Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T19:50:30.421Z Has data issue: false hasContentIssue false

11 - Application of Electrochemical Liquid Cells for Electrical Energy Storage and Conversion Studies

from Part II - Applications

Published online by Cambridge University Press:  22 December 2016

Frances M. Ross
Affiliation:
IBM T. J. Watson Research Center, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tarascon, J.-M. and Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature, 414 (2001), 359367.Google Scholar
Armand, M. and Tarascon, J.-M., Building better batteries. Nature, 457 (2008), 652657.Google Scholar
Arico, A. S., Bruce, P., Scrotasi, B., Tarascon, J.-M. and Van Schalkwijk, W., Nanostructured materials for advanced energy conversion and storage devices. Nat. Materials, 4 (2005), 366377.Google Scholar
Goodenough, J. B. and Kim, Y., Challenges for rechargeable Li batteries. Chem Mater., 22 (2010), 587603.Google Scholar
Debe, M. K., Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 486 (2013), 4351.Google Scholar
Wang, C. M., In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: a retrospective and perspective view. J. Mater. Res., 30 (2014), 326339.CrossRefGoogle Scholar
de Jonge, N. and Ross, F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.Google Scholar
Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. and Ross, F. M., Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater., 2 (2003), 532536.Google Scholar
Unocic, R. R., Sacci, R. L., Brown, G. M. et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.CrossRefGoogle ScholarPubMed
Zeng, Z., Liang, W.-I., Liao, H.-G. et al., Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett., 14 (2014), 17451750.Google Scholar
Sacci, R. L., Black, J. M., Balke, N. et al., Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett., 15 (2015), 20112018.CrossRefGoogle ScholarPubMed
Sacci, R. L., Dudney, N. J., More, K. L. et al., Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun., 50 (2014), 21042107.Google Scholar
Holtz, M. E., Yu, Y., Gunceler, D. et al., Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett., 14 (2014), 14531459.CrossRefGoogle ScholarPubMed
Gu, M., Parent, L. R., Mehdi, B. L. et al., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett., 13 (2013), 61066112.Google Scholar
Unocic, R. R., Sun, X.-G., Sacci, R. L. et al., Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Microsc. Microanal., 20 (2014), 10291037.Google Scholar
Unocic, R. R., Sacci, R. L., Brown, G. M. et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.CrossRefGoogle ScholarPubMed
Moshkovich, M., Cojocaru, M., Gottlieb, H. E. and Aurbach, D., The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS. J. Electroanal. Chem., 497 (2001), 8496.CrossRefGoogle Scholar
Zeng, Z., Liang, W.-I., Chu, Y.-H. and Zheng, H., In situ TEM study of the Li–Au reaction in an electrochemical liquid cell. Faraday Discuss., 176 (2014), 95107.Google Scholar
Zeng, Z., Liang, W.-I., Liao, H.-G. et al., Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett., 14 (2014), 17451750.CrossRefGoogle ScholarPubMed
Mehdi, B. L., Qian, J., Nasybulin, E. et al., Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett., 15 (2015), 21682173.Google Scholar
Tang, M., Lu, S. and Newman, J., Experimental and theoretical investigation of solid-electrolyte-interphase formation mechanisms on glassy carbon. J. Electrochemi. Soc., 159 (2012), A1775A1785.CrossRefGoogle Scholar
Tang, M. and Newman, J., Transient characterization of solid-electrolyte-interphase using ferrocene. J. Electrochem. Soc., 159 (2012), A281A289.Google Scholar
Unocic, R., Adamczyk, L., Dudney, N. et al., In-situ TEM characterization of electrochemical processes in energy storage systems. Microsc. Microanal., 17 (2011), 15641565.Google Scholar
Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev., 104 (2004), 43034418.Google Scholar
Ring, E. A. and de Jonge, N., Microfluidic system for transmission electron microscopy. Microsc. Microanal., 16 (2010), 622629.Google Scholar
Grogan, J. M. and Bau, H. H., The Nanoaquarium: a platform for in situ transmission electron microscopy in liquid media. J. Microelectromech. Syst., 19 (2010), 885894.Google Scholar
Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd edn. (New York: John Wiley & Sons, 2001).Google Scholar
Verma, P., Maire, P. and Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 55 (2010), 63326341.Google Scholar
Winter, M., The solid electrolyte interphase: the most important least understood solid electrolyte in rechargeable Li batteries. Z. Phys. Chem., 223 (2009), 13951406.Google Scholar
Sacci, R. L., Dudney, N. J., More, K. L. et al., Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun., 50 (2014), 21042107.Google Scholar
Moshkovich, M., Gofer, Y. and Aurbach, D., Investigation of the electrochemical windows of aprotic alkali metal (Li, Na, K) salt solutions. J. Electrochem. Soc., 148 (2001), E155E167.Google Scholar
Aurbach, D., Levi, M. D., Levi, E. et al., Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides. J. Electrochem. Soc., 145 (1998), 30243034.Google Scholar
Unocic, R. R., Sun, X.-G., Sacci, R. L. et al., Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Microsc. Microanal., 20 (2014), 10291037.Google Scholar
Schneider, N. M., Norton, M. M., Mendel, B. J. et al., Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C., 118 (2014), 2237322382.Google Scholar
Abellan, P., Woehl, T. J., Parent, L. R. et al., Factors influencing quantitative liquid (scanning) transmission electron microscopy. Chem. Commun., 50 (2014), 48734880.Google Scholar
Woehl, T. J., Evans, J. E., Arslan, I., Ristenpart, W. D. and Browning, N. D., Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.Google Scholar
Woehl, T. J., Park, C., Evans, J. E. et al., Direct observation of aggregative nanoparticle growth: kinetic modeling of the size distribution and growth rate. Nano Lett., 14 (2014), 373378.Google Scholar
Abellan, P., Mehdi, B. L., Parent, L. R. et al., Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett., 14 (2014), 12931299.CrossRefGoogle ScholarPubMed
Holtz, M. E., Yu, Y., Gunceler, D. et al., Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett., 14 (2014), 14531459.CrossRefGoogle ScholarPubMed
Noh, K. W. and Dillon, S. J., Morphological changes in and around Sn electrodes during Li ion cycling characterized by in situ environmental TEM. Scripta Materialia, 69 (2013), 658661.Google Scholar
Bhattacharyya, R., Key, B., Chen, H. et al., In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater., 9 (2010), 504510.Google Scholar
Nishikawa, K., Mori, T., Nishida, T., Fukunaka, Y and Rosso, M., Li dendrite growth and Li+ ionic mass transfer phenomenon. J. Electroanal. Chem., 661 (2011), 8489.Google Scholar
Ely, D. R. and Garcia, R. E., Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J. Electrochem. Soc., 160 (2013), A662A668.Google Scholar
Nishida, T., Nishikawa, K., Rosso, M. and Fukunaka, Y., Optical observation of Li dendrite growth in ionic liquid. Electrochimica Acta, 100 (2013), 333341.Google Scholar
White, E. R., Singer, S. B., Augustyn, V. et al., In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano, 6 (2012), 63086317.Google Scholar
Sun, M., Liao, H.-G., Niu, K., Zheng, H., Structural and morphological evolution of lead dendrites during electrochemical migration. Sci. Rep., 3 (2013), 3227.Google Scholar
Leenheer, A. J., Jungjohann, K. L., Zavadil, K. R., Sullivan, J. P. and Harris, C. T., Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano, 9 (2015), 43794389.Google Scholar
Riedl, T., Gemming, T. and Wetzig, K., Extraction of EELS white-line intensities of manganese compounds: methods, accuracy, and valence sensitivity. Ultramicroscopy, 106 (2006), 284291.Google Scholar
Varela, M., Oxley, M., Luo, W. et al., Atomic-resolution imaging of oxidation states in manganites. Phys. Rev. B., 79 (2009), 085117.Google Scholar
Unocic, R. R., Baggetto, L., Veith, G. M. et al., Probing battery chemistry with liquid cell electron energy loss spectroscopy. Chem. Commun., 51 (2015), 1637716380.Google Scholar
Meier, J. C., Galeano, C., Katsounaros, I. et al., Degradation mechanisms of Pt/C fuel cell catalysts under simulated start–stop conditions. ACS Catal., (2012), 832–843.Google Scholar
Zhu, G.-Z., Prabhudev, S., Yang, J. et al., In situ liquid cell TEM study of morphological evolution and degradation of Pt–Fe nanocatalysts during potential cycling. J. Phys. Chem. C., 118 (2014), 2211122119.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×