ReferencesAraki, H., 1963: A lattice of von Neumann algebras associated with the quantum theory of free Bose field, J. Math. Phys. 4, 1343–1362.
Araki, H., 1964: Type of von Neumann algebra associated with free field, Prog. Theor. Phys. 32, 956–854.
Araki, H., 1970: On quasi-free states of CAR and Bogoliubov automorphisms, Publ. RIMS Kyoto Univ. 6, 385–442.
Araki, H., 1971: On quasi-free states of canonical commutation relations II, Publ. RIMS Kyoto Univ. 7, 121–152.
Araki, H., 1987: Bogoliubov automorphisms and Fock representations of canonical anti-commutation relations, Contemp. Math. 62, 23–141.
Araki, H., Shiraishi, M., 1971: On quasi-free states of canonical commutation relations I, Publ. RIMS Kyoto Univ. 7, 105–120.
Araki, H., Woods, E.J., 1963: Representations of the canonical commutation relations describing a non-relativistic infinite free Bose gas, J. Math. Phys. 4, 637–662.
Araki, H., Wyss, W., 1964: Representations of canonical anti-communication relations, Helv. Phys. Acta 37, 139–159.
Araki, H., Yamagami, S., 1982: On quasi-equivalence of quasi-free states of canonical commutation relations, Publ. RIMS Kyoto Univ. 18, 283–338.
Bär, C., Ginoux, N., Pfäffle, F., 2007: Wave Equations on Lorentzian Manifolds and Quantization, ESI Lectures in Mathematics and Physics, EMS, Zurich.
Baez, J. C., Segal, I. E., Zhou, Z., 1991: Introduction to Algebraic and Constructive Quantum Field Theory, Princeton University Press, Princeton, NJ.
Banaszek, K., Radzewicz, C., Wódkiewicz, K., Krasiński, J. S., 1999: Direct measurement of the Wigner function by photon counting, Phys. Rev. A 60, 674–677.
Bargmann, V., 1961: On a Hilbert space of analytic functions and an associated integral transform I, Comm. Pure Appl. Math. 14, 187–214.
Bauer, H., 1968: Wahrscheinlichkeitstheorie und Grundz¨ge der Masstheorie, Walter de Gruyter & Co, Berlin.
Berezin, F. A., 1966: The Method of Second Quantization, Academic Press, New York and London.
Berezin, F. A., 1983: Introduction to Algebra and Analysis with Anti-Commuting Variables (Russian), Moscow State University Publ., Moscow.
Berezin, F. A., Shubin, M. A., 1991: The Schrödinger Equation, Kluwer Academic Publishers, Dordrecht.
Bernal, A., Sanchez, M., 2007: Globally hyperbolic space-times can be defined as “causal” instead of “strongly causal”, Classical Quantum Gravity 24, 745–749.
Birke, L., Fröhlich, J., 2002: KMS, etc, Rev. Math. Phys. 14, 829–871.
Bloch, F., Nordsieck, A., 1937: Note on the radiation field of the electron, Phys. Rev. 52, 54–59.
Bogoliubov, N. N., 1947a: J. Phys. (USSR) 11, reprinted in Pines, D. ed., The Many-Body Problem, W. A. Benjamin, New York, 1962.
Bogoliubov, N. N., 1947b: About the theory of superfluidity, Bull. Acad. Sci. USSR 11, 77–82.
Bogoliubov, N. N., 1958: A new method in the theory of superconductivity I, Sov. Phys. JETP 34, 41–46.
Bratteli, O., Robinson, D. W., 1987: Operator Algebras and Quantum Statistical Mechanics, Volume 1, 2nd edn., Springer, Berlin.
Bratteli, O., Robinson, D. W., 1996: Operator Algebras and Quantum Statistical Mechanics, Volume 2, 2nd edn., Springer, Berlin.
Brauer, R., Weyl, H., 1935: Spinors in n dimensions. Amer. J. Math. 57, 425–449.
Brunetti, R., Fredenhagen, K., Köhler, M., 1996: The microlocal spectrum condition and Wick polynomials of free fields on curved space-times, Comm. Math. Phys. 180, 633–652.
Brunetti, R., Fredenhagen, K., Verch, R., 2003: The generally covariant locality principle: a new paradigm for local quantum physics, Comm. Math. Phys. 237, 31–68.
Cahill, K. E., Glauber, R. J., 1969: Ordered expansions in boson amplitude operators, Phys. Rev. 177, 1857–1881.
