesting chronology, and clutch and brood size in the Australian kestrel, Falco cenchroides (Aves: Falconidae). Aust. Wildl. Res., 7, 247–55.Google Scholar
Olsen, P. and Olsen, J. (1987). Egg weight loss during incubation in captive Australian kestrels Falco cenchroides and brown goshawks Accipiter fasciatus. Emu, 87, 196–9.Google Scholar
Olsen, P. D., Marshall, R. C. and Gaal, A. (1989). Relationships within the genus Falco: a comparison of the electrophoretic patterns of feather proteins. Emu, 89, 193203.Google Scholar
Olson, V. A. and Owens, I. P. F. (2005). Interspecific variation in the use of carotenoid-based coloration in birds: diet, life history and phylogeny. J. Evol. Biol., 18, 1534–46.Google Scholar
Ozeki, H., Ito, S., Wakamatsu, K. and Ishiguro, I. (1997). Chemical characterization of pheomelanogenesis starting from dihydroxyphenylalanine or tyrosine and cysteine. Effects of tyrosinase and cysteine concentrations and reaction time. Biochim. Biophys. Acta, 1336, 539–48.Google Scholar
Padilla, D. P. and Nogales, M. (2009). Behavior of kestrels feeding on frugivorous lizards: implications for secondary seed dispersal. Behav. Ecol., 20, 872–7.Google Scholar
Padilla, D. P., Nogales, M. and Marrero, P. (2007). Prey size selection of insular lizards by two sympatric predatory bird species. Acta Ornithol., 42, 167–72.Google Scholar
Padilla, D. P., González-Castro, A. and Nogales, M. (2012). Significance and extent of secondary seed dispersal by predatory birds on oceanic islands: the case of the Canary archipelago. J. Anim. Ecol., 100, 416–27.Google Scholar
Palmer, R. S. (1988). Handbook of North American birds. Vol. 5, New Haven, CT: Yale University Press.Google Scholar
Palokangas, P., Alatalo, R. V. and Korpimäki, E. (1992). Female choice in the kestrel under different availability of mating options. Anim. Behav., 43, 659–65.Google Scholar
Palokangas, P., Korpimäki, E., Hakkarainen, H., et al. (1994). Female kestrels gain reproductive success by choosing brightly ornamented males. Anim. Behav., 47, 443–8.Google Scholar
Palozza, P. (1998). Prooxidant actions of carotenoids in biological systems. Nutr. Rev., 56, 257–65.Google Scholar
Pang, S., Lee, P. P. N. and Tang, P. (1991). Sensory receptors as a special class of hormonal cells. Neuroendocrinology, 53, 211.Google Scholar
Parejo, D. and Silva, N. (2009a). Immunity and fitness in a wild population of Eurasian kestrels Falco tinnunculus. Naturwissenschaften, 96, 1193–202.Google Scholar
Parejo, D. and Silva, N. (2009b). Methionine supplementation influences melanin-based plumage colouration in Eurasian kestrel, Falco tinnunculus, nestlings. J. Exp. Biol., 212, 3576–82.Google Scholar
Parejo, D., Silva, N., Danchin, E. and Avilés, J. M. (2011). Informative content of melanin-based plumage colour in adult Eurasian kestrels. J. Avian Biol., 42, 4960.Google Scholar
Parker, A. (1977). Kestrel hiding food. Brit. Birds, 70, 339–40.Google Scholar
Parr, D. (1969). A review of the status of the kestrel, tawny owl and barn owl in Surrey. Surrey Bird Rep., 15, 3542.Google Scholar
Paull, D. (1991). Foraging and breeding behaviour of the Australian Kestrel Falco cenchroides on the Northern Tablelands of New South Wales. Aust. Bird Watcher, 14, 8592.Google Scholar
Peggie, C. T., Garratt, C. M. and Whittingham, M. J. (2011). Creating ephemeral resources: how long do the beneficial effects of grass cutting last for birds? Bird Study, 58, 390–8.Google Scholar
Peirce, M. A. (2000) A taxonomic review of avian piroplasms of the genus Babesia Starcovici, 1893 (Apicomplexa: Piroplasmorida: Babesiidae). J. Nat. Hist., 34, 317–32.Google Scholar
Pen, I. (2000). Sex allocation in a life history context. PhD thesis, University of Groningen, Groningen, the Netherlands.Google Scholar
Pérez, C., Lores, M. and Velando, A. (2008) Availability of nonpigmentary antioxidant affects red coloration in gulls. Behav. Ecol., 19, 967–73.Google Scholar
Peter, H.-U. and Zaumseil, J. (1982). Populations ökologische untersuchungen an einer Turmfalken kolonie Falco tinnunculus bei Jena. Ber. Vogelwarte Hiddensee, 3, 517.Google Scholar
Pettifor, R. A. (1983). Seasonal variation, and associated energetic implications, in the hunting behaviour of the kestrel. Bird Study, 30, 201–6.Google Scholar
Pettifor, R. A. (1984). Habitat utilisation and the prey taken by Kestrels in arable fenland. Bird Study, 31, 213–6.Google Scholar
Pettifor, R. A. (1990). The effects of avian mobbing on a potential predator, the European kestrel, Falco tinnunculus. Anim. Behav., 39, 821–7.Google Scholar
Petty, S. J., Anderson, D. I. K., Davison, M., et al. (2003). The decline of Common Kestrels Falco tinnunculus in a forested area of northern England: the role of predation by Northern Goshawks Accipiter gentilis. Ibis, 145, 472–83.Google Scholar
Piattella, E., Salvati, L., Manganaro, A. and Fattorini, S. (1999). Spatial and temporal variations in the diet of the common kestrel (Falco tinnunculus) in urban Rome, Italy. J. Rapt. Res., 33, 172–5.Google Scholar
Piechocki, R. (1982). Der turmfalke. Wittenberg: Lutherstadt Ziemsen Verlag.Google Scholar
Pikula, J., Beklová, M. and Kubík, V. (1984). The nidobiology of Falco tinnunculus. Acta Sc. Nat. Brno, 18, 155.Google Scholar
