Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T06:55:48.520Z Has data issue: false hasContentIssue false

2 - Encapsulated Liquid Cells for Transmission Electron Microscopy

from Part I - Technique

Published online by Cambridge University Press:  22 December 2016

Frances M. Ross
Affiliation:
IBM T. J. Watson Research Center, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jensen, E., Købler, C., Jensen, P. S. and Mølhave, K., In-situ SEM microchip setup for electrochemical experiments with water based solutions. Ultramicroscopy, 129 (2013), 6369.Google Scholar
Abrams, I. M. and McBain, J. W., A closed cell for electron microscopy. J. Appl. Phys., 100 (1944), 607609.Google Scholar
Double, D. D., Some studies of the hydration of Portland cement using high voltage (1 MV) electron microscopy. Mater. Sci. Eng., 12 (1973), 2934.Google Scholar
Smith, D. J., Characterisation of nanomaterials using transmission electron microscopy. In Hutchison, J. and Kirkland, A., eds., Nanocharacterisation (London: Royal Society of Chemistry, 2007) pp. 127.Google Scholar
Danilatos, G. D., Foundations of environmental scanning electron microscopy. Adv. Electron. Electron Phys., 71 (1988), 109250.Google Scholar
Gai, P. L., Sharma, R. and Ross, F. M., Environmental (S)TEM studies of gas-liquid-solid interactions under reaction conditions. MRS Bull., 33 (2008), 107114.CrossRefGoogle Scholar
Wang, C. M., Liao, H. G. and Ross, F. M., Observation of materials processes in liquids by electron microscopy. MRS Bull., 40 (2015), 4652.Google Scholar
Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. and Ross, F. M., Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater., 2 (2003), 532536.CrossRefGoogle ScholarPubMed
Radisic, A., Vereecken, P. M., Hannon, J. B., Searson, P. C. and Ross, F. M., Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett., 6 (2006), 238242.Google Scholar
Franks, R., Morefield, S., Wen, J. et al., A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy. J. Nanosci. Nanotechnol., 8 (2008), 44044407.CrossRefGoogle ScholarPubMed
Liu, K.-L., Wu, C.-C., Huang, Y.-J. et al., Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip, 8 (2008), 19151921.Google Scholar
Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. and Dahmen, U., Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.CrossRefGoogle Scholar
de Jonge, N., Peckys, D. B., Kremers, G. J. and Piston, D. W., Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA, 106 (2009), 21592164.Google Scholar
De Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D. B. and Drouin, D., Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy, 110 (2010), 11141119.CrossRefGoogle ScholarPubMed
Peckys, D. B., Veith, G. M., Joy, D. C. and de Jonge, N., Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS One, 4 (2009), e8214.Google Scholar
Jungjohann, K. L., Evans, J. E., Aguiar, J. A., Arslan, I. and Browning, N. D., Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc. Microanal., 18 (2012), 621627.Google Scholar
Liao, H.-G., Zherebetskyy, D., Xin, H. et al., Facet development during platinum nanocube growth. Science, 345 (2014), 916919.CrossRefGoogle ScholarPubMed
Li, D., Nielsen, M. H., Lee, J. R. I. et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.Google Scholar
Unocic, R. R., Sacci, R. L., Brown, G. M. et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.Google Scholar
Ross, F. M. and de Jonge, N., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.Google Scholar
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., The Nanoaquarium: a new paradigm in electron microscopy. J. Indian Inst. Sci., 92 (2012), 295308.Google Scholar
Yuk, J. M., Park, J., Ercius, P. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.Google Scholar
Yuk, J. M., Seo, H. K., Choi, J. W. and Lee, J. Y., Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy. ACS Nano, 8 (2014), 74787485.Google Scholar
Wang, C., Qiao, Q., Klie, R. F. and Shokuhfar, T., High resolution in-situ study of reactions in graphene liquid cells. Microsc. Microanal., 20 (2014), 15201521.CrossRefGoogle Scholar
De Clercq, A., Dachraoui, W., Margeat, O. et al., Growth of Pt–Pd nanoparticles studied in situ by HRTEM in a liquid cell. J. Phys. Chem. Lett., 5 (2014), 21262130.Google Scholar
Zheng, H., Smith, R. K., Jun, Y.-W. et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.CrossRefGoogle ScholarPubMed
Thiberge, S., Nechushtan, A., Sprinzak, D. et al., Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc. Natl. Acad. Sci. USA, 101 (2004), 33463351.Google Scholar
Thiberge, S., Zik, O. and Moses, E., An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy. Rev. Sci. Instrum., 75 (2004), 22802289.CrossRefGoogle Scholar
Williamson, M. J., Investigations of materials issues in advanced interconnect structures, Ph.D. Thesis, University of Virginia (2002).Google Scholar
Radisic, A., Electrochemical nucleation and growth of copper, Ph.D. Thesis, The Johns Hopkins University (2005).Google Scholar
den Heijer, M., In-situ transmission electron microscopy of electrodeposition: technical development, beam effects and lithography, M.Sc. Thesis, Leiden University (2008).Google Scholar
Creemer, J. F., Helveg, S., Hoveling, G. H. et al., Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy, 108 (2008), 993998.CrossRefGoogle ScholarPubMed
Creemer, J. F., Helveg, S., Kooyman, P. J. et al., A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions. J. Microelectromech. Syst., 19 (2010), 254264.CrossRefGoogle Scholar
