Skip to main content Accessibility help
×
  • This product is now available open access under ISBN 9781009290876
  • This book is no longer available to purchase from Cambridge Core
  • Cited by 85
Publisher:
Cambridge University Press
Online publication date:
March 2013
Print publication year:
2013
Online ISBN:
9780511894541

Book description

Unifying a range of topics that are currently scattered throughout the literature, this book offers a unique and definitive review of mathematical aspects of quantization and quantum field theory. The authors present both basic and more advanced topics of quantum field theory in a mathematically consistent way, focusing on canonical commutation and anti-commutation relations. They begin with a discussion of the mathematical structures underlying free bosonic or fermionic fields, like tensors, algebras, Fock spaces, and CCR and CAR representations (including their symplectic and orthogonal invariance). Applications of these topics to physical problems are discussed in later chapters. Although most of the book is devoted to free quantum fields, it also contains an exposition of two important aspects of interacting fields: diagrammatics and the Euclidean approach to constructive quantum field theory. With its in-depth coverage, this text is essential reading for graduate students and researchers in departments of mathematics and physics.

Reviews

'… offers much highly valuable material.'

Stig Stenholm Source: Contemporary Physics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Araki, H., 1963: A lattice of von Neumann algebras associated with the quantum theory of free Bose field, J. Math. Phys. 4, 1343–1362.
Araki, H., 1964: Type of von Neumann algebra associated with free field, Prog. Theor. Phys. 32, 956–854.
Araki, H., 1970: On quasi-free states of CAR and Bogoliubov automorphisms, Publ. RIMS Kyoto Univ. 6, 385–442.
Araki, H., 1971: On quasi-free states of canonical commutation relations II, Publ. RIMS Kyoto Univ. 7, 121–152.
Araki, H., 1987: Bogoliubov automorphisms and Fock representations of canonical anti-commutation relations, Contemp. Math. 62, 23–141.
Araki, H., Shiraishi, M., 1971: On quasi-free states of canonical commutation relations I, Publ. RIMS Kyoto Univ. 7, 105–120.
Araki, H., Woods, E.J., 1963: Representations of the canonical commutation relations describing a non-relativistic infinite free Bose gas, J. Math. Phys. 4, 637–662.
Araki, H., Wyss, W., 1964: Representations of canonical anti-communication relations, Helv. Phys. Acta 37, 139–159.
Araki, H., Yamagami, S., 1982: On quasi-equivalence of quasi-free states of canonical commutation relations, Publ. RIMS Kyoto Univ. 18, 283–338.
Bär, C., Ginoux, N., Pfäffle, F., 2007: Wave Equations on Lorentzian Manifolds and Quantization, ESI Lectures in Mathematics and Physics, EMS, Zurich.
Baez, J. C., Segal, I. E., Zhou, Z., 1991: Introduction to Algebraic and Constructive Quantum Field Theory, Princeton University Press, Princeton, NJ.
Banaszek, K., Radzewicz, C., Wódkiewicz, K., Krasiński, J. S., 1999: Direct measurement of the Wigner function by photon counting, Phys. Rev. A 60, 674–677.
Bargmann, V., 1961: On a Hilbert space of analytic functions and an associated integral transform I, Comm. Pure Appl. Math. 14, 187–214.
Bauer, H., 1968: Wahrscheinlichkeitstheorie und Grundz¨ge der Masstheorie, Walter de Gruyter & Co, Berlin.
Berezin, F. A., 1966: The Method of Second Quantization, Academic Press, New York and London.
Berezin, F. A., 1983: Introduction to Algebra and Analysis with Anti-Commuting Variables (Russian), Moscow State University Publ., Moscow.
Berezin, F. A., Shubin, M. A., 1991: The Schrödinger Equation, Kluwer Academic Publishers, Dordrecht.
Bernal, A., Sanchez, M., 2007: Globally hyperbolic space-times can be defined as “causal” instead of “strongly causal”, Classical Quantum Gravity 24, 745–749.
