Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T00:38:29.427Z Has data issue: false hasContentIssue false

14 - Convection in the Interiors of Solid Planets and Moons

Published online by Cambridge University Press:  15 December 2009

Gerald Schubert
Affiliation:
University of California, Los Angeles
Donald L. Turcotte
Affiliation:
Cornell University, New York
Peter Olson
Affiliation:
The Johns Hopkins University
Get access

Summary

Introduction

Space missions have provided extensive information on the other planets and the planetary satellites of the solar system. Like the individual islands in an archipelago, the terrestial planets share many characteristics and yet retain striking individuality. For example, it appears that active plate tectonics is unique to the Earth. In contrast, the Moon and Mercury have continuous lithospheres, with surfaces shaped largely by impacts and volcanic processes. Although impact cratering and volcanism have also been prevalent on Mars, its surface has also been modified by its atmosphere and the flow of a surface fluid, presumably water. Cloud-covered Venus has been exposed to the eyes of Earth-based and spacecraft radar systems. Cratering and volcanism have apparently left their marks on its surface, but there is no direct evidence of plate tectonic features such as extensive ridge or trench systems. The Galilean satellites of Jupiter are different from the inner planets and each other in puzzling ways. Ganymede and Callisto are icy satellites (half ice and half rock) whose surfaces have been modified by impacts, and, in the case of Ganymede, by tectonism. Callisto's surface shows no signs of endogenic activity, while Ganymede's surface shows no evidence of plate tectonics. Both of these Jovian moons have continuous water ice lithospheres. Europa is a mainly silicate moon of Jupiter, but Europa also has an outer layer of water ice/liquid. The surface of Europa is covered by ice, but there is a possibility that a liquid water ocean may exist beneath the ice. Europa's surface has been altered by impacts, tectonism, and cryovolcanism, but there is no evidence of global plate tectonics. Io is a silicate body, apparently lacking water.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×