Introduction
In the previous chapter we discussed the basics of the loop representation for quantum gravity. We obtained expressions for the constraints at both a formal and a regularized level and discussed generalities about the physical states of the theory. In this chapter we would like to discuss several developments that are based on the loop representation. We will first discuss the coupling of fields of various kinds: fermions using an open path formalism, Maxwell fields in a unified fashion and antisymmetric fields with the introduction of surfaces. These examples illustrate the various possibilities that matter couplings offer in terms of loops. We then present a discussion of various ideas for extracting approximate physical predictions from the loop representation of quantum gravity. We discuss the semi-classical approximation in terms of weaves and the introduction of a time variable using matter fields and the resulting perturbation theory. We end with a discussion of the loop representation of 2 + 1 gravity as a toy model for several issues in the 3 + 4 –1 theory.
Inclusion of matter: Weyl fermions
As we did for the Yang–Mills case, we now show that the loop representation for quantum gravity naturally accommodates the inclusion of matter. In the Yang–Mills case, in order to accommodate particles with Yang–Mills charge one needed to couple the theory to four-component Dirac spinors. A Dirac spinor is composed of two two-component spinors that transform under inequivalent representations of the group.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.