Plesník, J. (1990). Long-term study of some urban and extraurban populations of the kestrel (Falco tinnunculus L.). In Stastiny, K. and Bejcek, V., eds., Bird census and atlas studies (pp. 453–8). Prague, Czech Republic: 11th International Conference on Bird Census and Atlas Work.Google Scholar
Plesník, J. and Dusík, M. (1994). Reproductive output of the Kestrel Falco tinnunculus in relation to small mammal dynamics in intensively cultivated farmland. In Meyburg, B.-U. and Chancellor, R. C., eds., Raptor conservation today (pp. 61–5). Tonbridge: WWGBP and Pica Press.Google Scholar
Porter, R. D. (1975). Experimental alterations of clutch size of captive American kestrels Falco sparverius. Ibis, 117, 510–5.Google Scholar
Potgieter, L. N. D., Kocan, A. A. and Kocan, K. M. (1979). Isolation of a herpesvirus from American Kestrel with inclusion body disease. J. Wildl. Dis., 15, 143–9.Google Scholar
Pranty, B., Kwater, E., Weatherman, H. and Robinson, H. P. (2004). Eurasian kestrel in Florida: first record for the south-eastern United States, with a review of its status in North America. N. Am. Birds, 58, 168–9.Google Scholar
Price, T., Kirkpatrick, M. and Arnold, S. J. (1988). Directional selection and the evolution of breeding date in birds. Science, 240, 798–9.Google Scholar
Prugh, L. R., Stoner, C. J., Epps, C. W., et al. (2009). The rise of the mesopredator. Bioscience, 59, 779–91.Google Scholar
Pulliam, H. R. (1988). Sources, sinks, and population regulation. Am. Nat., 132, 652–61.Google Scholar
Purger, J. J. (1998). Diet of red-footed falcon Falco vespertinus nestlings from hatching to fledging. Ornis Fenn., 75, 185–91.Google Scholar
Qasem, L., Cardew, A., Wilson, A., et al. (2012). Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector? PLoS ONE, 7, e31187.Google Scholar
Quinn, M. J., French, J. B., McNabb, F. M. A. and Ottinger, M. A. (2002). The effects of polychlorinated biphenyls (Aroclor 1242) on thyroxine, estradiol, molt, and plumage characteristics in the American kestrel (Falco sparverius). Environm. Toxicol. Chem., 21, 1417–22.Google Scholar
Raida, S. R. and Jaensch, S. M. (2000). Central nervous disease and blindness in Nankeen kestrels (Falco cenchroides) due to a novel Leucocytozoon-like infection. Avian Pathol., 29, 51–6.Google Scholar
Rand, A. L. (1936). The distribution and habits of Madagascar birds: summary of the field notes of the Mission Zoologique Franco-Anglo-Américaine à Madagascar. Bull. Amer. Mus. Nat. Hist., 72, 143499.Google Scholar
Ratcliffe, D. A. (1967). Decrease in eggshell weight in certain birds of prey. Nature, 215, 208–10.Google Scholar
Ratcliffe, D. A. (1970). Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some British birds. J. Appl. Ecol., 7, 67107.Google Scholar
Raubenheimer, D., Simpson, S. J. and Mayntz, D. (2009). Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct. Ecol., 23, 416.Google Scholar
Redpath, S. M., Arroyo, B. E., Etheridge, B., et al. (2002). Temperature and hen harrier productivity: from local mechanisms to geographical patterns. Ecography, 25, 533–40.Google Scholar
Regoli, F. and Giuliani, M. E. (2014). Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar. Environ. Res., 93, 106–17.Google Scholar
Rehder, N. B., Bird, D. M. and Lague, P. C. (1986). Variations in plasma corticosterone, estrone, estradiol-17β, and progesterone concentrations with forced renesting, molt, and body weight of captive female American kestrels. Gen. Comp. Endocrinol., 62, 386–93.Google Scholar
Reiter, R. J., Tan, D. X., Cabrera, J., et al. (1999). The oxidant/antioxidant network: role of melatonin. Biol. Signals Recep., 8, 5663.Google Scholar
Rejt, L. 2001. Peregrine Falcon and Kestrel in urban environments – the case of Warsaw. In Gottschalk, E., Barkow, A., Mühlenberg, M. and Settele, J., eds., Naturschutz und verhalten (pp. 81–5). Leipzig: UFZ-Bericht, UFZ Leipzig-Halle.Google Scholar
Rene de Roland, L.-A., Rabearivony, J., Razafimanjato, G., Robenarimangason, H. and Thorstrom, R. (2005a). Breeding biology and diet of Banded Kestrels Falco zoniventris on Masoala Peninsula, Madagascar. Ostrich, 76, 32–6.Google Scholar
Rene de Roland, L.-A., Rabearivony, J., Robenarimangason, H., Razafimanjato, G. and Thorstrom, R. (2005b). Breeding biology and diet of the Madagascar Kestrel (Falco newtoni) in Northeastern Madagascar. J. Rapt. Res., 39, 149–55.Google Scholar
Reuter, G., Boros, Á., Mátics, R., et al. (2016). Divergent hepatitis E virus in birds of prey, common kestrel (Falco tinnunculus) and red-footed falcon (F. vespertinus), Hungary. Infect. Genet. Evol., 43, 343–6.Google Scholar
Riddle, G. S. (1979). The kestrel in Ayrshire 1970–78. Scott. Birds, 10, 201–15.Google Scholar
Riddle, G. S. (1987). Variation in the breeding output of kestrel pairs in Ayrshire 1978–85. Scott. Birds, 14, 138–45.Google Scholar
Riddle, G. S. (1991). Season with the kestrel. Cassell and Co.Google Scholar
Riddle, G. S. (2007). Common kestrel. In Forrester, R. W., Andrews, I. J., McInerny, C. J., et al., eds., The birds of Scotland (pp. 493–6). Aberlady: The Scottish Ornithologists’ Club.Google Scholar
Riegert, J. and Fuchs, R. (2011). Fidelity to roost sites and diet composition of wintering male urban common kestrels Falco tinnunculus. Acta Ornithol., 46, 183–9.Google Scholar
Riegert, J., Fainová, D., Mikeš, V. and Fuchs, R. (2007a). How urban Kestrels Falco tinnunculus divide their hunting grounds: partitioning or cohabitation? Acta Ornithol., 42, 6976.Google Scholar
