Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T11:20:11.375Z Has data issue: false hasContentIssue false

The Higher Infinite in Proof Theory

Published online by Cambridge University Press:  24 March 2017

M. Rathjen
Affiliation:
University of Leeds
Johann A. Makowsky
Affiliation:
Technion - Israel Institute of Technology, Haifa
Elena V. Ravve
Affiliation:
Technion - Israel Institute of Technology, Haifa
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Logic Colloquium '95 , pp. 275 - 304
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aczel, P.: The Type Theoretic Interpretation of Constructive Set Theory, in: Mac-Intyre, A. Pacholski, L., and Paris, J. (eds.), Logic Colloquium –77, North-Holland, Amsterdam 1978.
Aczel, P.: The Type Theoretic Interpretation of Constructive Set Theory: Choice Principles, in: Troelstra, A. S., van Dalen, D. (eds), The L.E.J. Brouwer Centenary Symposium, North-Holland, Amsterdam 1982.
Aczel, P.: The Type Theoretic Interpretation of Constructive Set Theory: Inductive Definitions, in: Marcus, R. B. et al. (eds), Logic, Methodology, and Philosopy of Science VII, North-Holland, Amsterdam 1986.
Bachmann, H.: Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordinakahlen, Vierteljahresschrift Naturforsch. Ges. Zürich 95 (1950) 115–147.Google Scholar
Barwise, J.: Admissible Sets and Structures (Springer, Berlin 1975).
Buchholz, W.: A new system of proof-theoretic ordinal functions, Ann. Pure Appl. Math. Logic 32 (1986) 195–207.Google Scholar
Buchholz, W. Schütte, K.: Proof theory of impredicative subsystems of analysis (Bibliopolis, Naples, 1988).
Drake, F.: Set Theory: An introduction to large cardinals (Amsterdam, North Holland, 1974)
Feferman, S.: Systems of predicative analysis, Journal of Symbolic Logic 29 (1964) 1–30.Google Scholar
Feferman, S.: Systems of predicative analysis II. Representations of ordinals, Journal of Symbolic Logic 33 (1968) 193–220.Google Scholar
Feferman, S.: Proof theory: a personal report, in: Takeuti, G. Proof Theory, 2nd edition (North-Holland, Amsterdam, 1987) 445–485.
Feferman, S.: Hilbert's program relativized: Proof-theoretical and foundational reductions, JSL 53 (1988) 364–384.Google Scholar
Feferman, S.: Gödel's program for new axioms: Why, where, how and what? to appear in: Gödel –96 conference, Brno. 23 pages.
Friedman, H. and Ščedrov, S.: Large sets in intuitionistic set theory, Annals of Pure and Applied Logic 27 (1984) 1–24.Google Scholar
Friedman, H. and Sheard, S.: Elementary descent recursion and proof theory, Annals of Pure and Applied Logic 71 (1995) 1–45.Google Scholar
Gaifman, H.: A generalization of Mahlo's method for obtaining large cardinal numbers, Israel Journal of Mathematics 5 (1967) 188–200.Google Scholar
Girard, J.-.Y.: A survey of Ill-logic. Part I: Dilators, Annals of Mathematical Logic 21 (1981) 75–219.Google Scholar
Griffor, E. and Rathjen, M.: The strength of some Martin-Löf type theories. Archive for Mathematical Logic 33 (1994) 347–385.Google Scholar
Hinman, P.G.: Recursion-theoretic hierarchies (Springer, Berlin, 1978).
Isles, D.: Regular ordinals and normal forms, in: Kino, A. Myhill, J. Vesley, R.E. (eds.): Intuitionism and proof theory (North-Holland, Amsterdam, 1968) 288–300.
Jäger, G. and Pohlers, W.: Eine beweistheoretische Untersuchung von Δ1 2 – CA + BI und verwandter Systeme, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse (1982).
Kanamori, A. Magidor, M.: The evolution of large cardinal axioms in set theory. In: Müller, G. H. Scott, D.S. (eds.) Higher Set Theory. Lecture Notes in Mathematics 669 (Springer, Berlin, 1978) 99-275.
Kreisel, G.: A survey of proof theory, Journal of Symbolic Logic 33 (1968) 321–388.Google Scholar
