Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T14:19:23.675Z Has data issue: false hasContentIssue false

Chapter Six - Vertebrate viruses in polar ecosystems

from Part II - Biodiversity, bioenergetic processes, and biotic and abiotic interactions

Published online by Cambridge University Press:  28 September 2020

Guido di Prisco
Affiliation:
National Research Council of Italy
Howell G. M. Edwards
Affiliation:
University of Bradford
Josef Elster
Affiliation:
University of South Bohemia, Czech Republic
Ad H. L. Huiskes
Affiliation:
Royal Netherlands Institute for Sea Research
Get access

Summary

Viruses are non-cellular living entities. Their particles are formed by a nucleic acid surrounded by a protein capsid, which together form the so-called nucleocapsid. Nucleocapsids of some virus species are additionally enveloped by a host-cell-derived lipid envelope containing viral proteins. All three structural components (nucleic acid, capsid and envelope) are incredibly variable; for example, the viral genome can be encoded by either an RNA or DNA molecule, which can be single or double stranded, linear or circular, unsegmented or segmented, etc.

Type
Chapter
Information
Life in Extreme Environments
Insights in Biological Capability
, pp. 126 - 148
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adouchief, S., Smura, T., Sane, J., Vapalahti, O., Kurkela, S. (2016). Sindbis virus as a human pathogen: epidemiology, clinical picture and pathogenesis. Reviews in Medical Virology, 26, 221241.Google Scholar
Akerstedt, J., Lillehaug, A., Larsen, I.L., et al. (2010). Serosurvey for canine distemper virus, canine adenovirus, Leptospira interrogans, and Toxoplasma gondii in free-ranging canids in Scandinavia and Svalbard. Journal of Wildlife Diseases, 46, 474480.CrossRefGoogle ScholarPubMed
Alexander, D.J., Manvell, R.J., Collins, M.S., et al. (1989). Characterization of paramyxoviruses isolated from penguins in Antarctica and sub-Antarctica during 1976-1979. Archives of Virology, 109, 135143.CrossRefGoogle ScholarPubMed
Andersen, J.H., Berzaghi, F., Christensen, T., et al. (2017). Potential for cumulative effects of human stressors onfish, sea birds and marine mammals in Arctic waters. Estuarine, Coastal and Shelf Science, 184, 202206.CrossRefGoogle Scholar
Austin, F.J., Webster, R.G. (1993). Evidence of ortho- and paramyxoviruses in fauna from Antarctica. Journal of Wildlife Diseases, 29, 568571.Google Scholar
Balboni, A., Tryland, M., Mørk, T., et al. (2019). Unique genetic features of canine adenovirus type 1 (CAdV-1) infecting red foxes (Vulpes vulpes) in northern Norway and arctic foxes (Vulpes lagopus) in Svalbard. Veterinary Research Communications, 43(2), 6776.Google Scholar
Ballard, W.B., Krausman, P.R. (1997). Occurrence of rabies in wolves of Alaska. Journal of Wildlife Diseases, 33, 242245.Google Scholar
Ballinger, M.J., Bruenn, J.A., Hay, J., Czechowski, D., Taylor, D.J. (2014). Discovery and evolution of bunyavirids in arctic phantom midges and ancient bunyavirid-like sequences in insect genomes. Journal of Virology, 88, 87838794.Google Scholar
Ballinger, M.J., Medeiros, A.S., Qin, J., Taylor, D.J. (2017). Unexpected differences in the population genetics of phasmavirids. Virus Evolution, 3, vex015.Google Scholar
Beresford, D. (2011). Insect collections from Polar Bear Provincial Park, Ontario, with new records. Journal of the Entomological Society of Ontario, 142, 1927.Google Scholar
Beyrer, C., Wirtz, A.L., O’Hara, G., Léon, N., Kazatchkine, M. (2017). The expanding epidemic of HIV-1 in the Russian Federation. PLoS Medicine, 14, e1002462.CrossRefGoogle ScholarPubMed
Bjorn-Mortensen, K., Ladefoged, K., Obel, N., Helleberg, M. (2013). The HIV epidemic in Greenland: a slow spreading infection among adult heterosexual Greenlanders. International Journal of Circumpolar Health, 72, 19558.CrossRefGoogle Scholar