Riegert, J., Dufek, A., Fainová, D., Mikeš, V. and Fuchs, R. (2007b) Increased hunting effort buffers against vole scarcity in an urban kestrel Falco tinnunculus population. Bird Study, 54, 353–61.Google Scholar
Riegert, J., Fainová, D. and Bystřická, D. (2010). Genetic variability, body characteristics and reproductive parameters of neighbouring rural and urban common kestrel (Falco tinnuculus) populations. Popul. Ecol., 52, 73–9.Google Scholar
Rijnsdorp, A., Daan, S. and Dijkstra, C. (1981). Hunting in the kestrel, Falco tinnunculus, and the adaptive significance of daily habits. Oecologia, 50, 391406.Google Scholar
Robinson, M. R., Pilkington, J. G., Clutton-Brock, T. H., Pemberton, J. M. and Kruuk, L. E. B. (2008). Environmental heterogeneity generates fluctuating selection on a secondary sexual trait. Curr. Biol., 18, 751–7.Google Scholar
Robinson, R. A., Morrison, C. A. and Baillie, S. R. (2014). Integrating demographic data: towards a framework for monitoring wildlife populations at large spatial scales. Methods Ecol. Evol., 5, 1361–72.Google Scholar
Rockenbauch, D. (1968). Zur brutbiologie des turmfalken (Falco tinnunculus L.). Anz. Orn. Ges. Bayern, 8, 267–76.Google Scholar
Rodríguez, A., Negro, J. J., Mulero, M., et al. (2012). The eye in the sky: combined use of unmanned aerial systems and GPS data loggers for ecological research and conservation of small birds. PLoS ONE, 7, e50336.Google Scholar
Rodríguez, A., Broggi, J., Alcaide, M., Negro, J. J. and Figuerola, J. (2014). Determinants and short‐term physiological consequences of PHA immune response in lesser kestrel nestlings. J. Exp. Zool., 321, 376–86.Google Scholar
Rodríguez, B., Rodríguez, A., Siverio, F. and Siverio, M. (2018). Factors affecting the spatial distribution and breeding habitat of an insular cliff-nesting raptor community. Curr. Zool., 64, 173–81.Google Scholar
Rodríguez, C. and Bustamante, J. (2003). The effect of weather on lesser kestrel breeding success: can climate change explain historical population declines? J. Anim. Ecol., 72, 793810.Google Scholar
Romero, L. M. (2004). Physiological stress in ecology: lessons from biomedical research. Trends Ecol. Evol., 19, 249–55.Google Scholar
Romero, L. M., Dickens, M. J. and Cyr, N. E. (2009). The reactive scope model – a new model integrating homeostasis, allostasis, and stress. Horm. Behav., 55, 375–89.Google Scholar
Rubino, F. M., Pitton, M., Brambilla, G. and Colombi, A. (2006). A study of the glutathione metaboloma peptides by energy-resolved mass spectrometry as a tool to investigate into the interference of toxic heavy metals with their metabolic processes. J. Mass Spectrom., 41, 1578–93.Google Scholar
Rudolf, S. G. (1982). Foraging strategies of American kestrels during breeding. Ecology, 63, 1268–76.Google Scholar
Rutkowski, R., Rejt, Ł. and Szczuka, A. (2006). Analysis of microsatellite polymorphism and genetic differentiation in urban and rural kestrels Falco tinnunculus (L.). Pol. J. Ecol., 54: 473–80.Google Scholar
Rutkowski, R., Rejt, Ł., Tereba, A., Gryczyńska-Siemiątkowska, A. and Janic, B. (2010). Population genetic structure of the European kestrel Falco tinnunculus in central Poland. Eur. J. Wildl. Res., 56, 297305.Google Scholar
Safford, R. J. and Jones, C. G. (1997). Did organochlorine pesticide use cause declines in Mauritian forest birds? Biol. Cons., 6, 1445–51.Google Scholar
Sakamoto, K. Q., Sato, K., Ishizuka, M., et al. (2009). Can ethograms be automatically generated using body acceleration data from free ranging birds? PLoS ONE, 4, e5379.Google Scholar
Salvati, L. (2002). Spring weather and breeding success of the Eurasian Kestrel (Falco tinnunculus) in urban Rome, Italy. J. Rapt. Res., 36, 81–4.Google Scholar
Salvati, L., Manganaro, A., Fattorini, S. and Piattella, E. (1999). Population features of kestrels Falco tinnunculus in urban, suburban and rural areas in central Italy. Acta Ornithol., 34, 53–8.Google Scholar
Sapolsky, R. M., Romero, L. M. and Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrin. Rev., 21, 5589.Google Scholar
Sarno, R. J. and Gubanich, A. A. (1995). Prey selection by wild American kestrels: the influence of prey size and activity. J. Raptor Res., 29, 123–6.Google Scholar
Schifferli, A. (1965). Vom zugverhalten der in der schweiz brutenden turmfalken, Falco tinnunculus, nach den ringfunden. Orn. Beob., 62, 113.Google Scholar
Schmid, H. (1990) Die bestandsentwicklung des turmfalken Falco tinnunculus in der Schweiz. Ornithol. Beob., 87, 327–49.Google Scholar
Schmid, H., Burkhardt, M., Keller, V., et al. (2001). Die entwicklung der vogelwelt in der Schweiz. Avifauna Report Sempach 1, Annex. Schweiz: Vogelwarte Sempach.Google Scholar
Sebastian-Gonzalez, E., Perez-Garcia, J., Carrete, M., Donazar, J. and Sanchez-Zapata, J. (2018). Using network analysis to identify indicator species and reduce collision fatalities at wind farms. Biol. Cons., 224, 209–12.Google Scholar
Senapathi, D., Nicoll, M. A., Teplitsky, C., Jones, C. G. and Norris, K. (2011). Climate change and the risks associated with delayed breeding in a tropical wild bird population. Proc. R. Soc. Lond. B, 278, 3184–90.Google Scholar
Shan, Y., Pepe, J., Lu, T. H., et al. (2000). Induction of the heme oxygenase-1 gene by metalloporphyrins. Arch. Biochem. Biophys., 380, 219–27.Google Scholar