Mahlo, P.: Über lineare transfinite Mengen, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, 63 (1911) 187–225.Google Scholar
Mahlo, P.: Zur Theorie und Anwendung der ρ0-Zahlen, ibid. 64 (1912) 108–112.
Mahlo, P.: Zur Theorie und Anwendung der ρ0-Zahlen, ibid. 65 (1913) 268–282.
Martin-Löf, P.: Intuitionistic Type Theory, (Bibliopolis, Naples 1984).
Moschovakis, Y.N.: Recursion in the universe of sets, mimeographed note, 1976.
Moss, L.: Power set recursion, Annals of Pure and Applied Logic 71 (1995) 247–306.Google Scholar
Myhill, J.: Constructive Set Theory, JSL 40 (1975) 347–382.Google Scholar
Normann, D.: Set recursion, in: Fenstad et al. (eds.): Generalized recursion theory II (North-Holland, Amsterdam, 1978) 303–320.
Pfeiffer, H. Ausgezeichnete Folgen für gewisse Abschnitte der zweiten und weiterer Zahlklassen (Dissertation, Hannover, 1964).
Pohlers, W.: Contributions of the Schütte school in Munich to proof theory, in: Takeuti, G. Proof Theory, 2nd edition (North-Holland, Amsterdam, 1987) 406–431.
Pohlers, W.: A short course in ordinal analysis, in: Aczel, P. Simmons, H. Wainer, S. (eds.): Proof Theory (Cambridge University Press, Cambridge, 1992) 27–78.
Rathjen, M.: Ordinal notations based on a weakly Mahlo cardinal, Archive for Mathematical Logic 29 (1990) 249–263.Google Scholar
Rathjen, M.: Proof-Theoretic Analysis of KPM, Arch. Math. Logic 30 (1991) 377–403.Google Scholar
Rathjen, M.: The role of parameters in bar rule and bar induction, Journal of Symbolic Logic 56 (1991) 715–730.Google Scholar
Rathjen, M.: Fragments of Kripke-Platek set theory with infinity, in: Aczel, P. Simmons, H. Wainer, S. (eds.): Proof Theory (Cambridge University Press, Cambridge, 1992) 251–273.
Rathjen, M.: How to develop proof–theoretic ordinal functions on the basis of admissible sets. Mathematical Quarterly 39 (1993) 47–54.Google Scholar
Rathjen, M.: Admissible proof theory and beyond. In: Logic, Methodology and Philosophy of Science IX (Prawitz, D. Skyrms, B. and Westerstahl, D. eds.), Elsevier Science B.V. (1994) 123–147.
Rathjen, M.: Collapsing functions based on recursively large ordinals: A well-ordering proof for KPM. Archive for Mathematical Logic 33 (1994) 35–55.Google Scholar
Rathjen, M.: Proof theory of reflection. Annals of Pure and Applied Logic 68 (1994) 181–224.Google Scholar
Rathjen, M.: Recent advances in ordinal analysis: Π1 2-CA and related systems. Bulletin of Symbolic Logic 1 (1995) 468–485.Google Scholar
Rathjen, M.: An ordinal analysis of Π1 2 comprehension and related systems, preprint.
Richter, W. and Aczel, P.: Inductive definitions and reflecting properties of admissible ordinals. In: Fenstad, J.E. Hinman, (eds.) Generalized Recursion Theory (North Holland, Amsterdam, 1973) 301–381.
Rose, H.E.: Subrecursion: functions and hierarchies. (Clarendon Press, Oxford, 1984).
Sacks, G.E.: Higher recursion theory (Springer, Berlin, 1990).
Schlüter, A.: Provability in set theories with reflection, preprint, 1995.
Schütte, K.: Beweistheorie (Springer, Berlin, 1960).
Schwichtenberg, H.: Proof theory: Some applications of cut-elimination. In: Barwise, J. (ed.): Handbook of Mathematical Logic (North Holland, Amsterdam, 1977) 867–895.
Solovay, R.M. Reinhardt, W.N. Kanamori, A.: Strong Axioms of Infinity and Elementary Embeddings, Annals of Mathematical Logic 13 (1978) 73–116.
Sommer, R.: Ordinal arithmetic in I∆0- In: Clote, P. and Krajicek, J. (eds.): Arithmetic, proof theory, and computational complexity (Clarendon Press, Oxford, 1993) 320–363.
Sommer, R.: Ordinal functions in fragments of arithmetic, Preprint (1992) 28 pages.
Takeuti, G.: Proof theory, second edition (North Holland, Amsterdam, 1987).
Veblen, O.: Continous increasing functions of finite and transfinite ordinals, Trans. Amer. Math. Soc. 9 (1908) 280–292.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×