Blix, A.S. (2016). Adaptations to polar life in mammals and birds. Journal of Experimental Biology, 219(Pt 8), 10931105.Google Scholar
Bohm, J., Blixenkrone-Møller, M., Lund, E. (1989). A serious outbreak of canine distemper among sled-dogs in northern Greenland. Arctic Medical Research, 48, 195203.Google Scholar
Børresen, M.L., Andersson, M., Wohlfahrt, J., et al. (2015). Hepatitis B prevalence and incidence in Greenland: a population-based cohort study. American Journal of Epidemiology, 181, 422430.Google Scholar
Borriss, M., Helmke, E., Hanschke, R., Schweder, T. (2003). Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice. Extremophiles, 7, 377384.Google Scholar
Bouckaert, R., Simons, B.C., Krarup, H., Friesen, T.M., Osiowy, C. (2017). Tracing hepatitis B virus (HBV) genotype B5 (formerly B6) evolutionary history in the circumpolar Arctic through phylogeographic modelling. PeerJ, 5, e3757.CrossRefGoogle ScholarPubMed
Bruce, M., Zulz, T., Koch, A. (2016). Surveillance of infectious diseases in the Arctic. Public Health, 137, 512.CrossRefGoogle ScholarPubMed
Buck, C.B., Van Doorslaer, K., Peretti, A., et al. (2016). The ancient evolutionary history of polyomaviruses. PLoS Pathogens, 12, e1005574.CrossRefGoogle ScholarPubMed
Callan, R.J., Early, G., Kida, H., Hinshaw, V.S., 1995. The appearance of H3 influenza viruses in seals. Journal of General Virology, 76( Pt 1), 199203.CrossRefGoogle ScholarPubMed
Cameron, A.S., Moore, B.W. (1968). The epidemiology of respiratory infection in an isolated Antarctic community. Journal of Hygiene (London), 66, 427437.CrossRefGoogle Scholar
Carson, P.K., Holloway, K., Dimitrova, K., et al. (2017). The seasonal timing of snowshoe hare virus transmission on the Island of Newfoundland, Canada. Journal of Medical Entomology, 54, 712718.Google Scholar
Cattet, M.R., Duignan, P.J., House, C.A., Aubin, D.J. (2004). Antibodies to canine distemper and phocine distemper viruses in polar bears from the Canadian arctic. Journal of Wildlife Diseases, 40, 338342.Google Scholar
Cavicchioli, R. (2015). Microbial ecology of Antarctic aquatic systems. Nature Reviews Microbiology, 13, 691706.CrossRefGoogle ScholarPubMed
Chan, F.T., Stanislawczyk, K., Sneekes, A.C., et al. (2019). Climate change opens new frontiers for marine species in the Arctic: current trends and future invasion risks. Global Change Biology, 25, 2538.CrossRefGoogle ScholarPubMed
Ching, L.K., Gounder, P.P., Bulkow, L., et al. (2016). Incidence of hepatocellular carcinoma according to hepatitis B virus genotype in Alaska Native people. Liver International, 36, 15071515.CrossRefGoogle ScholarPubMed
Claverie, J.M. (2006). Viruses take center stage in cellular evolution. Genome Biology, 7, 110.CrossRefGoogle ScholarPubMed
Colangelo-Lillis, J.R., Deming, J.W. (2013). Genomic analysis of cold-active Colwelliaphage 9 A and psychrophilic phage-host interactions. Extremophiles, 17, 99114.Google Scholar
Corbet, P.S., Downe, A.E.R. (1966). Natural hosts of mosquitoes in Northern Ellesmere Island. Arctic, 19, 153161.Google Scholar
Culler, L.E., Ayres, M.P., Virginia, R.A. (2015). In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster. Proceedings of the Royal Society of London Series B: Biological Sciences, 282, 18.Google Scholar
Cupp, E.W., Maré, C.J., Cupp, M.S., Ramberg, F.B. (1992). Biological transmission of vesicular stomatitis virus (New Jersey) by Simulium vittatum (Diptera: Simuliidae). Journal of Medical Entomology, 29, 137140.Google Scholar
das Neves, C.G., Roth, S., Rimstad, E., Thiry, E., Tryland, M. (2010). Cervid herpesvirus 2 infection in reindeer: a review. Veterinary Microbiology, 143, 7080.CrossRefGoogle ScholarPubMed
Deardorff, E.R., Nofchissey, R.A., Cook, J.A., et al. (2013). Powassan virus in mammals, Alaska and New Mexico, U.S.A., and Russia, 2004–2007. Emerging Infectious Diseases, 19, 20122016.Google Scholar
