Skip to main content Accessibility help
×
  • This product is now available open access under ISBN 9781009290876
  • This book is no longer available to purchase from Cambridge Core
  • Cited by 86
Publisher:
Cambridge University Press
Online publication date:
March 2013
Print publication year:
2013
Online ISBN:
9780511894541

Book description

Unifying a range of topics that are currently scattered throughout the literature, this book offers a unique and definitive review of mathematical aspects of quantization and quantum field theory. The authors present both basic and more advanced topics of quantum field theory in a mathematically consistent way, focusing on canonical commutation and anti-commutation relations. They begin with a discussion of the mathematical structures underlying free bosonic or fermionic fields, like tensors, algebras, Fock spaces, and CCR and CAR representations (including their symplectic and orthogonal invariance). Applications of these topics to physical problems are discussed in later chapters. Although most of the book is devoted to free quantum fields, it also contains an exposition of two important aspects of interacting fields: diagrammatics and the Euclidean approach to constructive quantum field theory. With its in-depth coverage, this text is essential reading for graduate students and researchers in departments of mathematics and physics.

Reviews

'… offers much highly valuable material.'

Stig Stenholm Source: Contemporary Physics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Araki, H., 1963: A lattice of von Neumann algebras associated with the quantum theory of free Bose field, J. Math. Phys. 4 Google Scholar, 1343–1362.
Araki, H., 1964: Type of von Neumann algebra associated with free field, Prog. Theor. Phys. 32 Google Scholar, 956–854.
Araki, H., 1970: On quasi-free states of CAR and Bogoliubov automorphisms, Publ. RIMS Kyoto Univ. 6 Google Scholar, 385–442.
Araki, H., 1971: On quasi-free states of canonical commutation relations II, Publ. RIMS Kyoto Univ. 7 Google Scholar, 121–152.
Araki, H., 1987: Bogoliubov automorphisms and Fock representations of canonical anti-commutation relations, Contemp. Math. 62 Google Scholar, 23–141.
Araki, H., Shiraishi, M., 1971: On quasi-free states of canonical commutation relations I, Publ. RIMS Kyoto Univ. 7 Google Scholar, 105–120.
Araki, H., Woods, E.J., 1963: Representations of the canonical commutation relations describing a non-relativistic infinite free Bose gas, J. Math. Phys. 4 Google Scholar, 637–662.
Araki, H., Wyss, W., 1964: Representations of canonical anti-communication relations, Helv. Phys. Acta 37 Google Scholar, 139–159.
Araki, H., Yamagami, S., 1982: On quasi-equivalence of quasi-free states of canonical commutation relations, Publ. RIMS Kyoto Univ. 18 Google Scholar, 283–338.
Bär, C., Ginoux, N., Pfäffle, F., 2007: Wave Equations on Lorentzian Manifolds and Quantization, ESI Lectures in Mathematics and Physics, EMS, Zurich Google Scholar.
Baez, J. C., Segal, I. E., Zhou, Z., 1991: Introduction to Algebraic and Constructive Quantum Field Theory, Princeton University Press Google Scholar, Princeton, NJ.
Banaszek, K., Radzewicz, C., Wódkiewicz, K., Krasiński, J. S., 1999: Direct measurement of the Wigner function by photon counting, Phys. Rev. A 60 Google Scholar, 674–677.
Bargmann, V., 1961: On a Hilbert space of analytic functions and an associated integral transform I, Comm. Pure Appl. Math. 14 Google Scholar, 187–214.
Bauer, H., 1968: Wahrscheinlichkeitstheorie und Grundz¨ge der Masstheorie, Walter de Gruyter & Co, Berlin Google Scholar.
Berezin, F. A., 1966: The Method of Second Quantization, Academic Press, New York and London Google Scholar.
Berezin, F. A., 1983: Introduction to Algebra and Analysis with Anti-Commuting Variables (Russian), Moscow State University Publ., Moscow Google Scholar.
Berezin, F. A., Shubin, M. A., 1991: The Schrödinger Equation, Kluwer Academic Publishers, Dordrecht Google Scholar.
Bernal, A., Sanchez, M., 2007: Globally hyperbolic space-times can be defined as “causal” instead of “strongly causal”, Classical Quantum Gravity 24 Google Scholar, 745–749.
Birke, L., Fröhlich, J., 2002: KMS, etc, Rev. Math. Phys. 14 Google Scholar, 829–871.
Bloch, F., Nordsieck, A., 1937: Note on the radiation field of the electron, Phys. Rev. 52 Google Scholar, 54–59.
Bogoliubov, N. N., 1947a: J. Phys. (USSR) 11, reprinted in Pines, D. ed., The Many-Body Problem, W. A. Benjamin, New York Google Scholar, 1962.