Birke, L., Fröhlich, J., 2002: KMS, etc, Rev. Math. Phys. 14, 829–871.
Bloch, F., Nordsieck, A., 1937: Note on the radiation field of the electron, Phys. Rev. 52, 54–59.
Bogoliubov, N. N., 1947a: J. Phys. (USSR) 11, reprinted in Pines, D. ed., The Many-Body Problem, W. A. Benjamin, New York, 1962.
Bogoliubov, N. N., 1947b: About the theory of superfluidity, Bull. Acad. Sci. USSR 11, 77–82.
Bogoliubov, N. N., 1958: A new method in the theory of superconductivity I, Sov. Phys. JETP 34, 41–46.
Bratteli, O., Robinson, D. W., 1987: Operator Algebras and Quantum Statistical Mechanics, Volume 1, 2nd edn., Springer, Berlin.
Bratteli, O., Robinson, D. W., 1996: Operator Algebras and Quantum Statistical Mechanics, Volume 2, 2nd edn., Springer, Berlin.
Brauer, R., Weyl, H., 1935: Spinors in n dimensions. Amer. J. Math. 57, 425–449.
Brunetti, R., Fredenhagen, K., Köhler, M., 1996: The microlocal spectrum condition and Wick polynomials of free fields on curved space-times, Comm. Math. Phys. 180, 633–652.
Brunetti, R., Fredenhagen, K., Verch, R., 2003: The generally covariant locality principle: a new paradigm for local quantum physics, Comm. Math. Phys. 237, 31–68.
Cahill, K. E., Glauber, R. J., 1969: Ordered expansions in boson amplitude operators, Phys. Rev. 177, 1857–1881.
Carlen, E., Lieb, E., 1993: Optimal hyper-contractivity for Fermi fields and related non-commutative integration inequalities, Comm. Math. Phys. 155, 27–46.
Cartan, E., 1938: Lecons sur la Theorie des Spineurs, Actualites Scientifiques et Industrielles No 643 et 701, Hermann, Paris.
Clifford, W. K., 1878: Applications of Grassmann's extensive algebra, Amer. J. Math. 1, 350–358.
Connes, A., 1974: Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier, 24, 121–155.
Cook, J., 1953: The mathematics of second quantization, Trans. Amer. Math. Soc. 74, 222–245.
Cornean, H., Dereziński, J., Zih, P., 2009: On the infimum of the energy-momentum spectrum of a homogeneous Bose gas, J. Math. Phys. 50, 062103.
Davies, E. B., 1980: One-Parameter Semi-Groups, Academic Press, New York.
Dereziński, J., 1998: Asymptotic completeness in quantum field theory: a class of Galilei covariant models, Rev. Math. Phys. 10, 191–233.
Dereziński, J., 2003: Van Hove Hamiltonians: exactly solvable models of the infrared and ultraviolet problem, Ann. Henri Poincaré 4, 713–738.
Dereziński, J., 2006: Introduction to representations of canonical commutation and anti-commutation relations. In Large Coulomb Systems: Lecture Notes on Mathematical Aspects of QED, Dereziński, J. and Siedentop, H., eds, Lecture Notes in Physics 695, Springer, Berlin.
Dereziński, J., Gérard, C., 1999: Asymptotic completeness in quantum field theory: massive Pauli-Fierz Hamiltonians, Rev. Math. Phys. 11, 383–450.
Dereziński, J., Gérard, C., 2000: Spectral and scattering theory of spatially cut-off P(φ)2 Hamiltonians, Comm. Math. Phys. 213, 39–125.
Dereziński, J., Gérard, C., 2004: Scattering theory of infrared divergent Pauli-Fierz Hamiltonians, Ann. Henri Poincaré 5, 523–577.
Dereziński, J., Jakšić, V., 2001: Spectral theory of Pauli-Fierz operators, J. Funct. Anal. 180, 241–327.