Descamps, S. (2013). Winter temperature affects the prevalence of ticks in an Arctic seabird. PLoS One 8, e65374.Google Scholar
Descamps, S., Aars, J., Fuglei, E., et al. (2017). Climate change impacts on wildlife in a High Arctic archipelago – Svalbard, Norway. Global Change Biology, 23(2), 490–502.Google Scholar
Di Sabatino, D., Lorusso, A., Di Francesco, C.E., et al. (2014). Arctic lineage-canine distemper virus as a cause of death in Apennine wolves (Canis lupus) in Italy. PLoS One, 9, e82356.Google Scholar
Di Sabatino, D., Di Francesco, G., Zaccaria, G., et al. (2016). Lethal distemper in badgers (Meles meles) following epidemic in dogs and wolves. Infection Genetics and Evolution, 46, 130137.Google Scholar
Dietrich, M., Gómez-Díaz, E., McCoy, K.D. (2011). Worldwide distribution and diversity of seabird ticks: implications for the ecology and epidemiology of tick-borne pathogens. Vector Borne Zoonotic Diseases, 11, 453470.Google Scholar
Drebot, M.A. (2015.) Emerging mosquito-borne bunyaviruses in Canada. Canada Communicable Diseases Report, 41, 117123.Google Scholar
Dubois, A., Galan, M., Cosson, J.F., et al. (2017). Microevolution of bank voles (Myodes glareolus) at neutral and immune-related genes during multiannual dynamic cycles: consequences for Puumala hantavirus epidemiology. Infection Genetics and Evolution, 49, 318329.Google Scholar
Duignan, P.J., Saliki, J.T., St Aubin, D.J., House, J.A., Geraci, J.R. (1994). Neutralizing antibodies to phocine distemper virus in Atlantic walruses (Odobenus rosmarus rosmarus) from Arctic Canada. Journal of Wildlife Diseases, 30, 9094.Google Scholar
Duignan, P.J., Van Bressem, M.F., Baker, J.D., et al. (2014). Phocine distemper virus: current knowledge and future directions. Viruses, 6, 50935134.Google Scholar
Durden, L.A., Beckmen, K.B., Gerlach, R.F. (2016). New Records of Ticks (Acari: Ixodidae) From Dogs, Cats, Humans, and Some Wild Vertebrates in Alaska: Invasion Potential. Journal of Medical Entomology, 53(6), 13911395.Google Scholar
Elsterova, J., Cerny, J., Mullerova, J., et al. (2015). Search for tick-borne pathogens in the Svalbard Archipelago and Jan Mayen. Polar Research, 34, 17.Google Scholar
Evander, M., Putkuri, N., Eliasson, M., et al. (2016). Seroprevalence and risk factors of Inkoo Virus in Northern Sweden. American Journal of Tropical Medicine and Hygiene, 94, 11031106.Google Scholar
Fagre, A.C., Patyk, K.A., Nol, P., et al. (2015). Review of infectious agents in polar bears (Ursus maritimus) and their long-term ecological relevance. Ecohealth, 12(3), 528539. doi:10.1007/s10393-015-1023-6. Erratum in: Ecohealth, 2015 Sep;12(3):540.Google Scholar
Fahsbender, E., Burns, J.M., Kim, S., et al. (2017). Diverse and highly recombinant anelloviruses associated with Weddell seals in Antarctica.Virus Evolution, 3, vex017.CrossRefGoogle ScholarPubMed
Fargeaud, D., Bugand, M., Précausta, P., Soulebot, J.P., Tektoff, J. (1982). Thermostability of the rabies virion. Optical density measurement technique applications. Comparative Immunology Microbiology & Infectious Diseases, 5, 3947.Google Scholar
Fields, B.N., Knipe, D.M., Howley, P.M. (2007). In: D.M. Knipe, P.M. Howley (editors-in-chief); D.E. Griffin et al. (associate editors) Fields’ Virology, 5th ed. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, PA/London.Google Scholar
Follmann, E.H., Garner, G.W., Evermann, J.F., McKeirnan, A.J. (1996). Serological evidence of morbillivirus infection in polar bears (Ursus maritimus) from Alaska and Russia. Veterinary Record, 138, 615618.Google Scholar
Gagnon, C.A., Allard, V., Cloutier, G. (2016). Canine parvovirus type 2b is the most prevalent genomic variant strain found in parvovirus antigen positive diarrheic dog feces samples across Canada. Canadian Veterinary Journal, 57, 2931.Google Scholar