Carlen, E., Lieb, E., 1993: Optimal hyper-contractivity for Fermi fields and related non-commutative integration inequalities, Comm. Math. Phys. 155, 27–46.
Cartan, E., 1938: Lecons sur la Theorie des Spineurs, Actualites Scientifiques et Industrielles No 643 et 701, Hermann, Paris.
Clifford, W. K., 1878: Applications of Grassmann's extensive algebra, Amer. J. Math. 1, 350–358.
Connes, A., 1974: Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier, 24, 121–155.
Cook, J., 1953: The mathematics of second quantization, Trans. Amer. Math. Soc. 74, 222–245.
Cornean, H., Dereziński, J., Zih, P., 2009: On the infimum of the energy-momentum spectrum of a homogeneous Bose gas, J. Math. Phys. 50, 062103.
Davies, E. B., 1980: One-Parameter Semi-Groups, Academic Press, New York.
Dereziński, J., 1998: Asymptotic completeness in quantum field theory: a class of Galilei covariant models, Rev. Math. Phys. 10, 191–233.
Dereziński, J., 2003: Van Hove Hamiltonians: exactly solvable models of the infrared and ultraviolet problem, Ann. Henri Poincaré 4, 713–738.
Dereziński, J., 2006: Introduction to representations of canonical commutation and anti-commutation relations. In Large Coulomb Systems: Lecture Notes on Mathematical Aspects of QED, Dereziński, J. and Siedentop, H., eds, Lecture Notes in Physics 695, Springer, Berlin.
Dereziński, J., Gérard, C., 1999: Asymptotic completeness in quantum field theory: massive Pauli-Fierz Hamiltonians, Rev. Math. Phys. 11, 383–450.
Dereziński, J., Gérard, C., 2000: Spectral and scattering theory of spatially cut-off P(φ)2 Hamiltonians, Comm. Math. Phys. 213, 39–125.
Dereziński, J., Gérard, C., 2004: Scattering theory of infrared divergent Pauli-Fierz Hamiltonians, Ann. Henri Poincaré 5, 523–577.
Dereziński, J., Jakšić, V., 2001: Spectral theory of Pauli-Fierz operators, J. Funct. Anal. 180, 241–327.
Dereziński, J., Jakšić, V., 2003: Return to equilibrium for Pauli-Fierz systems, Ann. Henri Poincare 4, 739–793.
Dereziński, J., Jakšić, V., Pillet, C.-A., 2003: Perturbation theory of W*-dynamics, Liouvilleans and KMS-states, Rev. Math. Phys. 15, 447–489.
Dimock, J., 1980: Algebras of local observables on a manifold, Comm. Math. Phys. 77, 219–228.
Dimock, J., 1982: Dirac quantum fields on a manifold, Trans. Amer. Math. Soc. 269, 133–147.
Dirac, P. A. M., 1927: The quantum theory of the emission and absorption of radiation, Proc. R. Soc. London A 114, 243–265.
Dirac, P. A. M., 1928: The quantum theory of the electron, Proc. R. Soc. London A 117, 610–624.
Dirac, P. A. M., 1930: A theory of electrons and protons, Proc. R. Soc. London A 126, 360–365.
Dixmier, J., 1948: Position relative de deux variétés linéaires fermées dans un espace de Hilbert, Rev. Sci. 86, 387–399.
Eckmann, J. P., Osterwalder, K., 1973: An application of Tomita's theory of modular algebras to duality for free Bose algebras, J. Funct. Anal. 13, 1–12.
Edwards, S., Peierls, P. E., 1954: Field equations in functional form, Proc. R. Soc. A 224, 24–33.
Emch, G., 1972: Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley-Interscience, New York.
Feldman, J., 1958: Equivalence and perpendicularity of Gaussian processes, Pacific J. Math. 8, 699–708.
Fetter, A. L., Walecka, J. D., 1971: Quantum Theory of Many-Particle Systems, McGraw-Hill, New York.
Fock, V., 1932: Konfigurationsraum und zweite Quantelung, Z. Phys. 75, 622–647.
Fock, V., 1933: Zur Theorie der Positronen, Doklady Akad. Nauk, 6 267–271.
Folland, G., 1989: Harmonic Analysis in Phase Space, Princeton University Press, Princeton, NJ.
Friedrichs, K. O., 1953: Mathematical Aspects of Quantum Theory of Fields, Interscience Publishers, New York.