Dereziński, J., Jakšić, V., 2003: Return to equilibrium for Pauli-Fierz systems, Ann. Henri Poincare 4, 739–793.
Dereziński, J., Jakšić, V., Pillet, C.-A., 2003: Perturbation theory of W*-dynamics, Liouvilleans and KMS-states, Rev. Math. Phys. 15, 447–489.
Dimock, J., 1980: Algebras of local observables on a manifold, Comm. Math. Phys. 77, 219–228.
Dimock, J., 1982: Dirac quantum fields on a manifold, Trans. Amer. Math. Soc. 269, 133–147.
Dirac, P. A. M., 1927: The quantum theory of the emission and absorption of radiation, Proc. R. Soc. London A 114, 243–265.
Dirac, P. A. M., 1928: The quantum theory of the electron, Proc. R. Soc. London A 117, 610–624.
Dirac, P. A. M., 1930: A theory of electrons and protons, Proc. R. Soc. London A 126, 360–365.
Dixmier, J., 1948: Position relative de deux variétés linéaires fermées dans un espace de Hilbert, Rev. Sci. 86, 387–399.
Eckmann, J. P., Osterwalder, K., 1973: An application of Tomita's theory of modular algebras to duality for free Bose algebras, J. Funct. Anal. 13, 1–12.
Edwards, S., Peierls, P. E., 1954: Field equations in functional form, Proc. R. Soc. A 224, 24–33.
Emch, G., 1972: Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley-Interscience, New York.
Feldman, J., 1958: Equivalence and perpendicularity of Gaussian processes, Pacific J. Math. 8, 699–708.
Fetter, A. L., Walecka, J. D., 1971: Quantum Theory of Many-Particle Systems, McGraw-Hill, New York.
Fock, V., 1932: Konfigurationsraum und zweite Quantelung, Z. Phys. 75, 622–647.
Fock, V., 1933: Zur Theorie der Positronen, Doklady Akad. Nauk, 6 267–271.
Folland, G., 1989: Harmonic Analysis in Phase Space, Princeton University Press, Princeton, NJ.
Friedrichs, K. O., 1953: Mathematical Aspects of Quantum Theory of Fields, Interscience Publishers, New York.
Friedrichs, K. O., 1963: Perturbation of Spectra of Operators in Hilbert Spaces, AMS, Providence, RI.
Fröhlich, J., 1980: Unbounded, symmetric semi-groups on a separable Hilbert space are essentially self-adjoint. Adv. Appl. Math. 1, 237–256.
Fröhlich, J., Simon, B., 1977: Pure states for general P(ϕ)2 theories: construction, regularity and variational equality, Ann. Math. 105, 493–526.
Fulling, S. A., 1989: Aspects of Quantum Field Theory in Curved Space-Time, Cambridge University Press, Cambridge.
Furry, W. H., Oppenheimer, J. R., 1934: On the theory of electrons and positrons, Phys. Rev. 45, 245–262.
Gårding, L., Wightman, A. S., 1954: Representations of the commutation and anti-commutation relations, Proc. Nat. Acad. Sci. 40, 617–626.
Gelfand, I. M., Vilenkin, N. Y., 1964: Applications of Harmonic Analysis, Generalized Functions Vol. 4, Academic Press, New York.
Gérard, C., Jaekel, C., 2005: Thermal quantum fields with spatially cut-off interactions in 1 + 1 space-time dimensions, J. Funct. Anal, 220, 157–213.
Gérard, C., Panati, A., 2008: Spectral and scattering theory for space-cutoff P(φ)2 models with variable metric, Ann. Henri Poincaré 9, 1575–1629.
Gibbons, G. W., 1975: Vacuum polarization and the spontaneous loss of charge by black holes, Comm. Math. Phys. 44, 245–264.
Ginibre, J., Velo, G., 1985: The global Cauchy problem for the non-linear Klein-Gordon equation, Math. Z. 189, 487–505.
Glauber, R. J., 1963: Coherent and incoherent states, Phys. Rev. 131, 2766–2788.