Gaidet, N., Leclercq, I., Batéjat, C., et al. (2018). Avian influenza virus surveillance in high arctic breeding geese, Greenland. Avian Diseases, 62, 237240.CrossRefGoogle ScholarPubMed
Gardner, H., Kerry, K., Riddle, M., Brouwer, S., Gleeson, L. (1997). Poultry virus infection in Antarctic penguins. Nature, 387, 245.Google Scholar
Geraci, J.R., St Aubin, D.J., Barker, I.K., et al. (1982). Mass mortality of harbor seals: pneumonia associated with influenza A virus. Science, 215, 11291131.Google Scholar
Goddard, A., Leisewitz, A.L. (2010). Canine parvovirus. Veterinary Clinics of North America Small Animal Practice, 40, 10411053.CrossRefGoogle ScholarPubMed
Gounder, P.P., Bulkow, L.R., Snowball, M., et al. (2016). Hepatocellular carcinoma risk in Alaska native children and young adults with hepatitis B virus: retrospective cohort analysis. Journal of Pediatrics, 178, 206213.CrossRefGoogle Scholar
Groth, M., Lange, J., Kanrai, P., et al. (2014). The genome of an influenza virus from a pilot whale: relation to influenza viruses of gulls and marine mammals. Infection Genetics and Evolution, 24, 183186.CrossRefGoogle ScholarPubMed
Härkönen, T., Dietz, R., Reijnders, P., et al. (2006). The 1988 and 2002 phocine distemper virus epidemics in European harbour seals. Diseases of Aquatic Organisms, 68, 115130.CrossRefGoogle ScholarPubMed
Hartby, C.M., Krog, J.S., Merkel, F., et al. (2016). First characterization of avian influenza viruses from Greenland 2014. Avian Diseases, 60, 302310.Google Scholar
Heide-Joergensen, M.P., Haerkoenen, T., Aaberg, P. (1992). Long-term effects of epizootic in harbor seals in the Kattegat-Skagerak and adjacent areas. AMBIO A Journal of the Human Environment, 21, 511516.Google Scholar
Hill, N.J., and Runstadler, J.A. (2016). A bird’s eye view of influenza A virus transmission: challenges with characterizing both sides of a co-evolutionary dynamic. Integrative and Comparative Biology, 56(2), 304316.CrossRefGoogle ScholarPubMed
Holmes, M.J., Allen, T.R., Bradburne, A.F., Stott, E.J. (1971). Studies of respiratory viruses in personnel at an Antarctic base. Journal of Hygiene (London), 69, 187199.Google Scholar
Hubálek, Z., Rudolf, I. (2012). Tick-borne viruses in Europe. Parasitology Research, 111, 936.Google Scholar
Hurt, A.C., Vijaykrishna, D., Butler, J., et al. (2014). Detection of evolutionarily distinct avian influenza A viruses in antarctica. MBio, 5, e01098–01014.Google Scholar
Hurt, A.C., Su, Y.C., Aban, M., et al. (2016). Evidence for the introduction, reassortment, and persistence of diverse Influenza A viruses in Antarctica. Journal of Virology, 90, 96749682.Google Scholar
Hussein, I.T., Krammer, F., Ma, E., et al. (2016). New England harbor seal H3N8 influenza virus retains avian-like receptor specificity. Science Report, 6, 21428.Google Scholar
Jaenike, J. (2012). Population genetics of beneficial heritable symbionts. Trends in Ecology & Evolution, 27, 226232.Google Scholar
Jansen, M.D., Bang Jensen, B., McLoughlin, M.F., et al. (2017). The epidemiology of pancreas disease in salmonid aquaculture: a summary of the current state of knowledge. Journal of Fish Diseases, 40, 141155.CrossRefGoogle ScholarPubMed
Julkunen, I., Brummer-Korvenkontio, M., Hautanen, A., et al. (1986). Elevated serum immune complex levels in Pogosta disease, an acute alphavirus infection with rash and arthritis. Journal of Clinical and Laboratory Immunology, 21, 7782.Google Scholar
Kaaden, O.R., Eichhorn, W., Essbauer, S. (2002). Recent developments in the epidemiology of virus diseases. Journal of Veterinary Medicine B: Infectious Diseases and Veterinary Public Health, 49, 36.Google Scholar
Kautto, A.H., Alenius, S., Mossing, T., et al. (2012). Pestivirus and alphaherpesvirus infections in Swedish reindeer (Rangifer tarandus tarandus L.). Veterinary Microbiology, 156, 6471.Google Scholar
