Published online by Cambridge University Press: 05 August 2012
Many of the greatest mathematicians — Euler, Gauss, Lagrange, Riemann, Poincaré, Hilbert, Birkhoff, Atiyah, Arnold, Smale — were well versed in mechanics and many of the greatest advances in mathematics use ideas from mechanics in a fundamental way. Why is it no longer taught as a basic subject to mathematicians?
AnonymousI venture to hope that my lectures may interest engineers, physicists, and astronomers as well as mathematicians. If one may accuse mathematicians as a class of ignoring the mathematical problems of the modern physics and astronomy, one may, with no less justice perhaps, accuse physicists and astronomers of ignoring departments of the pure mathematics which have reached a high degree of development and are fitted to render valuable service to physics and astronomy. It is the great need of the present in mathematical science that the pure science and those departments of physical science in which it finds its most important applications should again be brought into the intimate association which proved so fruitful in the work of Lagrange and Gauss.
Felix Klein, 1896These lectures cover a selection of topics from recent developments in the geometric approach to mechanics and its applications. In particular, we emphasize methods based on symmetry, especially the action of Lie groups, both continuous and discrete, and their associated Noether conserved quantities veiwed in the geometric context of momentum maps. In this setting, relative equilibria, the analogue of fixed points for systems without symmetry are especially interesting. In general, relative equilibria are dynamic orbits that are also group orbits.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.