Glimm, J., Jaffe, A., 1968: A λϕ4 quantum field theory without cutoffs, I, Phys. Rev. 176, 1945–1951.
Glimm, J., Jaffe, A., 1970a: The λϕ4 quantum field theory without cutoffs, II: the field operators and the approximate vacuum, Ann. Math. 91, 204–267.
Glimm, J., Jaffe, A., 1970b: The λϕ4 quantum field theory without cutoffs, III: the physical vacuum, Acta Math. 125, 204–267.
Glimm, J., Jaffe, A., 1985: Collected Papers, Volume 1: Quantum Field Theory and Statistical Mechanics, Birkhäuser, Basel.
Glimm, J., Jaffe, A., 1987: Quantum Physics: A Functional Integral Point of View, 2nd edn, Springer, New York.
Glimm, J., Jaffe, A., Spencer, T., 1974: The Wightman axioms and particle structure in the P(ϕ)2 quantum field model, Ann. Math. 100, 585–632.
Gross, L., 1972: Existence and uniqueness of physical ground states, J. Funct. Anal. 10, 52–109.
Grossman, M., 1976: Parity operator and quantization of δ-functions, Comm. Math. Phys. 48, 191–194.
Guerra, F., Rosen, L., Simon, B., 1973a: Nelson's symmetry and the infinite volume behavior of the vacuum in P(ϕ)2, Comm. Math. Phys. 27, 10–22.
Guerra, F., Rosen, L., Simon, B., 1973b: The vacuum energy for P(ϕ)2: infinite volume limit and coupling constant dependence, Comm. Math. Phys. 29, 233–247.
Guerra, F., Rosen, L., Simon, B., 1973b: The vacuum energy for P(ϕ)2: infinite volume limit and coupling constant dependence, Comm. Math. Phys. 29, 233–247.
Guerra, F., Rosen, L., Simon, B., 1975: The P(ϕ)2 Euclidean quantum field theory as classical statistical mechanics, Ann. Math. 101, 111–259.
Guillemin, V., Sternberg, S., 1977: Geometric Asymptotics, Mathematical Surveys 14, AMS, Providence, RI.
Haag, R., 1992: Local Quantum Physics, Texts and Monographs in Physics, Springer, Berlin.
Haag, R., Kastler, D., 1964: An algebraic approach to quantum field theory, J. Math. Phys. 5, 848–862.
Haagerup, U., 1975: The standard form of a von Neumann algebra, Math. Scand. 37, 271–283.
Hajek, J., 1958: On a property of the normal distribution of any stochastic process, Czechoslovak Math. J. 8, 610–618.
Halmos, P. R., 1950: Measure Theory, Van Nostrand Reinhold, New York.
Halmos, P. R., 1969: Two subspaces, Trans. Amer. Math. Soc. 144, 381–389.
Hardt, V., Konstantinov, A., Mennicken, R., 2000: On the spectrum of the product of closed operators, Math. Nachr. 215, 91–102.
Hepp, K., 1969: Theorie de la Renormalisation, Lecture Notes in Physics, Springer, Berlin.
Høgh-Krohn, R., 1971: On the spectrum of the space cutoff :P(φ): Hamiltonian in two space-time dimensions, Comm. Math. Phys. 21, 256–260.
Hörmander, L., 1985: The Analysis of Linear Partial Differential Operators, III: Pseudo-Differential Operators, Springer, Berlin.
Iagolnitzer, D., 1975: Microlocal essential support of a distribution and local decompositions: an introduction. In Hyperfunctions and Theoretical Physics, Lecture Notes in Mathematics 449, Springer, Berlin, pp. 121–132.
Jakšić, V., Pillet, C. A., 1996: On a model for quantum friction, II: Fermi's golden rule and dynamics at positive temperature, Comm. Math. Phys. 176, 619–644.
Jakšić, V., Pillet, C. A., 2002: Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108, 787–829.