Kempf, F., Boulinier, T., De Meeûs, T., Arnathau, C., McCoy, K.D. (2009). Recent evolution of host-associated divergence in the seabird tick Ixodes uriae. Molecular Ecology, 18, 44504462.CrossRefGoogle ScholarPubMed
Kernbauer, E., Ding, Y., Cadwell, K. (2014). An enteric virus can replace the beneficial function of commensal bacteria. Nature, 516, 9498.Google Scholar
Kirk, C.M., Amstrup, S., Swor, R., Holcomb, D., O’Hara, T.M. (2010). Morbillivirus and Toxoplasma exposure and association with hematological parameters for southern Beaufort Sea polar bears: potential response to infectious agents in a sentinel species. Ecohealth, 7, 321331.Google Scholar
Kramvis, A. (2014). Genotypes and genetic variability of hepatitis B virus. Intervirology, 57, 141150.Google Scholar
Krarup, H.B., Andersen, S., Madsen, P.H., et al. (2008). Benign course of long-standing hepatitis B virus infection among Greenland Inuit? Scandinavian Journal of Gastroenterology, 43, 334343.CrossRefGoogle ScholarPubMed
Krog, J.S., Hansen, M.S., Holm, E., et al. (2015). Influenza A(H10N7) virus in dead harbor seals, Denmark. Emerging Infectious Diseases, 21, 684687.Google Scholar
Kumar, A. (2016). HIV/aids risk and prevention issues among Inuit living in Nunavut Territory of Canada. In Vivo, 30, 905916.Google Scholar
La Linn, M., Gardner, J., Warrilow, D., et al. (2001). Arbovirus of marine mammals: a new alphavirus isolated from the elephant seal louse, Lepidophthirus macrorhini. Journal of Virology, 75, 41034109.Google Scholar
Larska, M. (2015). Pestivirus infection in reindeer (Rangifer tarandus). Frontiers in Microbiology, 6, 1187.Google Scholar
Laws, R.M., Taylor, R.J.F. (1957). A mass dying of Crabeater Seals, Lobodon Carcinophague (Gray). Journal of Zoology, 129, 315324.Google Scholar
Lee, H.S., Zhdanova, S.N., Vladimirtsev, V.A., et al. (2010). Epidemiology of Viliuisk encephalomyelitis in Eastern Siberia. Epidemiology, 21, 2430.Google Scholar
Lee, R.E., Baust, J.G. (1987). Cold-hardiness in the antarctic tick, Ixodes-Uriae. Physiological Zoology, 60, 499506.Google Scholar
Liberda, E.N., Meldrum, R., Charania, N.A., Davey, R., Tsuji, L.J. (2017). Avian influenza prevalence among hunter-harvested birds in a remote Canadian First Nation community. Rural Remote Health, 17, 3864.Google Scholar
Loewen, K., Prins, B., Philibert, H. (1990). Northwest Territories. Rabies in a polar bear.Canadian Veterinary Journal, 31, 457.Google Scholar
Lugg, D., Shepanek, M. (1999). Space analogue studies in Antarctica. Acta Astronaut, 44, 693699.Google Scholar
Lvov, D.K., Vladimirtseva, E.A., Butenko, A.M., et al. (1988). Identity of Karelian fever and Ockelbo viruses determined by serum dilution-plaque reduction neutralization tests and oligonucleotide mapping. American Journal of Tropical Medicine and Hygiene, 39, 607610.Google Scholar
Maat, D.S., Biggs, T., Evans, C., et al. (2017). Characterization and temperature dependence of arctic Micromonas polaris viruses. Viruses 9, pii: E134.Google Scholar
Macdonald, E., Handeland, K., Blystad, H., et al. (2011). Public health implications of an outbreak of rabies in arctic foxes and reindeer in the Svalbard archipelago, Norway, September 2011. Eurosurveillance, 16, pii: 19985.Google Scholar
Major, L., Linn, M.L., Slade, R.W., et al. (2009). Ticks associated with macquarie island penguins carry arboviruses from four genera. PLoS One, 4, e4375.Google Scholar
Mateu, M.G. (2013). Assembly, stability and dynamics of virus capsids. Archives of Biochemistry and Biophysics, 531, 6579.Google Scholar
Márquez, L.M., Redman, R.S., Rodriguez, R.J., Roossinck, M.J. (2007). A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science, 315, 513515.Google Scholar
McLean, C.A., Masters, C.L., Vladimirtsev, V.A., et al. (1997). Viliuisk encephalomyelitis: review of the spectrum of pathological changes. Neuropathology and Applied Neurobiology, 23, 212217.Google Scholar
