Published online by Cambridge University Press: 29 November 2022
This chapter summarizes recent advances on the analysis of the optimization landscape of neural network training. We first review classical results for linear networks trained with a squared loss and without regularization. Such results show that under certain conditions on the input-output data spurious local minima are guaranteed not to exist, i.e. critical points are either saddle points or global minima. Moreover, the globally optimal weights can be found by factorizing certain matrices obtained from the input-output covariance matrices.We then review recent results for deep networks with parallel structure, positively homogeneous network mapping and regularization, and trained with a convex loss. Such results show that the non-convex objective on theweights can be lower-bounded by a convex objective on the network mapping. Moreover, when the network is sufficiently wide, local minima of the non-convex objective that satisfy a certain condition yield global minima of both the non-convex and convex objectives, and that there is always a non-increasing path to a global minimizer from any initialization.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.