Jauch, J. M., Röhrlich, F., 1976: The Theory of Photons and Electrons, 2nd edn, Springer, Berlin.
Jordan, P., Wigner, E., 1928: Über das Paulische Äquivalenzverbot, Z. Phys. 47, 631–651.
Kallenberg, O., 1997: Foundations of Modern Probability, Springer Series in Statistics, Probability and Its Applications, Springer, New York.
Kato, T., 1976: Perturbation Theory for Linear Operators, 2nd edn, Springer, Berlin.
Kay, B. S., 1978: Linear spin-zero quantum fields in external gravitational and scalar fields, Comm. Math. Phys. 62, 55–70.
Kay, B. S., Wald, R. M., 1991: Theorems on the uniqueness and thermal properties of stationary, non-singular, quasi-free states on space-times with a bifurcate Killing horizon, Phys. Rep. 207, 49–136.
Kibble, T. W. B., 1968: Coherent soft-photon states and infrared divergences, I: classical currents, J. Math. Phys. 9, 315–324.
Klein, A., 1978: The semi-group characterization of Osterwalder-Schrader path spaces and the construction of Euclidean fields, J. Funct. Anal. 27, 277–291.
Klein, A., Landau, L., 1975: Singular perturbations of positivity preserving semi-groups, J. Funct. Anal. 20, 44–82.
Klein, A., Landau, L., 1981: Construction of a unique self-adjoint generator for a symmetric local semi-group, J. Funct. Anal. 44, 121–137.
Klein, A., Landau, L., 1981b: Stochastic processes associated with KMS states, J. Funct. Anal. 42, 368–428.
Kohn, J. J., Nirenberg, L., 1965: On the algebra of pseudo-differential operators, Comm. Pure Appl. Math. 18, 269–305.
Kunze, R. A., 1958: LpFourier transforms on locally compact uni-modular groups. Trans. Amer. Math. Soc. 89, 519–540.
Lawson, H. B., Michelson, M.-L., 1989: Spin Geometry, Princeton University Press, Princeton, NJ.
Leibfried, D., Meekhof, D. M., King, B. E., et al., 1996: Experimental determination of the motional quantum state of a trapped atom, Phys. Rev. Lett. 77, 4281–4285. Leray, J., 1978: Analyse Lagrangienne et Mécanique Quantique: Une Structure Mathématique Apparentée aux Développements Asymptotiques et à l'Indice de Maslov, Série de Mathématiques Pures et Appliquées, IRMA, Strasbourg.
Lundberg, L. E., 1976: Quasi-free “second-quantization”, Comm. Math. Phys. 50, 103–112.
Manuceau, J., 1968: C*-algèbres de relations de commutation, Ann. Henri Poincaré Sect. A 8, 139–161.
Maslov, V. P., 1972: Théorie de Perturbations et Méthodes Asymptotiques, Dunod, Paris.
Mattuck, R., 1967: A Guide to Feynman Diagrams in the Many-Body Problem, McGraw-Hill, New York.
Moyal, J. E., 1949: Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45, 99–124.
Nelson, E., 1965: A quartic interaction in two dimensions. In Mathematical Theory of Elementary Particles, Martin, W. T. and Segal, I. E., eds, MIT Press, Cambridge, MA.
Nelson, E., 1973: The free Markoff field, J. Funct. Anal. 12, 211–227.
Neretin, Y. A., 1996: Category of Symmetries and Infinite-Dimensional Groups, Clarendon Press, Oxford.
Osterwalder, K., Schrader, R., 1973: Axioms for euclidean Green's functions I, Comm. Math. Phys. 31, 83–112.
Osterwalder, K., Schrader, R., 1975: Axioms for euclidean Green's functions II, Comm. Math. Phys. 42, 281–305.
Pauli, W., 1927: Zur Quantenmechanik des magnetischen Elektrons, Z. Phys. 43, 601–623.
Pauli, W., Weisskopf, V., 1934: Über die Quantisierung der skalaren relativistischen Wellengleichung, Helv. Phys. Acta 7, 709–731.