McLean, D.M., Clarke, A.M., Goddard, E.J., et al. (1973). California encephalitis virus endemicity in the Yukon Territory, 1972. Journal of Hygiene (London), 71, 391402.Google Scholar
Mehta, S.K., Pierson, D.L., Cooley, H., Dubow, R., Lugg, D. (2000). Epstein-Barr virus reactivation associated with diminished cell-mediated immunity in antarctic expeditioners. Reviews in Medical Virology, 61, 235240.Google Scholar
Miller, G., Watts, J., Shellam, G. (2008). Viral antibodies in SouthPolar Skuas around Davis Station, Antarctica. Antarctic Science, 20, 455461.Google Scholar
Mustonen, J., Outinen, T., Laine, O., et al. (2017). Kidney disease in Puumala hantavirus infection. Infectious Diseases (London), 49, 321332.Google Scholar
Mørk, T., Prestrud, P. (2004). Arctic rabies: a review. Acta Veterinaria Scandinavica, 45, 19.Google Scholar
Müllerová, J., Elsterová, J., Jiří, Č., et al. (2018). No indication of arthropod-vectored viruses in mosquitoes (Diptera: Culicidae) collected on Greenland and Svalbard. Polar Biology, 41, 15811586.Google Scholar
Nielsen, O., Clavijo, A., Boughen, J.A (2001). Serologic evidence of influenza A infection in marine mammals of arctic Canada. Journal of Wildlife Diseases, 37, 820825.Google Scholar
Odegaard, O.A., Krogsrud, J. (1981). Rabies in Svalbard: infection diagnosed in arctic fox, reindeer and seal. Veterinary Record, 109, 141142.Google Scholar
Olsen, B., Munster, V.J., Wallensten, A., et al. (2006). Global patterns of influenza a virus in wild birds. Science, 312, 384388.Google Scholar
Orpetveit, I., Ytrehus, B., Vikoren, T., et al. (2011). Rabies in an Arctic fox on the Svalbard archipelago, Norway, January 2011. Eurosurveillance, 16, 12.Google Scholar
Osiowy, C., Simons, B.C., Rempel, J.D. (2013). Distribution of viral hepatitis in indigenous populations of North America and the circumpolar Arctic. Antiviral Therapy, 18, 467473.Google Scholar
Panum, P.L. (2018). Observations Made During the Epidemic of Measles on the Faroe Islands in the Year 1846. Franklin Classics Trade Press, Lebanon, NJ.Google Scholar
Park, Y.M., Kim, J.H., Gu, S.H., et al. (2012). Full genome analysis of a novel adenovirus from the South Polar skua (Catharacta maccormicki) in Antarctica. Virology, 422, 144150.Google Scholar
Parkinson, A.J., Evengard, B., Semenza, J.C., et al. (2014). Climate change and infectious diseases in the Arctic: establishment of a circumpolar working group. International Journal of Circumpolar Health, 73.Google Scholar
Philippa, J.D., Leighton, F.A., Daoust, P-Y., et al. (2004). Antibodies to selected pathogens in free-ranging terrestrial carnivores and marine mammals in Canada. Veterinary Record, 155, 135140.Google Scholar
Piersma, T. (1997). Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure? Oikos, 623–631.Google Scholar
Piersma, T., Mendes, L., Hennekens, J., et al. (2001). Breeding plumage honestly signals likelihood of tapeworm infestation in females of a long-distance migrating shorebird, the bar-tailed godwit. Zoology (Jena), 104, 4148.Google Scholar
Pirisinu, L., Tran, L., Chiappini, B., et al. (2018). Novel type of chronic wasting disease detected in moose (Alces alces), Norway. Emerging Infectious Diseases, 24, 22102218.Google Scholar
Plyusnin, A., Hörling, J., Kanerva, M., et al. (1997). Puumala hantavirus genome in patients with nephropathia epidemica: correlation of PCR positivity with HLA haplotype and link to viral sequences in local rodents. Journal of Clinical Microbiology, 35, 10901096.Google Scholar
Plyusnin, A., Vapalahti, O., Lundkvist, A., Henttonen, H., Vaheri, A. (1996). Newly recognised hantavirus in Siberian lemmings. Lancet, 347, 1835.Google Scholar
Putkuri, N., Kantele, A., Levanov, L., et al. (2016). Acute human Inkoo and Chatanga virus infections, Finland. Emerging Infectious Diseases, 22, 810817.Google Scholar