Friedrichs, K. O., 1963: Perturbation of Spectra of Operators in Hilbert Spaces, AMS, Providence, RI.
Fröhlich, J., 1980: Unbounded, symmetric semi-groups on a separable Hilbert space are essentially self-adjoint. Adv. Appl. Math. 1, 237–256.
Fröhlich, J., Simon, B., 1977: Pure states for general P(ϕ)2 theories: construction, regularity and variational equality, Ann. Math. 105, 493–526.
Fulling, S. A., 1989: Aspects of Quantum Field Theory in Curved Space-Time, Cambridge University Press, Cambridge.
Furry, W. H., Oppenheimer, J. R., 1934: On the theory of electrons and positrons, Phys. Rev. 45, 245–262.
Gårding, L., Wightman, A. S., 1954: Representations of the commutation and anti-commutation relations, Proc. Nat. Acad. Sci. 40, 617–626.
Gelfand, I. M., Vilenkin, N. Y., 1964: Applications of Harmonic Analysis, Generalized Functions Vol. 4, Academic Press, New York.
Gérard, C., Jaekel, C., 2005: Thermal quantum fields with spatially cut-off interactions in 1 + 1 space-time dimensions, J. Funct. Anal, 220, 157–213.
Gérard, C., Panati, A., 2008: Spectral and scattering theory for space-cutoff P(φ)2 models with variable metric, Ann. Henri Poincaré 9, 1575–1629.
Gibbons, G. W., 1975: Vacuum polarization and the spontaneous loss of charge by black holes, Comm. Math. Phys. 44, 245–264.
Ginibre, J., Velo, G., 1985: The global Cauchy problem for the non-linear Klein-Gordon equation, Math. Z. 189, 487–505.
Glauber, R. J., 1963: Coherent and incoherent states, Phys. Rev. 131, 2766–2788.
Glimm, J., Jaffe, A., 1968: A λϕ4 quantum field theory without cutoffs, I, Phys. Rev. 176, 1945–1951.
Glimm, J., Jaffe, A., 1970a: The λϕ4 quantum field theory without cutoffs, II: the field operators and the approximate vacuum, Ann. Math. 91, 204–267.
Glimm, J., Jaffe, A., 1970b: The λϕ4 quantum field theory without cutoffs, III: the physical vacuum, Acta Math. 125, 204–267.
Glimm, J., Jaffe, A., 1985: Collected Papers, Volume 1: Quantum Field Theory and Statistical Mechanics, Birkhäuser, Basel.
Glimm, J., Jaffe, A., 1987: Quantum Physics: A Functional Integral Point of View, 2nd edn, Springer, New York.
Glimm, J., Jaffe, A., Spencer, T., 1974: The Wightman axioms and particle structure in the P(ϕ)2 quantum field model, Ann. Math. 100, 585–632.
Gross, L., 1972: Existence and uniqueness of physical ground states, J. Funct. Anal. 10, 52–109.
Grossman, M., 1976: Parity operator and quantization of δ-functions, Comm. Math. Phys. 48, 191–194.
Guerra, F., Rosen, L., Simon, B., 1973a: Nelson's symmetry and the infinite volume behavior of the vacuum in P(ϕ)2, Comm. Math. Phys. 27, 10–22.
Guerra, F., Rosen, L., Simon, B., 1973b: The vacuum energy for P(ϕ)2: infinite volume limit and coupling constant dependence, Comm. Math. Phys. 29, 233–247.
Guerra, F., Rosen, L., Simon, B., 1973b: The vacuum energy for P(ϕ)2: infinite volume limit and coupling constant dependence, Comm. Math. Phys. 29, 233–247.
Guerra, F., Rosen, L., Simon, B., 1975: The P(ϕ)2 Euclidean quantum field theory as classical statistical mechanics, Ann. Math. 101, 111–259.
Guillemin, V., Sternberg, S., 1977: Geometric Asymptotics, Mathematical Surveys 14, AMS, Providence, RI.
Haag, R., 1992: Local Quantum Physics, Texts and Monographs in Physics, Springer, Berlin.
Haag, R., Kastler, D., 1964: An algebraic approach to quantum field theory, J. Math. Phys. 5, 848–862.
Haagerup, U., 1975: The standard form of a von Neumann algebra, Math. Scand. 37, 271–283.
Hajek, J., 1958: On a property of the normal distribution of any stochastic process, Czechoslovak Math. J. 8, 610–618.
