Published online by Cambridge University Press: 05 February 2016
Abstract
Variational methods are investigated asymptotically and numerically to model water waves in tanks with wave generators. As a validation, our modelling results using (dis)continuous Galerkin finite element methods will be compared to a soliton splash event resulting after a sluice gate is removed during a finite time in a long water channel with a contraction at its end.
Introduction
A popular approach in the modelling of nonlinear water waves is to make the approximations that the three-dimensional fluid velocity u is irrotational and divergent free, such that u = ∇ϕ and ∇ · u = ∇2ϕ = 0, and that the dynamics is inviscid, such that the dynamics is governed by variational and Hamiltonian dynamics [1, 2]. At least symbolically one can invert this Laplace equation for the interior potential ϕ and reduce the dynamics to the free surface, expressed in terms of the potential ϕs at the free surface and the position of this free surface. For non-overturning waves, this free surface dynamics can be expressed in terms of the water depth h = h(x, y, t) and ϕs(x, y, t) = ϕ(x, y, z = b + h, t) with horizontal coordinates x and y as well as time t. Here the fixed topography is denoted by b = b(x, y). The free surface thus lies at the vertical level z = b(x, y)+h(x, y, t), parametrised by x and y.
One then often considers the initial value problem governed by autonomous Hamiltonian dynamics for h and ϕs with initial conditions h(x, y,0) and ϕs(x, y,0) without any forcing or dissipation. In practical situations, however, waves are generated continuously by wave makers or temporarily by opening a sluice gate, both involving time dependent internal or boundary conditions. This implies that the dynamics is non-autonomous, including explicit dependence of the equations on time. Sometimes, these non-autonomous aspects can be included in the variational principles governing the wave dynamics.
We will therefore start to formulate finite-dimensional variational dynamics in which the variational principle indeed depends explicitly on time. The forced-dissipative nonlinear pendulum with the harmonic oscillator as linearisation is a first example of such a non-autonomous variational principle.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.