Ramey, A.M., Reeves, A.B., TeSlaa, J.L., et al. (2016). Evidence for common ancestry among viruses isolated from wild birds in Beringia and highly pathogenic intercontinental reassortant H5N1 and H5N2 influenza A viruses. Infection, Genetics and Evolution, 40, 176185.Google Scholar
Rastrojo, A., Alcamí, A. (2018). Viruses in polar lake and soil ecosystems. Advances in Virus Research, 101, 3954.Google Scholar
Razzauti, M., Plyusnina, A., Sironen, T., Henttonen, H., Plyusnin, A. (2009). Analysis of Puumala hantavirus in a bank vole population in northern Finland: evidence for co-circulation of two genetic lineages and frequent reassortment between strains. Journal of General Virology, 90, 1923–1931.Google Scholar
Reilley, B., Haberling, D. L., Person, M., et al. (2018). Assessing New Diagnoses of HIV Among American Indian/Alaska Natives Served by the Indian Health Service, 2005–2014. Public Health Reports, 133(2), 163168.Google ScholarPubMed
Rex, K.F., Andersen, S., Krarup, H.B. (2015). Hepatitis B among Inuit: a review with focus on Greenland Inuit. World Journal of Hepatology, 7, 12651271.Google Scholar
Reyes, D.P., Brinley, A.A., Blue, R.S., et al. (2017). Clinical herpes zoster in Antarctica as a model for spaceflight. Aerospace Medicine and Human Performance, 88, 784788.Google Scholar
Ringrose, J.L., Abraham, K.F., Beresford, D.V. (2013). New range records of mosquitoes (Diptera: Culicidae) from northern Ontario. Journal of the Entomological Society of Ontario, 144, 314.Google Scholar
Robertson, N.L. (2007). Identification and characterization of a new virus in the genus Potyvirus from wild populations of Angelica lucida L. and A. genuflexa Nutt., family Apiaceae. Archives of Virology, 152, 16031611.Google Scholar
Robertson, N.L., French, R. (2007). Genetic analysis of a novel Alaska barley yellow dwarf virus in the family Luteoviridae. Archives of Virology, 152, 369382.Google Scholar
Robertson, N.L., Côté, F., Paré, C., et al. (2007). Complete nucleotide sequence of Nootka lupine vein-clearing virus. Virus Genes, 35, 807814.Google Scholar
Sakamoto, T., Tanaka, Y., Simonetti, J., et al. (2007). Classification of hepatitis B virus genotype B into 2 major types based on characterization of a novel subgenotype in Arctic indigenous populations. Journal of Infectious Diseases, 196, 14871492.Google Scholar
Sasai, S., Tamura, K., Tojo, M., et al. (2018). A novel non-segmented double-stranded RNA virus from an Arctic isolate of Pythium polare. Virology, 522, 234243.CrossRefGoogle ScholarPubMed
Säwström, C., Lisle, J., Anesio, A.M., Priscu, J.C., Laybourn-Parry, J. (2008). Bacteriophage in polar inland waters. Extremophiles, 12, 167175.Google Scholar
Shearn-Bochsler, V., Green, D.E., Converse, K.A., et al. (2008). Cutaneous and diphtheritic avian poxvirus infection in a nestling Southern Giant Petrel (Macronectes giganteus) from Antarctica. Polar Biology, 31, 569573.Google Scholar
Shi, M., Lin, X.D., Tian, J.H., et al. (2016). Redefining the invertebrate RNA virosphere. Nature, 540, 539543.Google Scholar
Skoge, R.H., Brattespe, J., Økland, A.L., Plarre, H., Nylund, A. (2018). New virus of the family Flaviviridae detected in lumpfish (Cyclopterus lumpus). Archives of Virology, 163, 679685.Google Scholar
Skogh, M., Espmark, A. (1982). Ockelbo disease: epidemic arthritis-exanthema syndrome in Sweden caused by Sindbis-virus like agent. Lancet, 1, 795796.Google Scholar
Smeele, Z.E., Ainley, D.G., Varsani, A. (2018). Viruses associated with Antarctic wildlife: From serology based detection to identification of genomes using high throughput sequencing. Virus Research, 243, 91105.Google Scholar
Soleng, A., Edgar, K.S., Paulsen, K.M., et al. (2018). Distribution of Ixodes ricinus ticks and prevalence of tick-borne encephalitis virus among questing ticks in the Arctic Circle region of northern Norway. Ticks and Tick Borne Diseases, 9, 97103.Google Scholar