Halmos, P. R., 1950: Measure Theory, Van Nostrand Reinhold, New York.
Halmos, P. R., 1969: Two subspaces, Trans. Amer. Math. Soc. 144, 381–389.
Hardt, V., Konstantinov, A., Mennicken, R., 2000: On the spectrum of the product of closed operators, Math. Nachr. 215, 91–102.
Hepp, K., 1969: Theorie de la Renormalisation, Lecture Notes in Physics, Springer, Berlin.
Høgh-Krohn, R., 1971: On the spectrum of the space cutoff :P(φ): Hamiltonian in two space-time dimensions, Comm. Math. Phys. 21, 256–260.
Hörmander, L., 1985: The Analysis of Linear Partial Differential Operators, III: Pseudo-Differential Operators, Springer, Berlin.
Iagolnitzer, D., 1975: Microlocal essential support of a distribution and local decompositions: an introduction. In Hyperfunctions and Theoretical Physics, Lecture Notes in Mathematics 449, Springer, Berlin, pp. 121–132.
Jakšić, V., Pillet, C. A., 1996: On a model for quantum friction, II: Fermi's golden rule and dynamics at positive temperature, Comm. Math. Phys. 176, 619–644.
Jakšić, V., Pillet, C. A., 2002: Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108, 787–829.
Jauch, J. M., Röhrlich, F., 1976: The Theory of Photons and Electrons, 2nd edn, Springer, Berlin.
Jordan, P., Wigner, E., 1928: Über das Paulische Äquivalenzverbot, Z. Phys. 47, 631–651.
Kallenberg, O., 1997: Foundations of Modern Probability, Springer Series in Statistics, Probability and Its Applications, Springer, New York.
Kato, T., 1976: Perturbation Theory for Linear Operators, 2nd edn, Springer, Berlin.
Kay, B. S., 1978: Linear spin-zero quantum fields in external gravitational and scalar fields, Comm. Math. Phys. 62, 55–70.
Kay, B. S., Wald, R. M., 1991: Theorems on the uniqueness and thermal properties of stationary, non-singular, quasi-free states on space-times with a bifurcate Killing horizon, Phys. Rep. 207, 49–136.
Kibble, T. W. B., 1968: Coherent soft-photon states and infrared divergences, I: classical currents, J. Math. Phys. 9, 315–324.
Klein, A., 1978: The semi-group characterization of Osterwalder-Schrader path spaces and the construction of Euclidean fields, J. Funct. Anal. 27, 277–291.
Klein, A., Landau, L., 1975: Singular perturbations of positivity preserving semi-groups, J. Funct. Anal. 20, 44–82.
Klein, A., Landau, L., 1981: Construction of a unique self-adjoint generator for a symmetric local semi-group, J. Funct. Anal. 44, 121–137.
Klein, A., Landau, L., 1981b: Stochastic processes associated with KMS states, J. Funct. Anal. 42, 368–428.
Kohn, J. J., Nirenberg, L., 1965: On the algebra of pseudo-differential operators, Comm. Pure Appl. Math. 18, 269–305.
Kunze, R. A., 1958: LpFourier transforms on locally compact uni-modular groups. Trans. Amer. Math. Soc. 89, 519–540.
Lawson, H. B., Michelson, M.-L., 1989: Spin Geometry, Princeton University Press, Princeton, NJ.
Leibfried, D., Meekhof, D. M., King, B. E., et al., 1996: Experimental determination of the motional quantum state of a trapped atom, Phys. Rev. Lett. 77, 4281–4285. Leray, J., 1978: Analyse Lagrangienne et Mécanique Quantique: Une Structure Mathématique Apparentée aux Développements Asymptotiques et à l'Indice de Maslov, Série de Mathématiques Pures et Appliquées, IRMA, Strasbourg.
Lundberg, L. E., 1976: Quasi-free “second-quantization”, Comm. Math. Phys. 50, 103–112.
Manuceau, J., 1968: C*-algèbres de relations de commutation, Ann. Henri Poincaré Sect. A 8, 139–161.
Maslov, V. P., 1972: Théorie de Perturbations et Méthodes Asymptotiques, Dunod, Paris.
Mattuck, R., 1967: A Guide to Feynman Diagrams in the Many-Body Problem, McGraw-Hill, New York.
Moyal, J. E., 1949: Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45, 99–124.