Perelomov, A. M., 1972: Coherent states for arbitrary Lie groups, Comm. Math. Phys. 26, 222–236.
Plymen, R. J., Robinson, P. L., 1994: Spinors in Hilbert Space, Cambridge Tracts in Mathematics 114, Cambridge University Press, Cambridge.
Powers, R., Stoermer, E., 1970: Free states of the canonical anti-commutation relations, Comm. Math. Phys. 16, 1–33.
Racah, G., 1927: Symmetry between particles and anti-particles, Nuovo Cimento 14, 322–328.
Reed, M., Simon, B., 1975: Methods of Modern Mathematical Physics, II: Fourier Analysis, Self-Adjointness, Academic Press, London.
Reed, M., Simon, B., 1978a: Methods of Modern Mathematical Physics, III: Scattering Theory, Academic Press, London.
Reed, M., Simon, B., 1978b: Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, London.
Reed, M., Simon, B., 1980: Methods of Modern Mathematical Physics, I: Functional Analysis, Academic Press, London.
Rieffel, M. A., van Daele, A., 1977: A bounded operator approach to Tomita-Takesaki theory, Pacific J. Math. 69, 187–221.
Robert, D., 1987: Autour de l'Approximation Semiclassique, Progress in Mathematics 68, Birkhäuser, Basel.
Robinson, D., 1965: The ground state of the Bose gas, Comm. Math. Phys. 1, 159–174.
Roepstorff, G., 1970: Coherent photon states and spectral condition, Comm. Math. Phys. 19, 301–314.
Rosen, L., 1970: A λϕ2n field theory without cutoffs, Comm. Math. Phys. 16, 157–183.
Rosen, L., 1971: The (ϕ2n)2 quantum field theory: higher order estimates, Comm. Pure Appl. Math. 24, 417–457.
Ruijsenaars, S. N. M., 1976: On Bogoliubov transformations for systems of relativistic charged particles, J. Math. Phys. 18, 517–526.
Ruijsenaars, S. N. M., 1978: On Bogoliubov transformations, II: the general case. Ann. Phys. 116, 105–132.
Sakai, S., 1971: G*-Algebras and W*-Algebras, Ergebnisse der Mathematik und ihrer Gren-zgebiete 60, Springer, Berlin.
Sakai, T., 1996: Riemannian Geometry, Translations of Mathematical Monographs 149, AMS, Providence, RI.
Schrödinger, E., 1926: Der stetige Übergang von der Mikro- zur Makromechanik, Naturwis-senschaften 14, 664–666.
Schwartz, L., 1966: Théorie des Distributions, Hermann, Paris.
Schweber, S. S., 1962: Introduction to Non-Relativistic Quantum Field Theory, Harper & Row, New York.
Segal, I. E., 1953a: A non-commutative extension of abstract integration, Ann. Math. 57, 401–457.
Segal, I. E., 1953b: Correction to “A non-commutative extension of abstract integration”, Ann. Math. 58, 595–596.
Segal, I. E., 1956: Tensor algebras over Hilbert spaces, II, Ann. Math. 63, 160–175.
Segal, I. E., 1959: Foundations of the theory of dynamical systems of infinitely many degrees of freedom (I), Mat. Fys. Medd. Danske Vid. Soc. 31, 1–39.
Segal, I. E., 1963: Mathematical Problems of Relativistic Physics, Proceedings of summer seminar on applied mathematics, Boulder, CO, 1960, AMS, Providence, RI.
Segal, I. E., 1964: Quantum fields and analysis in the solution manifolds of differential equations. In Analysis in Function Space, Proceedings of a conference on the theory and applications of analysis in function space, Dedham, MA, 1963, M.I.T. Press, Cambridge, MA.
Segal, I. E., 1970: Construction of non-linear local quantum processes, I, Ann. Math. 92, 462–481.
Segal, I. E., 1978: The complex-wave representation of the free boson field, Suppl. Studies, Adv. Math. 3, 321–344.