Bogoliubov, N. N., 1947b: About the theory of superfluidity, Bull. Acad. Sci. USSR 11 Google Scholar, 77–82.
Bogoliubov, N. N., 1958: A new method in the theory of superconductivity I, Sov. Phys. JETP 34 Google Scholar, 41–46.
Bratteli, O., Robinson, D. W., 1987: Operator Algebras and Quantum Statistical Mechanics, Volume 1, 2nd edn., Springer, Berlin Google Scholar.
Bratteli, O., Robinson, D. W., 1996: Operator Algebras and Quantum Statistical Mechanics, Volume 2, 2nd edn., Springer, Berlin Google Scholar.
Brauer, R., Weyl, H., 1935: Spinors in n dimensions. Amer. J. Math. 57 Google Scholar, 425–449.
Brunetti, R., Fredenhagen, K., Köhler, M., 1996: The microlocal spectrum condition and Wick polynomials of free fields on curved space-times, Comm. Math. Phys. 180 Google Scholar, 633–652.
Brunetti, R., Fredenhagen, K., Verch, R., 2003: The generally covariant locality principle: a new paradigm for local quantum physics, Comm. Math. Phys. 237 Google Scholar, 31–68.
Cahill, K. E., Glauber, R. J., 1969: Ordered expansions in boson amplitude operators, Phys. Rev. 177 Google Scholar, 1857–1881.
Carlen, E., Lieb, E., 1993: Optimal hyper-contractivity for Fermi fields and related non-commutative integration inequalities, Comm. Math. Phys. 155 Google Scholar, 27–46.
Cartan, E., 1938: Lecons sur la Theorie des Spineurs, Actualites Scientifiques et Industrielles No 643 et 701, Hermann, Paris Google Scholar.
Clifford, W. K., 1878: Applications of Grassmann's extensive algebra, Amer. J. Math. 1 Google Scholar, 350–358.
Connes, A., 1974: Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier, 24 Google Scholar, 121–155.
Cook, J., 1953: The mathematics of second quantization, Trans. Amer. Math. Soc. 74 Google Scholar, 222–245.
Cornean, H., Dereziński, J., Zih, P., 2009: On the infimum of the energy-momentum spectrum of a homogeneous Bose gas, J. Math. Phys. 50 Google Scholar, 062103.
Davies, E. B., 1980: One-Parameter Semi-Groups, Academic Press, New York Google Scholar.
Dereziński, J., 1998: Asymptotic completeness in quantum field theory: a class of Galilei covariant models, Rev. Math. Phys. 10 Google Scholar, 191–233.
Dereziński, J., 2003: Van Hove Hamiltonians: exactly solvable models of the infrared and ultraviolet problem, Ann. Henri Poincaré 4 Google Scholar, 713–738.
Dereziński, J., 2006: Introduction to representations of canonical commutation and anti-commutation relations. In Large Coulomb Systems: Lecture Notes on Mathematical Aspects of QED, Dereziński, J. and Siedentop, H., eds, Lecture Notes in Physics 695, Springer, Berlin Google Scholar.
Dereziński, J., Gérard, C., 1999: Asymptotic completeness in quantum field theory: massive Pauli-Fierz Hamiltonians, Rev. Math. Phys. 11 Google Scholar, 383–450.
Dereziński, J., Gérard, C., 2000: Spectral and scattering theory of spatially cut-off P(φ)2 Hamiltonians, Comm. Math. Phys. 213 Google Scholar, 39–125.
Dereziński, J., Gérard, C., 2004: Scattering theory of infrared divergent Pauli-Fierz Hamiltonians, Ann. Henri Poincaré 5 Google Scholar, 523–577.
Dereziński, J., Jakšić, V., 2001: Spectral theory of Pauli-Fierz operators, J. Funct. Anal. 180 Google Scholar, 241–327.
Dereziński, J., Jakšić, V., 2003: Return to equilibrium for Pauli-Fierz systems, Ann. Henri Poincare 4 Google Scholar, 739–793.
Dereziński, J., Jakšić, V., Pillet, C.-A., 2003: Perturbation theory of W*-dynamics, Liouvilleans and KMS-states, Rev. Math. Phys. 15 Google Scholar, 447–489.
Dimock, J., 1980: Algebras of local observables on a manifold, Comm. Math. Phys. 77 Google Scholar, 219–228.
Dimock, J., 1982: Dirac quantum fields on a manifold, Trans. Amer. Math. Soc. 269 Google Scholar, 133–147.
Dirac, P. A. M., 1927: The quantum theory of the emission and absorption of radiation, Proc. R. Soc. London A 114 Google Scholar, 243–265.