Nelson, E., 1965: A quartic interaction in two dimensions. In Mathematical Theory of Elementary Particles, Martin, W. T. and Segal, I. E., eds, MIT Press, Cambridge, MA.
Nelson, E., 1973: The free Markoff field, J. Funct. Anal. 12, 211–227.
Neretin, Y. A., 1996: Category of Symmetries and Infinite-Dimensional Groups, Clarendon Press, Oxford.
Osterwalder, K., Schrader, R., 1973: Axioms for euclidean Green's functions I, Comm. Math. Phys. 31, 83–112.
Osterwalder, K., Schrader, R., 1975: Axioms for euclidean Green's functions II, Comm. Math. Phys. 42, 281–305.
Pauli, W., 1927: Zur Quantenmechanik des magnetischen Elektrons, Z. Phys. 43, 601–623.
Pauli, W., Weisskopf, V., 1934: Über die Quantisierung der skalaren relativistischen Wellengleichung, Helv. Phys. Acta 7, 709–731.
Perelomov, A. M., 1972: Coherent states for arbitrary Lie groups, Comm. Math. Phys. 26, 222–236.
Plymen, R. J., Robinson, P. L., 1994: Spinors in Hilbert Space, Cambridge Tracts in Mathematics 114, Cambridge University Press, Cambridge.
Powers, R., Stoermer, E., 1970: Free states of the canonical anti-commutation relations, Comm. Math. Phys. 16, 1–33.
Racah, G., 1927: Symmetry between particles and anti-particles, Nuovo Cimento 14, 322–328.
Reed, M., Simon, B., 1975: Methods of Modern Mathematical Physics, II: Fourier Analysis, Self-Adjointness, Academic Press, London.
Reed, M., Simon, B., 1978a: Methods of Modern Mathematical Physics, III: Scattering Theory, Academic Press, London.
Reed, M., Simon, B., 1978b: Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, London.
Reed, M., Simon, B., 1980: Methods of Modern Mathematical Physics, I: Functional Analysis, Academic Press, London.
Rieffel, M. A., van Daele, A., 1977: A bounded operator approach to Tomita-Takesaki theory, Pacific J. Math. 69, 187–221.
Robert, D., 1987: Autour de l'Approximation Semiclassique, Progress in Mathematics 68, Birkhäuser, Basel.
Robinson, D., 1965: The ground state of the Bose gas, Comm. Math. Phys. 1, 159–174.
Roepstorff, G., 1970: Coherent photon states and spectral condition, Comm. Math. Phys. 19, 301–314.
Rosen, L., 1970: A λϕ2n field theory without cutoffs, Comm. Math. Phys. 16, 157–183.
Rosen, L., 1971: The (ϕ2n)2 quantum field theory: higher order estimates, Comm. Pure Appl. Math. 24, 417–457.
Ruijsenaars, S. N. M., 1976: On Bogoliubov transformations for systems of relativistic charged particles, J. Math. Phys. 18, 517–526.
Ruijsenaars, S. N. M., 1978: On Bogoliubov transformations, II: the general case. Ann. Phys. 116, 105–132.
Sakai, S., 1971: G*-Algebras and W*-Algebras, Ergebnisse der Mathematik und ihrer Gren-zgebiete 60, Springer, Berlin.
Sakai, T., 1996: Riemannian Geometry, Translations of Mathematical Monographs 149, AMS, Providence, RI.
Schrödinger, E., 1926: Der stetige Übergang von der Mikro- zur Makromechanik, Naturwis-senschaften 14, 664–666.
Schwartz, L., 1966: Théorie des Distributions, Hermann, Paris.
Schweber, S. S., 1962: Introduction to Non-Relativistic Quantum Field Theory, Harper & Row, New York.
Segal, I. E., 1953a: A non-commutative extension of abstract integration, Ann. Math. 57, 401–457.
Segal, I. E., 1953b: Correction to “A non-commutative extension of abstract integration”, Ann. Math. 58, 595–596.
Segal, I. E., 1956: Tensor algebras over Hilbert spaces, II, Ann. Math. 63, 160–175.
Segal, I. E., 1959: Foundations of the theory of dynamical systems of infinitely many degrees of freedom (I), Mat. Fys. Medd. Danske Vid. Soc. 31, 1–39.
Segal, I. E., 1963: Mathematical Problems of Relativistic Physics, Proceedings of summer seminar on applied mathematics, Boulder, CO, 1960, AMS, Providence, RI.