Shale, D., 1962: Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103, 149–167.
Shale, D., Stinespring, W. F., 1964: States on the Clifford algebra, Ann. Math. 80, 365–381.
Simon, B., 1974: The P(ϕ)2 Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, NJ.
Simon, B., 1979: Trace Ideals and Their Applications, London Math. Soc. Lect. Notes Series 35, Cambridge University Press, Cambridge.
Simon, B., Høgh-Krohn, R., 1972: Hyper-contractive semi-groups and two dimensional self-coupled Bose fields, J. Funct. Anal. 9, 121–180.
Skorokhod, A. V., 1974: Integration in Hilbert Space, Springer, Berlin.
Slawny, J., 1971: On factor representations and the C*-algebra of canonical commutation relations, Comm. Math. Phys. 24, 151–170.
Srednicki, M., 2007: Quantum Field Theory, Cambridge University Press, Cambridge.
Stratila, S., 1981: Modular Theory in Operator Algebras, Abacus Press, Tunbridge Wells.
Streater, R. F., Wightman, A. S., 1964: PCT, Spin and Statistics and All That, W. A. Benjamin, New York.
Symanzik, K., 1965: Application of functional integrals to Euclidean quantum field theory. In Mathematical Theory of Elementary Particles, Martin, W. T. and Segal, I. E., eds, MIT Press, Cambridge, MA.
Takesaki, M., 1979: Theory of Operator Algebras I, Springer, Berlin.
Takesaki, M., 2003: Theory of Operator Algebras II, Springer, Berlin.
Tao, T., 2006: Local and Global Analysis of Non-Linear Dispersive and Wave Equations, CMBS Reg. Conf. Series in Mathematics 106, AMS, Providence, RI.
Tomonaga, S., 1946: On the effect of the field reactions on the interaction of mesotrons and nuclear particles, I, Prog. Theor. Phys. 1, 83–91.
Trautman, A., 2006: Clifford algebras and their representations. In Encyclopedia of Mathematical Physics 1, Elsevier, Amsterdam, pp. 518–530.
van Daele, A., 1971: Quasi-equivalence of quasi-free states on the Weyl algebra, Comm. Math. Phys. 21, 171–191.
van Hove, L., 1952: Les difficultés de divergences pour un modèle particulier de champ quantifié, Physica 18, 145–152.
Varilly, J. C., Gracia-Bondia, J. M., 1992: The metaplectic representation and boson fields, Mod. Phys. Lett. A7, 659–673.
Varilly, J. C., Gracia-Bondia, J. M., 1994: QED in external fields from the spin representation, J. Math. Phys. 35, 3340–3367.
von Neumann, J., 1931: Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. 104, 570–578.
Wald, R. M., 1994: Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, University of Chicago Press, Chicago, IL.
Weil, A., 1964: Sur certains groupes d'operateurs unitaires, Acta Math. 111, 143–211.
Weinberg, S., 1995: The Quantum Theory of Fields, Vol. I: Foundations, Cambridge University Press, Cambridge.
Weinless, M., 1969: Existence and uniqueness of the vacuum for linear quantized fields, J. Funct. Anal. 4, 350–379.
Weyl, H., 1931: The Theory of Groups and Quantum Mechanics, Methuen, London.
Wick, G. C., 1950: The evaluation of the collision matrix, Phys. Rev. 80, 268–272.
Widder, D., 1934: Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral, Bull. AMS 40, 321-326
Wigner, E., 1932a: Über die Operation der Zeitumkehr in der Quantenmechanik, Gött. Nachr. 31, 546–559.
Wigner, E., 1932b: On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749–759.
Wilde, I. F, 1974: The free fermion field as a Markov field. J. Funct. Anal. 15, 12–21.
Williamson, J., 1936: On an algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math. 58, 141–163.
Yafaev, D., 1992: Mathematical Scattering Theory: General Theory, Translations of Mathematical Monographs 105, AMS, Providence, RI.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.