Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T16:16:03.311Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 August 2022

Alejandro D. de Acosta
Affiliation:
Case Western Reserve University, Ohio
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bahadur, Raghu R., and Zabell, Sandy L. 1979. Large deviations of the sample mean in general vector spaces. Ann. Probab., 7(4), 587-621.Google Scholar
Baxter, John R., Jain, Naresh C., and Varadhan, Srinivasa R. S. 1991. Some familiar examples for which the large deviation principle does not hold. Comm. Pure Appl. Math., 44(8-9), 911-23.CrossRefGoogle Scholar
Bolthausen, Erwin. 1987. Markov process large deviations in τ-topology. Stochastic Process. Appl., 25(1), 95-108.CrossRefGoogle Scholar
Bryc, Wϯodzimierz, and Dembo, Amir. 1996. Large deviations and strong mixing. Ann. Inst. H. Poincaré Probab. Statist., 32(4), 549-69.Google Scholar
Chen, Xia. 2010. Random Walk Intersections: Large Deviations and Related Topics. Mathematical Surveys and Monographs, vol. 157. American Mathematical Society, Providence, RI.Google Scholar
Conway, John B. 1985. A Course in Functional Analysis. Graduate Texts in Mathematics, vol. 96. Springer-Verlag, New York.CrossRefGoogle Scholar
Dawson, Donald A., and Gartner, Jürgen. 1987. Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics, 20(4), 247-308.Google Scholar
de Acosta, Alejandro. 1985. Upper bounds for large deviations of dependent random vectors. Z. Wahrsch. Verw. Gebiete, 69(4), 551-65.Google Scholar
de Acosta, Alejandro. 1988. Large deviations for vector-valued functionals of a Markov chain: Lower bounds. Ann. Probab., 16(3), 925-60.Google Scholar
de Acosta, Alejandro. 1990. Large deviations for empirical measures of Markov chains. J. Theoret. Probab., 3(3), 395-431.Google Scholar
de Acosta, Alejandro. 1994a. On large deviations of empirical measures in the τ topology. J. Appl. Probab., 31A, 41-7.Google Scholar
de Acosta, Alejandro. 1994b. Projective systems in large deviation theory II. Some applications. Pages 241-50 of: Hoffmann-Jørgensen, Jørgen, Kuelbs, James, and Marcus, Michael B. (eds), Probability in Banach Spaces 9 (Sandjberg, 1993). Progr. Probab., vol. 35. Birkhäuser, Boston, MA.Google Scholar
de Acosta, Alejandro, and Ney, Peter. 1998. Large deviation lower bounds for arbitrary additive functionals of a Markov chain. Ann. Probab., 26(4), 1660-82.Google Scholar
de Acosta, Alejandro, and Ney, Peter. 2014. Large deviations for additive functionals of Markov chains. Mem. Amer. Math. Soc., 228(1070), vi+108.Google Scholar
Dembo, Amir, and Zeitouni, Ofer. 1998. Large Deviations Techniques and Applications. Second edn. Applications of Mathematics, vol. 38. Springer-Verlag, New York.Google Scholar
den Hollander, Frank. 2000. Large Deviations. Fields Institute Monographs, vol. 14. American Mathematical Society, Providence, RI.Google Scholar
Deuschel, Jean-Dominique, and Stroock, Daniel W. 1989. Large Deviations. Pure and Applied Mathematics, vol. 137. Academic Press, Boston, MA.Google Scholar
Dinwoodie, Ian H. 1993. Identifying a large deviation rate function. Ann. Probab., 21(1), 216-31.Google Scholar
Dinwoodie, Ian H., and Ney, Peter. 1995. Occupation measures for Markov chains. J. Theoret. Probab., 8(3), 679-91.Google Scholar
Dinwoodie, Ian H., and Zabell, Sandy L. 1992. Large deviations for exchangeable random vectors. Ann. Probab., 20(3), 1147-66.CrossRefGoogle Scholar
Donsker, Monroe D., and Varadhan, Srinivasa R. S. 1975. Asymptotic evaluation of certain Markov process expectations for large time I. Comm. Pure Appl. Math., 28, 1-47.CrossRefGoogle Scholar
Donsker, Monroe D., and Varadhan, Srinivasa R. S. 1976. Asymptotic evaluation of certain Markov process expectations for large time III. Comm. Pure Appl. Math., 29(4), 389-461.Google Scholar
Donsker, Monroe D., and Varadhan, Srinivasa R. S. 1983. Asymptotic evaluation of certain Markov process expectations for large time IV. Comm. Pure Appl. Math., 36(2), 183-212.CrossRefGoogle Scholar
Dudley, Richard M. 2002. Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74. Cambridge University Press, Cambridge. Revised reprint of the 1989 original.Google Scholar
Dunford, Nelson, and Schwartz, Jacob T. 1958. Linear Operators Part I: General Theory. Pure and Applied Mathematics, vol. 7. Interscience Publishers (John Wiley & Sons), New York.Google Scholar
Dupuis, Paul, and Ellis, Richard S. 1997. A Weak Convergence Approach to the Theory of Large Deviations. Wiley Series in Probability and Statistics. John Wiley & Sons, New York.CrossRefGoogle Scholar
Ellis, Richard S. 1988. Large deviations for the empirical measure of a Markov chain with an application to the multivariate empirical measure. Ann. Probab., 16(4), 1496-508.Google Scholar