Segal, I. E., 1964: Quantum fields and analysis in the solution manifolds of differential equations. In Analysis in Function Space, Proceedings of a conference on the theory and applications of analysis in function space, Dedham, MA, 1963, M.I.T. Press, Cambridge, MA.
Segal, I. E., 1970: Construction of non-linear local quantum processes, I, Ann. Math. 92, 462–481.
Segal, I. E., 1978: The complex-wave representation of the free boson field, Suppl. Studies, Adv. Math. 3, 321–344.
Shale, D., 1962: Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103, 149–167.
Shale, D., Stinespring, W. F., 1964: States on the Clifford algebra, Ann. Math. 80, 365–381.
Simon, B., 1974: The P(ϕ)2 Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, NJ.
Simon, B., 1979: Trace Ideals and Their Applications, London Math. Soc. Lect. Notes Series 35, Cambridge University Press, Cambridge.
Simon, B., Høgh-Krohn, R., 1972: Hyper-contractive semi-groups and two dimensional self-coupled Bose fields, J. Funct. Anal. 9, 121–180.
Skorokhod, A. V., 1974: Integration in Hilbert Space, Springer, Berlin.
Slawny, J., 1971: On factor representations and the C*-algebra of canonical commutation relations, Comm. Math. Phys. 24, 151–170.
Srednicki, M., 2007: Quantum Field Theory, Cambridge University Press, Cambridge.
Stratila, S., 1981: Modular Theory in Operator Algebras, Abacus Press, Tunbridge Wells.
Streater, R. F., Wightman, A. S., 1964: PCT, Spin and Statistics and All That, W. A. Benjamin, New York.
Symanzik, K., 1965: Application of functional integrals to Euclidean quantum field theory. In Mathematical Theory of Elementary Particles, Martin, W. T. and Segal, I. E., eds, MIT Press, Cambridge, MA.
Takesaki, M., 1979: Theory of Operator Algebras I, Springer, Berlin.
Takesaki, M., 2003: Theory of Operator Algebras II, Springer, Berlin.
Tao, T., 2006: Local and Global Analysis of Non-Linear Dispersive and Wave Equations, CMBS Reg. Conf. Series in Mathematics 106, AMS, Providence, RI.
Tomonaga, S., 1946: On the effect of the field reactions on the interaction of mesotrons and nuclear particles, I, Prog. Theor. Phys. 1, 83–91.
Trautman, A., 2006: Clifford algebras and their representations. In Encyclopedia of Mathematical Physics 1, Elsevier, Amsterdam, pp. 518–530.
van Daele, A., 1971: Quasi-equivalence of quasi-free states on the Weyl algebra, Comm. Math. Phys. 21, 171–191.
van Hove, L., 1952: Les difficultés de divergences pour un modèle particulier de champ quantifié, Physica 18, 145–152.
Varilly, J. C., Gracia-Bondia, J. M., 1992: The metaplectic representation and boson fields, Mod. Phys. Lett. A7, 659–673.
Varilly, J. C., Gracia-Bondia, J. M., 1994: QED in external fields from the spin representation, J. Math. Phys. 35, 3340–3367.
von Neumann, J., 1931: Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. 104, 570–578.
Wald, R. M., 1994: Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, University of Chicago Press, Chicago, IL.
Weil, A., 1964: Sur certains groupes d'operateurs unitaires, Acta Math. 111, 143–211.
Weinberg, S., 1995: The Quantum Theory of Fields, Vol. I: Foundations, Cambridge University Press, Cambridge.
Weinless, M., 1969: Existence and uniqueness of the vacuum for linear quantized fields, J. Funct. Anal. 4, 350–379.
Weyl, H., 1931: The Theory of Groups and Quantum Mechanics, Methuen, London.
Wick, G. C., 1950: The evaluation of the collision matrix, Phys. Rev. 80, 268–272.
Widder, D., 1934: Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral, Bull. AMS 40, 321-326
Wigner, E., 1932a: Über die Operation der Zeitumkehr in der Quantenmechanik, Gött. Nachr. 31, 546–559.
Wigner, E., 1932b: On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749–759.
Wilde, I. F, 1974: The free fermion field as a Markov field. J. Funct. Anal. 15, 12–21.
Williamson, J., 1936: On an algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math. 58, 141–163.
Yafaev, D., 1992: Mathematical Scattering Theory: General Theory, Translations of Mathematical Monographs 105, AMS, Providence, RI.