Shaw, G. and Riddle, G. S. (2003). Comparative responses of barn owls (Tyto alba) and kestrels (Falco tinnunculus) to vole cycles in South-West Scotland. In Thomson, D. B. A., Redpath, S. M., Fielding, A. H., Marquis, M. and Galbraith, C. A., eds., Birds of prey in a changing environment (pp. 131–6). Edinburgh: The Stationery Office.Google Scholar
Sheldon, B. C. and Verhulst, S. (1996). Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol., 11, 317–21.Google Scholar
Shrubb, M. (1970). The present status of the Kestrel in Sussex. Bird Study, 17, 115.Google Scholar
Shrubb, M. (1980). Farming influences on the food and hunting of Kestrels. Bird Study, 27, 109–15.Google Scholar
Shrubb, M. (1982). The hunting behaviour of some farmland kestrels. Bird Study, 28, 121–8.Google Scholar
Shrubb, M. (1993). The kestrel. London: Hamlyn.Google Scholar
Shutt, L. and Bird, D. M. (1985). Influence of nestling experience on nest-type selection in captive kestrels. Anim. Behav., 33, 1028–31.Google Scholar
Sibley, C. G. and Ahlquist, J. E. (1990). Phylogeny and classification of birds. A study in molecular evolution. New Haven, CT: Yale University Press.Google Scholar
Simons, M. J. P. (2013). Sexual coloration and aging. PhD thesis, University of Groningen, Groningen, the Netherlands.Google Scholar
Slagsvold, T., Sandvik, J., Rofstad, G., Lorensten, O. and Husby, M. (1984). On the adaptive significance of intra-clutch egg size variation in birds. The Auk, 101, 685–97.Google Scholar
Śliwa, P. and Rejt, Ł. (2006). Pustułka. Świebodzin: Wydawnictwo Klubu Przyrodników.Google Scholar
Śliwa, P., Mokwa, K. and Rejt, Ł. (2010). Migrations and wintering of the kestrel (Falco tinnunculus) in Poland. Ring, 31, 5969.Google Scholar
Smallwood, J. A. (1989). Prey preferences of free-ranging American kestrels, Falco sparvierus.Anim. Behav., 38, 712–4.Google Scholar
Smallwood, K. S. and Thelander, C. G. (2004). Developing methods to reduce bird mortality in the Altamont Pass Wind Resource Area. Final report to the California Energy Commission, PIER-EA contract No. 500–01-019, Sacramento, California, USA.Google Scholar
Smallwood, P. D. and Smallwood, J. A. (1998). Seasonal shifts in sex ratios of fledgling American kestrels (Falco sparverius paulus): the early bird hypothesis. Evol. Ecol., 12, 839–53.Google Scholar
Smart, J. and Amar, A. (2018). Diversionary feeding as a means of reducing raptor predation at seabird breeding colonies. J. Nat. Cons., 46, 4855.Google Scholar
Smiddy, P. (2017). Diet of the common kestrel Falco tinnunculus in east Cork and west Waterford: an insight into the dynamics of invasive mammal species. Biol. Envir. Proc. R. Irish Acad., 117, 131–8.Google Scholar
Smit, T., Eger, A., Haagsma, J. and Bakhuizen, T. (1987). Avian tuberculosis in wild birds in the Netherlands. J. Wildl. Dis., 23, 485–7.Google Scholar
Smits, J. E., Fernie, K. J., Bortolotti, G. R. and Marchant, T. A. (2002). Thyroid hormone suppression and cell-mediated immunomodulation in American Kestrels (Falco sparverius) exposed to PCBs. Arch. Environm. Contam. Toxicol., 43, 338–44.Google Scholar
Snow, D. W. (1968). Movements and mortality of British kestrels Falco tinnunculus. Bird Study, 15, 6583.Google Scholar
Snow, D. W. (1978). An atlas of speciation in African non-passerine birds. London: British Museum of Natural History.Google Scholar
Sockman, K. W. and Schwabl, H. (2001). Plasma corticosterone in nestling American kestrels: effects of age, handling stress, yolk androgens, and body condition. Gen. Comp. Endocrin., 122, 205–12.Google Scholar
Sockman, K. W., Schwabl, H. and Sharp, P. J. (2000). The role of prolactin in the regulation of clutch size and onset of incubation behavior in the American kestrel. Horm. Behav., 38, 168–76.Google Scholar
Sommani, E. (1986). Note sulla biologia di alcune coppie di gheppio, Falco tinnunculus, presenti in Roma. Riv. Ital. Orn., 56, 4052.Google Scholar
Sonerud, G. A. (1992). Functional response of birds of prey: biases due to the load-size effect in central place foragers. Oikos, 63, 223–32.Google Scholar
Sonerud, G. A., Steen, R., Løw, L. M., et al. (2013). Size-biased allocation of prey from male to offspring via female: family conflicts, prey selection, and evolution of sexual size dimorphism in raptors. Oecologia, 172, 93107.Google Scholar
Sorace, A., and Gustin, M. (2010). Bird species of conservation concern along urban gradients in Italy. Biod. Cons., 19, 205–21.Google Scholar
Sorensen, M. C., Hipfner, J. M., Kyser, T. K. and Norris, D. R. (2009). Carry-over effects in a Pacific seabird: stable isotope evidence that pre-breeding diet quality influences reproductive success. J. Anim. Ecol., 78, 460–7.Google Scholar
Soulé, M. E., Bolger, D. T., Alberts, A. C., et al. (1988). Reconstructed dynamics of rapid extinctions of Chaparral-requiring birds in urban habitat islands. Cons. Biol., 2, 7592.Google Scholar
Souttou, K., Baziz, B., Doumandji, S., Denys, C. and Brahimi, R. (2007). Prey selection in the common kestrel, Falco tinnunculus (Aves, Falconidae) in the Algiers suburbs (Algeria). Folia Zool., 56, 405–15.Google Scholar
Souttou, K., Manaa, A., Baziz-Neffah, F., et al. (2018). Geographic variation of the diet of the common kestrel Falco tinnunculus Linné, 1758 (Aves, Falconidae) in Algeria. Vie et Milieu – Life Environ., 68, 127–43.Google Scholar