Dirac, P. A. M., 1928: The quantum theory of the electron, Proc. R. Soc. London A 117 Google Scholar, 610–624.
Dirac, P. A. M., 1930: A theory of electrons and protons, Proc. R. Soc. London A 126 Google Scholar, 360–365.
Dixmier, J., 1948: Position relative de deux variétés linéaires fermées dans un espace de Hilbert, Rev. Sci. 86 Google Scholar, 387–399.
Eckmann, J. P., Osterwalder, K., 1973: An application of Tomita's theory of modular algebras to duality for free Bose algebras, J. Funct. Anal. 13 Google Scholar, 1–12.
Edwards, S., Peierls, P. E., 1954: Field equations in functional form, Proc. R. Soc. A 224 Google Scholar, 24–33.
Emch, G., 1972: Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley-Interscience, New York Google Scholar.
Feldman, J., 1958: Equivalence and perpendicularity of Gaussian processes, Pacific J. Math. 8 Google Scholar, 699–708.
Fetter, A. L., Walecka, J. D., 1971: Quantum Theory of Many-Particle Systems, McGraw-Hill, New York Google Scholar.
Fock, V., 1932: Konfigurationsraum und zweite Quantelung, Z. Phys. 75 Google Scholar, 622–647.
Fock, V., 1933: Zur Theorie der Positronen, Doklady Akad. Nauk, 6 Google Scholar 267–271.
Folland, G., 1989: Harmonic Analysis in Phase Space, Princeton University Press, Princeton, NJ Google Scholar.
Friedrichs, K. O., 1953: Mathematical Aspects of Quantum Theory of Fields, Interscience Publishers, New York Google Scholar.
Friedrichs, K. O., 1963: Perturbation of Spectra of Operators in Hilbert Spaces, AMS, Providence, RI Google Scholar.
Fröhlich, J., 1980: Unbounded, symmetric semi-groups on a separable Hilbert space are essentially self-adjoint. Adv. Appl. Math. 1 Google Scholar, 237–256.
Fröhlich, J., Simon, B., 1977: Pure states for general P(ϕ)2 theories: construction, regularity and variational equality, Ann. Math. 105 Google Scholar, 493–526.
Fulling, S. A., 1989: Aspects of Quantum Field Theory in Curved Space-Time, Cambridge University Press, Cambridge Google Scholar.
Furry, W. H., Oppenheimer, J. R., 1934: On the theory of electrons and positrons, Phys. Rev. 45 Google Scholar, 245–262.
Gårding, L., Wightman, A. S., 1954: Representations of the commutation and anti-commutation relations, Proc. Nat. Acad. Sci. 40 Google Scholar, 617–626.
Gelfand, I. M., Vilenkin, N. Y., 1964: Applications of Harmonic Analysis, Generalized Functions Vol. 4, Academic Press, New York Google Scholar.
Gérard, C., Jaekel, C., 2005: Thermal quantum fields with spatially cut-off interactions in 1 + 1 space-time dimensions, J. Funct. Anal, 220 Google Scholar, 157–213.
Gérard, C., Panati, A., 2008: Spectral and scattering theory for space-cutoff P(φ)2 models with variable metric, Ann. Henri Poincaré 9 Google Scholar, 1575–1629.
Gibbons, G. W., 1975: Vacuum polarization and the spontaneous loss of charge by black holes, Comm. Math. Phys. 44 Google Scholar, 245–264.
Ginibre, J., Velo, G., 1985: The global Cauchy problem for the non-linear Klein-Gordon equation, Math. Z. 189 Google Scholar, 487–505.
Glauber, R. J., 1963: Coherent and incoherent states, Phys. Rev. 131 Google Scholar, 2766–2788.
Glimm, J., Jaffe, A., 1968: A λϕ4 quantum field theory without cutoffs, I, Phys. Rev. 176 Google Scholar, 1945–1951.
Glimm, J., Jaffe, A., 1970a: The λϕ4 quantum field theory without cutoffs, II: the field operators and the approximate vacuum, Ann. Math. 91 Google Scholar, 204–267.
Glimm, J., Jaffe, A., 1970b: The λϕ4 quantum field theory without cutoffs, III: the physical vacuum, Acta Math. 125 Google Scholar, 204–267.
Glimm, J., Jaffe, A., 1985: Collected Papers, Volume 1: Quantum Field Theory and Statistical Mechanics, Birkhäuser, Basel Google Scholar.
Glimm, J., Jaffe, A., 1987: Quantum Physics: A Functional Integral Point of View, 2nd edn, Springer, New York Google Scholar.