Feng, Jin, and Kurtz, Thomas G. 2006. Large Deviations for Stochastic Processes. Mathematical Surveys and Monographs, vol. 131. American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
Folland, Gerald B. 1999. Real Analysis. Second edn. Pure and Applied Mathematics. John Wiley & Sons, New York.Google Scholar
Gao, Fuqing, and Wang, Qinghua. 2003. Upper bound estimates of the Cramér functionals for Markov processes. Potential Anal., 19(4), 383-98.CrossRefGoogle Scholar
Garling, D. J. H. 2018. Analysis on Polish Spaces and an Introduction to Optimal Transportation. London Mathematical Society Student Texts, vol. 89. Cambridge University Press, Cambridge.Google Scholar
Gärtner, Jürgen. 1977. On large deviations from the invariant measure. Theor. Probab. Appl., 22(1), 24-39.CrossRefGoogle Scholar
Hernández-Lerma, Onésimo, and Lasserre, Jean Bernard. 2003. Markov Chains and Invariant Probabilities. Progress in Mathematics, vol. 211. Birkhauser Verlag, Basel.Google Scholar
Iscoe, Ian, Ney, Peter, and Nummelin, Esa. 1985. Large deviations of uniformly recurrent Markov additive processes. Adv. Appl. Math., 6(4), 373-412.Google Scholar
Jain, Naresh C. 1990. Large deviation lower bounds for additive functionals of Markov processes. Ann. Probab., 18(3), 1071-98.Google Scholar
Jiang, Yi Wen, and Wu, Li Ming. 2005. Large deviations for empirical measures of not necessarily irreducible countable Markov chains with arbitrary initial measures. Acta Math. Sin. (Engl. Ser.), 21(6), 1377-90.Google Scholar
Léonard, Christian. 1992. Large deviations in the dual of a normed space. Preprint.Google Scholar
Liu, Wei, and Wu, Liming. 2009. Identification of the rate function for large deviations of an irreducible Markov chain. Electron. Commun. Probab., 14, 540-51.Google Scholar
Lucchetti, Roberto. 2006. Convexity and Well-Posed Problems. CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC, vol. 22. Springer, New York.Google Scholar
Meyer, Paul-André. 1966. Probability and Potentials. Blaisdell Publishing Co., Waltham.Google Scholar
Meyn, Sean P., and Tweedie, Richard L. 1993. Markov Chains and Stochastic Stability. Communications and Control Engineering Series. Springer-Verlag London, Ltd., London.Google Scholar
Neveu, Jacques. 1964. Bases Mathématiques du Calcul des Probabilités. Masson et Cie, Éditeurs, Paris.Google Scholar
Neveu, Jacques. 1972. Martingales à Temps Discret. Masson et Cie, Éditeurs, Paris.Google Scholar
Ney, Peter, and Nummelin, Esa. 1987. Markov additive processes II: Large deviations. Ann. Probab., 15(2), 593-609.Google Scholar
Nummelin, Esa. 1984. General Irreducible Markov Chains and Nonnegative Operators. Cambridge Tracts in Mathematics, vol. 83. Cambridge University Press, Cambridge.Google Scholar
Parthasarathy, K. R. 1967. Probability Measures on Metric Spaces. Probability and Mathematical Statistics, Academic Press, New York-London.Google Scholar
Rassoul-Agha, Firas, and Seppäläinen, Timo. 2015. A Course on Large Deviations with an Introduction to Gibbs Measures. Graduate Studies in Mathematics, vol. 162. American Mathematical Society, Providence, RI.Google Scholar
Revuz, Daniel. 1984. Markov Chains. Second edn. North-Holland Mathematical Library, vol. 11. North-Holland Publishing Co., Amsterdam.Google Scholar
Royden, Halsey L. 1988. Real Analysis. Third edn. Macmillan Publishing Company, New York.Google Scholar
Schaefer, Helmut H. 1966. Topological Vector Spaces. The Macmillan Co., New York.Google Scholar
Seneta, Eugene. 1981. Nonnegative Matrices and Markov Chains. Second edn. Springer Series in Statistics. Springer-Verlag, New York.CrossRefGoogle Scholar
Stroock, Daniel W. 1984. An Introduction to the Theory of Large Deviations. Universitext. Springer-Verlag, New York.Google Scholar
Wu, Liming. 2000a. Some notes on large deviations of Markov processes. Acta Math. Sin. (Engl. Ser.), 16(3), 369-94.Google Scholar
Wu, Liming. 2000b. Uniformly integrable operators and large deviations for Markov processes. J. Funct. Anal., 172(2), 301-76.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Alejandro D. de Acosta, Case Western Reserve University, Ohio
  • Book: Large Deviations for Markov Chains
  • Online publication: 03 August 2022
  • Chapter DOI: https://doi.org/10.1017/9781009053129.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Alejandro D. de Acosta, Case Western Reserve University, Ohio
  • Book: Large Deviations for Markov Chains
  • Online publication: 03 August 2022
  • Chapter DOI: https://doi.org/10.1017/9781009053129.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Alejandro D. de Acosta, Case Western Reserve University, Ohio
  • Book: Large Deviations for Markov Chains
  • Online publication: 03 August 2022
  • Chapter DOI: https://doi.org/10.1017/9781009053129.024
Available formats
×