Steen, R., Løw, L. M., Sonerud, G. A., Selås, V. and Slagsvold, T. (2010). The feeding constraint hypothesis: prey preparation as a function of nestling age and prey mass in the Eurasian kestrel. Anim. Behav., 80, 147–53.Google Scholar
Steen, R., Løw, L. M., Sonerud, G. A., Selås, V. and Slagsvold, T. (2011). Prey delivery rates as estimates of prey consumption by Eurasian Kestrel Falco tinnunculus nestlings. Ardea, 99, 18.Google Scholar
Steenhof, K. and Peterson, B. E. (2009). Site fidelity, mate fidelity, and breeding dispersal in American kestrels. Wilson J. Orn., 121, 1221.Google Scholar
Steinhagen, P. and Schellhaas, G. (1968). Pasteurellose in einer Falknerei. Berliner und Münchener Tierärtzliche Wochenschrift, 81, 72–5.Google Scholar
Stokes, A. W. (1971). Parental and courtship feeding in the red junglefowl. The Auk, 88, 21–9.Google Scholar
Strasser, E. H. and Heath, J. A. (2013). Reproductive failure of a human-tolerant species, the American Kestrel, is associated with stress and human disturbance. J. Appl. Ecol., 50, 912–9.Google Scholar
Sumasgutner, P., Schulze, C. H., Krenn, H. W. and Gamauf, A. (2014a). Conservation related conflicts in nest-site selection of the Eurasian kestrel (Falco tinnunculus) and the distribution of its avian prey. Land. Urban Plann., 127, 94103.Google Scholar
Sumasgutner, P., Vasko, V., Varjonen, R. and Korpimäki, E. (2014b). Public information revealed by pellets in nest sites is more important than ecto-parasite avoidance in the settlement decisions of Eurasian kestrels. Behav. Ecol. Sociobiol., 68, 2023–34.Google Scholar
Sumasgutner, P., Nemeth, E., Tebb, G., Krenn, H. W. and Gamauf, A. (2014c). Hard times in the city – attractive nest sites but insufficient food supply lead to low reproduction rates in a bird of prey. Front Zool., 11, 48.Google Scholar
Sumasgutner, P., Terraube, J., Coulon, A., et al. (2019). Landscape homogenization due to agricultural intensification disrupts the relationship between reproductive success and main prey abundance in an avian predator. Front. Zool., 16, 31.Google Scholar
Surai, P. (2002). Natural antioxidants in avian nutrition and reproduction. Nottingham: Nottingham University Press.Google Scholar
Surai, P. F., Speake, B. K., Noble, R. C. and Sparks, N. H. C. (1999). Tissue-specific antioxidant profiles and susceptibility to lipid peroxidation of the newly hatched chick. Biol. Trace Elem. Res., 68, 6378.Google Scholar
Tapia, L., Regos, A., Gil-Carrera, A. and Domínguez, J. (2017). Unravelling the response of diurnal raptors to land use change in a highly dynamic landscape in northwestern Spain: an approach based on satellite earth observation data. Eur. J. Wildl. Res., 63, 40.Google Scholar
Tella, J. L., Donazar, J. A., Negro, J. J. and Hiraldo, F. (1996a). Seasonal and interannual variation in the sex-ratio of lesser kestrel Falco naumanni broods. Ibis, 138, 342–5.Google Scholar
Tella, J. L., Hiraldo, F., Donázar-Sancho, J. A. and Negro, J. J. (1996b). Costs and benefits of urban nesting in the lesser kestrel. In Bird, D. M., Varland, D. E. and Negro, J. J., eds., Raptors in human landscapes: adaptations to built and cultivated environments (pp. 5360). London: Academic Press.Google Scholar
Tella, J. L., Forero, M. G., Hiraldo, F. and Donazar, J. A. (1998). Conflicts between lesser kestrel conservation and European agricultural policies as identified by habitat use analyses. Cons. Biol., 12, 593604.Google Scholar
Temple, S. A. (1977). The status and conservation of endemic kestrels on the Indian Ocean islands. In Chancellor, R. D., ed., Proceedings of the World Conference on Birds of Prey, Vienna 1975 (pp. 7483). London: International Council for Bird Preservation.Google Scholar
Temple, S. A. (1987). Foraging ecology of the Mauritius Kestrel (Falco punctatus). Biotropica, 19, 26.Google Scholar
Terraube, J. and Bretagnolle, V. (2018). Top-down limitation of mesopredators by avian top predators: a call for research on cascading effects at the community and ecosystem scale. Ibis, 160, 693702.Google Scholar
Terraube, J., Vasko, V., and Korpimaki, E. (2015). Mechanisms and reproductive consequences of breeding dispersal in a specialist predator under temporally varying food conditions. Oikos, 124, 762–71.Google Scholar
Thiollay, J.-M. (2007). Raptor population decline in West Africa. Ostrich, 78, 405–13.Google Scholar
Thiollay, J.-M. and Bretagnolle, V. (2004). Rapaces nicheurs de France: distribution, effectifs et conservation. Paris: Delachaux and Niestlé.Google Scholar
Thomas, N. J., Hunter, D. B. and Atkinson, C. T. (2007). Infectious diseases of wild birds. Ames, IA: Blackwell Publishing.Google Scholar
Thomson, A. L. (1958). The migration of British falcons (Falconidae) as shown by ringing results. British Birds, 51, 179189.Google Scholar
Tieszen, L. L. and Boutton, T. W. (1988). Stable carbon isotopes in terrestrial ecosystem research. In Rundel, P. W., Ehleringer, J. R. and Nagy, K. A., eds., Stable isotopes in ecological research (Ecological Studies 68) (pp. 167–95). Berlin: Springer.Google Scholar
Tinbergen, L. (1940). Beobachtungen über die arbeitsteilung des turmfalken (Falco tinnunculus) während der fortpflanzungsziet. Ardea, 29, 6398.Google Scholar
Tinbergen, L. (1960). The natural control of insects in pinewoods. 1: Factors influencing the intensity of predation by songbirds. Arch. Néer. Zool., 13, 265336.Google Scholar
