Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 The importance of specific diagnosis in stroke patient management
- 2 Limitations of current brain imaging modalities in stroke
- 3 Clinical efficacy of CT in acute cerebral ischemia
- 4 Computerized tomographic-based evaluation of cerebral blood flow
- 5 Technical introduction to MRI
- 6 Clinical use of standard MRI
- 7 MR angiography of the head and neck: basic principles and clinical applications
- 8 Stroke MRI in intracranial hemorrhage
- 9 Using diffusion-perfusion MRI in animal models for drug development
- 10 Localization of stroke syndromes using diffusion-weighted MR imaging (DWI)
- 11 MRI in transient ischemic attacks: clinical utility and insights into pathophysiology
- 12 Perfusion-weighted MRI in stroke
- 13 Perfusion imaging with arterial spin labelling
- 14 Clinical role of echoplanar MRI in stroke
- 15 The ischemic penumbra: the evolution of a concept
- 16 New MR techniques to select patients for thrombolysis in acute stroke
- 17 MRI as a tool in stroke drug development
- 18 Magnetic resonance spectroscopy in stroke
- 19 Functional MRI and stroke
- Index
- Plate Section
10 - Localization of stroke syndromes using diffusion-weighted MR imaging (DWI)
Published online by Cambridge University Press: 26 August 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 The importance of specific diagnosis in stroke patient management
- 2 Limitations of current brain imaging modalities in stroke
- 3 Clinical efficacy of CT in acute cerebral ischemia
- 4 Computerized tomographic-based evaluation of cerebral blood flow
- 5 Technical introduction to MRI
- 6 Clinical use of standard MRI
- 7 MR angiography of the head and neck: basic principles and clinical applications
- 8 Stroke MRI in intracranial hemorrhage
- 9 Using diffusion-perfusion MRI in animal models for drug development
- 10 Localization of stroke syndromes using diffusion-weighted MR imaging (DWI)
- 11 MRI in transient ischemic attacks: clinical utility and insights into pathophysiology
- 12 Perfusion-weighted MRI in stroke
- 13 Perfusion imaging with arterial spin labelling
- 14 Clinical role of echoplanar MRI in stroke
- 15 The ischemic penumbra: the evolution of a concept
- 16 New MR techniques to select patients for thrombolysis in acute stroke
- 17 MRI as a tool in stroke drug development
- 18 Magnetic resonance spectroscopy in stroke
- 19 Functional MRI and stroke
- Index
- Plate Section
Summary
Introduction
DWI is an MR imaging technique in which microscopic water motion is responsible for the contrast within the image. DWI has assumed the role of a valuable imaging technique because it provides information that is not available on standard T1-and T2-weighted MR images. By showing hyperacute brain ischemia within minutes after stroke onset, diffusion-weighted imaging has gained importance in the assessment of stroke, whereas CT or T2-weighted MR images become positive only after several, usually 5 or 6 hours after stroke onset. In a rodent model, sensitivity of diffusion-weighted imaging in the detection of acute infarction has amounted to 60% within 50 minutes and 100% within 2 hours after symptomatology onset.
Clinical representations of DWI results
Diffusion of water molecules alters conventional T1- and T2-weighted MR imaging, because it induces a signal dephasing and a signal loss. On the other hand, through adequate MR sequences, this signal loss can be turned into a specific information, which constitutes the basis of DWI. Enhancement of the DWI signal is afforded by adding a bipolar gradient, which consists of two sequential pulses superimposed to the classical 90°-180° spin echo sequence. The first gradient pulse is applied between the 90° and the 180° pulses. Motion during and after this gradient pulse induces dephasing of the transverse magnetization of the static and mobile molecules.
Keywords
- Type
- Chapter
- Information
- Magnetic Resonance Imaging in Stroke , pp. 121 - 134Publisher: Cambridge University PressPrint publication year: 2003