Leenheer, A. J., Sullivan, J. P., Shaw, M. J. and Harris, C. T., A sealed liquid cell for in situ transmission electron microscopy of controlled electrochemical processes. J. Microelectromech. Syst., 24 (2015), 10611068.Google Scholar
Huang, T.-W., Liu, S.-Y., Chuang, Y.-J. et al., Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab Chip, 12 (2012), 340347.CrossRefGoogle ScholarPubMed
Jensen, E., Burrows, A. and Mølhave, K., Monolithic chip system with a microfluidic channel for in situ electron microscopy of liquids. Microsc. Microanal., 20 (2014), 445451.CrossRefGoogle ScholarPubMed
Daulton, T. L., Little, B. J., Lowe, K. and Jones-Meehan, J., In situ environmental cell–transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy. Microsc. Microanal., 7 (2001), 470485.Google Scholar
Daulton, T. L., Little, B. J., Lowe, K. and Jones-Meehan, J., Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction. J. Microbiol. Methods, 50 (2002), 3954.CrossRefGoogle Scholar
Krueger, M., Berg, S., Stone, D. et al., Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples. ACS Nano, 5 (2011), 1004710054.CrossRefGoogle ScholarPubMed
Gao, Y. and Bando, Y., Nanotechnology: carbon nanothermometer containing gallium. Nature, 415 (2002), 599.Google Scholar
Yarin, A. L., Yazicioglu, A. G., Megaridis, C. M., Rossi, M. P. and Gogotsi, Y., Theoretical and experimental investigation of aqueous liquids contained in carbon nanotubes. J. Appl. Phys., 97 (2005), 124309.Google Scholar
Yang, J. and Paul, O., Fracture properties of LPCVD silicon nitride thin films from the load-deflection of long membranes. Sens. Actuators A Phys., 97–98 (2002), 520526.CrossRefGoogle Scholar
Abellan, P., Woehl, T. J., Tonkyn, R. G. et al., Implementing in situ experiments in liquids in the (scanning) transmission electron microscope ((S)TEM) and dynamic TEM (DTEM). Microsc. Microanal., 20 (2014), 16481649.Google Scholar
Klein, K. L. and Anderson, I. M., Current challenges of TEM imaging with a liquid flow cell. Microsc. Microanal., 18 (2012), 11541155.Google Scholar
Holtz, M. E., Yu, Y., Gao, J., Abruña, H. D. and Muller, D. A., In situ electron energy-loss spectroscopy in liquids. Microsc. Microanal., 19 (2013), 10271035.Google Scholar
Regan, B. C., Mecklenburg, M., White, E. R., Singer, S. B. and Aloni, S., Imaging nanobubbles in water with scanning transmission electron microscopy. Appl. Phys. Express, 4 (2011), 055201.Google Scholar
Yang, J., Gaspar, J. and Paul, O., Fracture properties of LPCVD silicon nitride and thermally grown silicon oxide thin films from the load-deflection of long Si3N4 and SiO2/Si3N4 diaphragms. J. Microelectromech. Syst., 17 (2008), 11201134.Google Scholar
Mueller, C., Harb, M., Dwyer, J. R. and Miller, R. J. D., Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J. Phys. Chem. Lett., 4 (2013), 23392347.Google Scholar
Tanase, M., Winterstein, J., Sharma, R. et al., High-resolution imaging and spectroscopy at high pressure: a novel liquid cell for the TEM. Microsc. Micranal., 21 (2015), 16291638.Google Scholar
Nielsen, M. H., Aloni, S. and De Yoreo, J. J., In situ TEM imaging of CaCO₃ nucleation reveals coexistence of direct and indirect pathways. Science, 345 (2014), 11581162.Google Scholar
Xin, H. L. and Zheng, H., In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett., 12 (2012), 1470.Google Scholar
Xin, H. L., Niu, K., Alsem, D. H. and Zheng, H., In-situ TEM study of catalytic nanoparticle reactions in atmospheric pressure gas environment, Microsc. Microanal., 19 (2013), 15581568.Google Scholar
Goode, A. E., Porter, A. E., Ryan, M. P. and McComb, D. W., Correlative electron and X-ray microscopy: probing chemistry and bonding with high spatial resolution. Nanoscale, 7 (2015), 15341548.Google Scholar
Egerton, R. F., Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys., 72 (2009), 016502.Google Scholar
Lewis, E. A., Haigh, S. J., Slater, T. J. A. et al., Real-time imaging and local elemental analysis of nanostructures in liquids. Chem. Commun., 50 (2014), 1001910022.CrossRefGoogle ScholarPubMed
Zaluzec, N. J., Burke, M. G., Haigh, S. J. and Kulzick, M. A., X-ray energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscope. Microsc. Microanal., 20 (2014), 323329.Google Scholar
Iakoubovskii, K., Mitsuishi, K., Nakayama, Y. and Furuya, K., Thickness measurements with electron energy loss spectroscopy. Microsc. Res. Tech., 71 (2008), 626631.CrossRefGoogle ScholarPubMed
Miyata, T., Fukuyama, M., Hibara, A. et al., Measurement of vibrational spectrum of liquid using monochromated scanning transmission electron microscopy-electron energy loss spectroscopy. Microscopy, 63 (2014), 377382.Google Scholar
De Jonge, N., in Hawkes, P. W., ed., Advances in Imaging and Electron Physics Volume 190 (Elsevier, 2015) pp. 1102.Google Scholar
Dukes, M. J., Peckys, D. B. and de Jonge, N., Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano, 4 (2010), 41104116.Google Scholar
Cavalca, F., Hansen, T. W., Wagner, J. B. et al., In situ light spectroscopy in the environmental transmission electron microscope (ETEM). Microsc. Microanal., 18 (2012), 11841185.Google Scholar
Zhang, L., Miller, B. K. and Crozier, P. A., Atomic level observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett., 13 (2013), 679684.Google Scholar
Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.CrossRefGoogle ScholarPubMed
Jensen, E., Engineering electrochemical setups for electron microscopy of liquid processes. Ph.D. Thesis, Denmark Technical University (2012).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×