Tingay, R. E. and Gilbert, M. (2000). Behaviour of Banded Kestrel in western Madagascar: a possible foraging association with Sickle-billed Vanga. Bull. Afric. Bird Club, 7, 111–3.Google Scholar
Toland, B. R. (1987). The effect of vegetative cover on foraging strategies, hunting success and nesting distribution of American kestrels in central Missouri. J. Raptor Res., 21, 1420.Google Scholar
Tolonen, P. and Korpimäki, E. (1994). Determinants of parental effort: a behavioural study in the Eurasian kestrel, Falco tinnunculus. Behav. Ecol. Sociobiol., 35, 355–62.Google Scholar
Tolonen, P. and Korpimaki, E. (1995). Parental effort of kestrels (Falco tinnunculus) in nest defense: effects of laying time, brood size, and varying survival prospects of offspring. Behav. Ecol., 6, 435–41.Google Scholar
Tolonen, P. and Korpimaki, E. (1996). Do kestrels adjust their parental effort to current or future benefit in a temporally varying environment? Ecoscience, 3, 165–72.Google Scholar
Umanskaja, A. S. (1981). The Miocene birds of the western Black Sea coasts of the Ukrainian SSR. Vestnik Zoologii, 17, 1721. [In Russian with English summary.]Google Scholar
Ursua, E., Serrano, D. and Tella, J. L. (2005). Does land irrigation actually reduce foraging habitat for breeding lesser kestrels? The role of crop types. Biol. Cons., 122, 643–8.Google Scholar
Valkama, J. and Korpimäki, E. (1999). Nestbox characteristics, habitat quality and reproductive success of Eurasian kestrels. Bird Study, 46, 81–8.Google Scholar
Valkama, J., Korpimäki, E. and Tolonen, P. (1995). Habitat utilization, diet and reproductive success in the kestrel in a temporally and spatially heterogeneous environment. Ornis Fenn., 72, 4961.Google Scholar
Valkama, J., Korpimäki, E., Wiehn, J. and Pakkanen, T. (2002). Inter-clutch egg size variation in kestrels Falco tinnunculus: seasonal decline under fluctuating food conditions. J. Avian Biol., 33, 426–32.Google Scholar
van de Brink, V., Henry, I., Wakamatsu, K. and Roulin, A. (2012). Melanin-based coloration in juvenile kestrels (Falco tinnunculus) covaries with anti-predatory personality traits. Ethology, 118, 673–82.Google Scholar
van Helden, Y. G., Keijer, J., Knaapen, A. M., et al. (2009). Beta-carotene metabolites enhance inflammation-induced oxidative DNA damage in lung epithelial cells. Free Radic. Biol. Med., 46, 299304.Google Scholar
van Noordwijk, A. L., Van Balen, J. H. and Scharloo, W. (1981). Genetic variation in the timing of reproduction in the great tit. Oecologia, 49, 158–66.Google Scholar
van Zyl, A. J. (1994). A comparison of the diet of the common kestrel Falco tinnunculus in South Africa and Europe. Bird Study, 41, 124–30.Google Scholar
Vasko, V., Laaksonen, T., Valkama, J. and Korpimäki, E. (2011). Breeding dispersal of Eurasian kestrels Falco tinnunculus under temporally fluctuating food abundance. J. Avian Biol., 42, 552–63.Google Scholar
Vaurie, C. (1961). Systematic notes on palearctic birds. No. 45. Falconidae: the Genus Falco (Part 2). Am. Mus. Novit., 2038, 1321.Google Scholar
Vergara, P. and Fargallo, J. A. (2007). Delayed plumage maturation in Eurasian kestrels: female mimicry, subordination signalling or both? Anim. Behav., 74, 1505–13.Google Scholar
Vergara, P. and Fargallo, J. A. (2008a). Copulation duration during courtship predicts fertility in the Eurasian kestrel Falco tinnunculus. Ardeola, 55, 153–60.Google Scholar
Vergara, P. and Fargallo, J. A. (2008b). Sex melanic colouration and sibling competition during the post-fledging dependence period. Behav. Ecol., 19, 847–53.Google Scholar
Vergara, P. and Fargallo, J. A. (2011). Multiple coloured ornaments in male common kestrels: different mechanisms to convey quality. Naturwissenschaften, 98, 289–98.Google Scholar
Vergara, P., De Neve, L. and Fargallo, J. A. (2007). Agonistic behaviour prior to laying predicts clutch size in Eurasian kestrels: an experiment with natural decoys. Anim. Behav., 74, 1515–23.Google Scholar
Vergara, P., Fargallo, J. A. and Martínez-Padilla, J. (2009). Inter-annual variation and information content of melanin-based coloration in female Eurasian kestrels. Biol. J. Linn. Soc., 97, 781–90.Google Scholar
Vergara, P., Fargallo, J. A. and Martínez-Padilla, J. (2010). Reaching independence: food supply, parent quality, and offspring phenotypic characters in kestrels. Behav. Ecol., 21, 507–12.Google Scholar
Vergara, P., Martínez-Padilla, J. and Fargallo, J. A. (2013). Differential maturation of sexual traits: revealing sex while reducing male and female aggressiveness. Behav. Ecol., 24, 237–44.Google Scholar
Vergara, P., Fargallo, J. A. and Martínez-Padilla, J. (2015). Genetic basis and fitness correlates of dynamic carotenoid-based ornamental coloration in male and female common kestrels Falco tinnunculus. J. Evol. Biol., 28, 146–54.Google Scholar
Vesey-Fitzgerald, D. (1940). On the birds of the Seychelles 1 – the endemic birds (land birds). Ibis, 82, 480–9.Google Scholar
Videler, J. J., Weihs, D. and Daan, S. (1983). Intermittent gliding in the hunting flight of the kestrel Falco tinnunculus L. J. Exp. Biol., 102, 112.Google Scholar
Viitala, J., Korpimäki, E., Palokangas, P. and Koivula, M. (1995). Attraction of common kestrels to vole scent marks visible in ultraviolet light. Nature, 373, 425–7.Google Scholar
Village, A. (1982a). The diet of Kestrels in relation to vole abundance. Bird Study, 29, 129–38.Google Scholar