Stimmelmayr, R., Rotstein, D.S., Maboni, G., Person, B.T., Sanchez, S. (2018). Morbillivirus-associated lipid pneumonia in Arctic foxes. Journal of Veterinary Diagnostic Investigation, 30, 933936.Google Scholar
Suttle, C.A. (2005). Viruses in the sea. Nature, 437, 356361.Google Scholar
Taylor, M., Elkin, B., Maier, N., Bradley, M. (1991). Observation of a polar bear with rabies. Journal of Wildlife Diseases, 27(2), 337339.Google Scholar
Thomazelli, L.M., Araujo, J., Oliveira, D.B., et al. (2010). Newcastle disease virus in penguins from King George Island on the Antarctic region. Veterinary Microbiology, 146, 155160.Google Scholar
Thompson, R.M., Thompson, H., Hall, A.J. (2002). Prevalence of morbillivirus antibodies in Scottish harbour seals. Veterinary Record, 151, 609610.Google Scholar
Tingate, T.R., Lugg, D.J., Muller, H.K., Stowe, R.P., Pierson, D.L. (1997). Antarctic isolation: immune and viral studies. Immunology and Cell Biology, 75, 275283.Google Scholar
Tjøtta, E., Hungnes, O., Grinde, B. (1991). Survival of HIV-1 activity after disinfection, temperature and pH changes, or drying. Journal of Medical Virology, 35, 223227.Google Scholar
Traavik, T., Mehl, R., Wiger, R. (1978). California encephalitis group viruses isolated from mosquitoes collected in Southern and Arctic Norway. Acta pathologica et microbiologica Scandinavica. Section B: Microbiology and immunology, 86B, 335341.Google Scholar
Tryland, M., Balboni, A., Killengreen, S.T., et al. (2018). A screening for canine distemper virus, canine adenovirus and carnivore protoparvoviruses in Arctic foxes (Vulpes lagopus) and red foxes (Vulpes vulpes) from Arctic and sub-Arctic regions of Norway. Polar Research, 37.Google Scholar
Tryland, M., Klein, J., Nordøy, E.S., Blix, A.S. (2005). Isolation and partial characterization of a parapoxvirus isolated from a skin lesion of a Weddell seal. Virus Research, 108, 8387.CrossRefGoogle ScholarPubMed
Tryland, M., Nymo, I.H., Nielsen, O., et al. (2012). Serum chemistry and antibodies against pathogens in antarctic fur seals, Weddell seals, crabeater seals, and Ross seals. Journal of Wildlife Diseases, 48, 632645.CrossRefGoogle ScholarPubMed
Van Hemert, C., Spivey, T.J., Uher-Koch, B.D., et al. (2019). Surwey of arctic Alaskan wildlife for influenza A antibodies: limited evidence for exposure of mammals. Journal of Wildlife Diseases, 55(2), 387398.Google Scholar
Vapalahti, O., Lundkvist, A., Fedorov, V., et al. (1999). Isolation and characterization of a hantavirus from Lemmus sibiricus: evidence for host switch during hantavirus evolution. Journal of Virology, 73, 55865592.Google Scholar
Varsani, A., Frankfurter, G., Stainton, D., et al. (2017). Identification of a polyomavirus in Weddell seal (Leptonychotes weddellii) from the Ross Sea (Antarctica). Archives of Virology, 162, 14031407.Google Scholar
Walker, F.J., Llata, E., Doshani, M., et al. (2015). HIV, chlamydia, gonorrhea, and primary and secondary syphilis among American Indians and Alaska Natives within Indian health service areas in the United States, 2007-2010. Journal of Community Health, 40, 484492.Google Scholar
Webster, R.G., Hinshaw, V.S., Bean, W.J., et al. (1981). Characterization of an influenza A virus from seals. Virology, 113, 712724.Google Scholar
Weiler, G.J., Garner, G.W., Ritter, D.G. (1995). Occurrence of rabies in a wolf population in northeastern Alaska. Journal of Wildlife Diseases, 31, 7982.Google Scholar
Zhang, G., Shoham, D., Gilichinsky, D., et al. (2006). Evidence of influenza a virus RNA in siberian lake ice. Journal of Virology, 80, 1222912235.Google Scholar
Zhang, R., Wei, W., Cai, L. (2014). The fate and biogeochemical cycling of viral elements. Nature Reviews Microbiology, 12, 850851.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×