Village, A. (1982b). The home range and density of kestrels in relation to vole abundance. J. Anim. Ecol., 51, 413–28.Google Scholar
Village, A. (1983). The role of nest-site availability and territorial behaviour in limiting the breeding density of kestrels. J. Anim. Ecol., 52, 635–45.Google Scholar
Village, A. (1984). Problems in estimating kestrel breeding density. Bird Study, 31, 121–5.Google Scholar
Village, A. (1985a). Spring arrival times and assortative mating of kestrels in South Scotland. J. Anim. Ecol., 54, 857–68.Google Scholar
Village, A. (1985b). Turnover, age and sex ratios of kestrels (Falco tinnunculus) in south Scotland. J. Zool., 206, 175–89.Google Scholar
Village, A. (1990). The kestrel. London: T. and A. D. Poyser.Google Scholar
Village, A., Marquiss, M. and Cook, D. C. (1980). Moult, ageing and sexing of kestrels. Ring. Migrat., 3, 53–9.Google Scholar
Villarroel, M., Bird, D. M. and Kuhnlein, U. (1998). Copulatory behaviour and paternity in the American kestrel: the adaptive significance of frequent copulations. Anim. Behav., 58, 289–99.Google Scholar
Vincent, J. (1966). Red Data Book – Aves. Morges: International Union for Conservation of Nature and Natural Resources.Google Scholar
Visser, M. E., Holleman, L. J. M. and Caro, S. P. (2009). Temperature has a causal effect on avian timing of reproduction. Proc. R. Soc. Lond. B, 276, 2323–31.Google Scholar
von Schantz, T., Bensch, S., Grahn, M., Hasselquist, D. and Wittzell, H. (1999). Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. Lond. B, 266, 112.Google Scholar
Wagner, N. D., Hillebrand, H., Wacker, A. and Frost, P. C. (2013). Nutritional indicators and their uses in ecology. Ecol. Lett., 16, 535–44.Google Scholar
Walker, L. A., Shore, R. F., Turk, A., Pereira, M. G. and Best, J. (2008). The Predatory Bird Monitoring Scheme: identifying chemical risks to top predators in Britain. Ambio, 37, 466–71.Google Scholar
Wallin, K. (1984). Decrease and recovery patterns of some raptors in relation to the introduction and ban of alkyl-mercury and DDT in Sweden. Ambio, 13, 263–5.Google Scholar
Wallin, K., Järås, T., Levin, M., Strandvik, P. and Wallin, M. (1983). Reduced adult survival and increased reproduction in Swedish kestrels. Oecologia, 60, 302–5.Google Scholar
Wallin, K., Wallin, M. L., Järås, T. and Strandvik, P. (1987). Leap-frog migration in the Swedish kestrel Falco tinnunculus population. In Eriksson, M. O. G., ed., Proceedings of the fifth Nordic ornithological congress (pp. 213–22). Goteborg: Kungl. Vetenskaps- och Vitterhets-Samhallet.Google Scholar
Wang, Y., Liu, H., Wang, H., Ma, L. and Yi, G. (2019). Polygyny in the Eurasian kestrel (Falco tinnunculus): behavior, morphology, age, heterozygosity, and relatedness. J. Rapt. Res., 53, 202–6.Google Scholar
Ward, F. P., Fairchild, D. G. and Vuicich, J. V. (1971). Inclusion body hepatitis in a prairie falcon. J. Wildl. Dis., 7, 120–4.Google Scholar
Watson, J. (1992). Nesting ecology of the Seychelles Kestrel Falco araea on Mahé, Seychelles. Ibis, 134, 259–67.Google Scholar
Watson, J. (1981). Population ecology, food and conservation of the Seychelles kestrel Falco araea on Mahé. PhD thesis, University of Aberdeen, Aberdeen, Scotland.Google Scholar
Watson, J. (1993). Breeding cycle of the Seychelles Kestrel. In Nicholls, M. K. and Clarke, R., eds., Biology and conservation of small falcons (pp. 73–9). London: Hawk and Owl Trust.Google Scholar
White, C., Olsen, P. and Kiff, L. (1994). Family Falconidae (Falcons and Caracaras). In del Hoyo, J., Elliott, A. and Sargatal, J., eds., Handbook of the birds of the world. Vol. II (pp. 216–75). Barcelona: Lynx Edicions.Google Scholar
Whitney, M. C. and Cristol, D. A. (2018). Impacts of sublethal mercury exposure on birds: a detailed review. Rev. Environ. Contam. Toxicol., 244, 113–63.Google Scholar
Whittingham, M. J. and Devereux, C. L. (2008). Changing grass height alters foraging site selection by wintering farmland birds. Basic Appl. Ecol., 9, 779–88.Google Scholar
Wiebe, K. (1996). The insurance-egg hypothesis and extra reproductive value of last-laid eggs in clutches of American kestrels. The Auk, 113, 258–61.Google Scholar
Wiebe, K. L. and Bortolotti, G. R. (1992). Facultative sex ratio manipulations in American kestrels. Behav. Ecol. Sociobiol., 30, 379–86.Google Scholar
Wiebe, K. L. and Bortolotti, G. R. (1993). Brood patches of American kestrels: an ecological and evolutionary perspective. Ornis Scand., 24, 197204.Google Scholar
Wiebe, K. L. and Bortolotti, G. R. (1994). Energetic efficiency of reproduction: the benefits of asynchronous hatching for American kestrels. J. Anim. Ecol., 63, 551–60.Google Scholar
Wiebe, K. L. and Bortolotti, G. R. (1995). Egg size and clutch size in the reproductive investment of American kestrels. J. Zool., 237, 285301.Google Scholar
Wiebe, K. L. and Bortolotti, G. R. (1996). The proximate effects of food supply on intraclutch egg-size variation in American kestrels. Can. J. Zool., 74, 118–24.Google Scholar
Wiebe, K. L., Korpimäki, E. and Wiehn, J. (1998a). Hatching asynchrony in Eurasian kestrels in relation to the abundance and predictability of cyclic prey. J. Anim. Ecol., 67, 908–17.Google Scholar
Wiebe, K. L., Wiehn, J. and Korpimäki, E. (1998b). The onset of incubation in birds: can females control hatching patterns? Anim. Behav., 55, 1043–52.Google Scholar
Wiebe, K. L., Jönsson, K. I., Wiehn, J., Hakkarainen, H. and Korpimäki, E. (2000). Behaviour of female Eurasian kestrels during laying: are there time constraints on incubation? Ornis Fenn., 77, 19.Google Scholar
Wiehn, J. (1997). Plumage characteristics as an indicator of male parental quality in the American Kestrel. J. Avian Biol., 28, 4755.Google Scholar
Wiehn, J. and Korpimäki, E. (1997). Food limitation on brood size: experimental evidence in the Eurasian kestrel. Ecology, 78, 2043–50.Google Scholar
Wiehn, J. and Korpimäki, E. (1998). Resource levels, reproduction and resistance to haematozoan infections. Proc. R. Soc. Lond. B, 265, 1197–201.Google Scholar
Wiehn, J., Korpimäki, E. and Pen, I. (1999). Haematozoan infections in the Eurasian kestrel: effects of fluctuating food supply and experimental manipulation of parental effort. Oikos, 84, 8798.Google Scholar
Wiehn, J., Ilmonen, P., Korpimäki, E., Haataja, M. and Wiebe, K. (2000). Hatching asynchrony in the Eurasian kestrel Falco tinnunculus: an experimental test of the brood reduction hypothesis. J. Anim. Ecol., 69, 8595.Google Scholar
Wiemeyer, S. N. and Porter, R. D. (1970). DDE thins eggshells of captive American kestrels. Nature, 227, 737–8.Google Scholar
Wiklund, C. G. and Village, A. (1992). Sexual and seasonal variation in territorial behaviour of kestrels, Falco tinnunculus. Anim. Behav., 43, 823–30.Google Scholar
Williams, M., Krootjes, B. B., van Steveninck, J. and van der Zee, J. (1994). The pro- and antioxidant properties of protoporphyrin IX. Biochim. Biophys. Acta, 1211, 310–6.Google Scholar
Williams, T. D. (1994). Intraspecific variation in egg size and egg composition in birds: effects on offspring fitness. Biol. Rev., 68, 3559.Google Scholar
Willoughby, E. J. and Cade, T. J. (1964). Breeding behaviour of the American kestrel (sparrow hawk). Living Bird, 3, 7596.Google Scholar
Wilson, R. P., White, C. R., Quintana, F., et al. (2006). Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J. Anim. Ecol., 75, 1081–90.Google Scholar
Wingfield, J. C., Maney, D. L., Breuner, C. W., et al. (1998). Ecological bases of hormone-behavior interactions: the ‘emergency life history stage’. Am. Zool., 38, 191206.Google Scholar
Wink, M. and Sauer-Gürth, H. (2004). Phylogenetic relationships in diurnal raptors based on nucleotide sequences of mitochondrial and nuclear marker genes. In Chancellor, R. D. and Meyburg, B.-U., eds., World working group on birds of prey (pp. 483–98). Budapest: Berlin and MME/BirdLife Hungary.Google Scholar
Work, T. H., Hurlbut, H. S. and Taylor, R. M. (1955). Indigenous wild birds of the Nile Delta as potential West Nile circulating reservoirs. Am. J. Trop. Med. Hyg., 4, 872–8.Google Scholar
Yalden, D. W. and Yalden, P. E. (1985). An experimental investigation of examining Kestrel diet by pellet analysis. Bird Study, 32, 50–5.Google Scholar
Yilmaz, S. and Yilmaz, E. (2006). Effects of melatonin and vitamin E on oxidative–antioxidative status in rats exposed to irradiation. Toxicol., 222, 17.Google Scholar
Yoda, K., Sato, K., Niizuma, Y., et al. (1999). Precise monitoring of porpoising behaviour of Adelie penguins determined using acceleration data loggers. J. Exp. Biol., 202, 3121–6.Google Scholar
Young, G. R., Dawson, A., Newton, I. and Walker, L. (2009). The timing of gonadal development and moult in three raptors with different breeding seasons: effects of gender, age and body condition. Ibis, 151, 654–66.Google Scholar
Zahavi, A. (1975). Mate selection: a selection for a handicap. J. Theor. Biol., 53, 205–14.Google Scholar
Zahavi, A. and Zahavi, A. (1997). The handicap principle: a missing piece of Darwin’s puzzle. Oxford, UK: Oxford University Press.Google Scholar
Zampiga, E., Gaibani, G. and Csermely, D. (2008a). Sexual dimorphism colours and female choice in the common kestrel. Ital. J. Zool., 75, 155–9.Google Scholar
Zampiga, E., Gaibani, G. and Csermely, D. (2008b). Ultraviolet reflectance and female mating preferences in the common kestrel (Falco tinnunculus). Can. J. Zool., 86, 479–83.Google Scholar
Zeman, M., Výboh, P., Juránì, M., et al. (1993). Effects of exogenous melatonin on some endocrine, behavioural and metabolic parameters in Japanese quail Coturnix coturnix japonica. Comp. Biochem. Physiol. Part A, 105, 323–8.Google Scholar
Zhang, L., Liu, Y. and Song, J. (2008). Genetic variation between subspecies of Common Kestrels (Falco tinnunculus) in Beijing, China. J. Raptor Res., 42, 214–9.Google Scholar
Zink, R. (1998). Fortpflanzungsstrategien kolonialer und solitärer Turmfalken (Falco tinnunculus). Diplomarbeit, Universität Wien.Google Scholar
Żmihorski, M. and Rejt, Ł. (2007). Weather-dependent variation in the cold-season diet of urban kestrels Falco tinnunculus. Acta Ornithol., 42, 107–13.Google Scholar
Zombor, K. and Tóth, M. (2015). Mivel táplálkozik a vörös vércse (Falco tinnunculus Linnaeus, 1758) Budapesten? Állattani Közlemények, 100, 111–34.Google Scholar
Zuberogoitia, I., Zabala, J. and Martínez, J. E. (2018). Moult in birds of prey: a review of current knowledge and future challenges for research. Ardeola, 65, 183207.Google Scholar
Zuk, M., Ligon, J. D. and Thornhill, R. (1992). Effects of experimental manipulations of male secondary sex characters on mate preference in red jungle fowl. Anim. Behav., 44, 9991006.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×