Glimm, J., Jaffe, A., Spencer, T., 1974: The Wightman axioms and particle structure in the P(ϕ)2 quantum field model, Ann. Math. 100 Google Scholar, 585–632.
Gross, L., 1972: Existence and uniqueness of physical ground states, J. Funct. Anal. 10 Google Scholar, 52–109.
Grossman, M., 1976: Parity operator and quantization of δ-functions, Comm. Math. Phys. 48 Google Scholar, 191–194.
Guerra, F., Rosen, L., Simon, B., 1973a: Nelson's symmetry and the infinite volume behavior of the vacuum in P(ϕ)2, Comm. Math. Phys. 27 Google Scholar, 10–22.
Guerra, F., Rosen, L., Simon, B., 1973b: The vacuum energy for P(ϕ)2: infinite volume limit and coupling constant dependence, Comm. Math. Phys. 29 Google Scholar, 233–247.
Guerra, F., Rosen, L., Simon, B., 1973b: The vacuum energy for P(ϕ)2: infinite volume limit and coupling constant dependence, Comm. Math. Phys. 29 Google Scholar, 233–247.
Guerra, F., Rosen, L., Simon, B., 1975: The P(ϕ)2 Euclidean quantum field theory as classical statistical mechanics, Ann. Math. 101 Google Scholar, 111–259.
Guillemin, V., Sternberg, S., 1977: Geometric Asymptotics, Mathematical Surveys 14, AMS, Providence, RI Google Scholar.
Haag, R., 1992: Local Quantum Physics, Texts and Monographs in Physics, Springer, Berlin Google Scholar.
Haag, R., Kastler, D., 1964: An algebraic approach to quantum field theory, J. Math. Phys. 5 Google Scholar, 848–862.
Haagerup, U., 1975: The standard form of a von Neumann algebra, Math. Scand. 37 Google Scholar, 271–283.
Hajek, J., 1958: On a property of the normal distribution of any stochastic process, Czechoslovak Math. J. 8 Google Scholar, 610–618.
Halmos, P. R., 1950: Measure Theory, Van Nostrand Reinhold, New York Google Scholar.
Halmos, P. R., 1969: Two subspaces, Trans. Amer. Math. Soc. 144 Google Scholar, 381–389.
Hardt, V., Konstantinov, A., Mennicken, R., 2000: On the spectrum of the product of closed operators, Math. Nachr. 215 Google Scholar, 91–102.
Hepp, K., 1969: Theorie de la Renormalisation, Lecture Notes in Physics, Springer, Berlin Google Scholar.
Høgh-Krohn, R., 1971: On the spectrum of the space cutoff :P(φ): Hamiltonian in two space-time dimensions, Comm. Math. Phys. 21 Google Scholar, 256–260.
Hörmander, L., 1985: The Analysis of Linear Partial Differential Operators, III: Pseudo-Differential Operators, Springer, Berlin Google Scholar.
Iagolnitzer, D., 1975: Microlocal essential support of a distribution and local decompositions: an introduction. In Hyperfunctions and Theoretical Physics, Lecture Notes in Mathematics 449, Springer, Berlin Google Scholar, pp. 121–132.
Jakšić, V., Pillet, C. A., 1996: On a model for quantum friction, II: Fermi's golden rule and dynamics at positive temperature, Comm. Math. Phys. 176 Google Scholar, 619–644.
Jakšić, V., Pillet, C. A., 2002: Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108 Google Scholar, 787–829.
Jauch, J. M., Röhrlich, F., 1976: The Theory of Photons and Electrons, 2nd edn, Springer, Berlin Google Scholar.
Jordan, P., Wigner, E., 1928: Über das Paulische Äquivalenzverbot, Z. Phys. 47 Google Scholar, 631–651.
Kallenberg, O., 1997: Foundations of Modern Probability, Springer Series in Statistics, Probability and Its Applications, Springer, New York Google Scholar.
Kato, T., 1976: Perturbation Theory for Linear Operators, 2nd edn, Springer, Berlin Google Scholar.
Kay, B. S., 1978: Linear spin-zero quantum fields in external gravitational and scalar fields, Comm. Math. Phys. 62 Google Scholar, 55–70.
Kay, B. S., Wald, R. M., 1991: Theorems on the uniqueness and thermal properties of stationary, non-singular, quasi-free states on space-times with a bifurcate Killing horizon, Phys. Rep. 207 Google Scholar, 49–136.
Kibble, T. W. B., 1968: Coherent soft-photon states and infrared divergences, I: classical currents, J. Math. Phys Google Scholar. 9, 315–324.
Klein, A., 1978: The semi-group characterization of Osterwalder-Schrader path spaces and the construction of Euclidean fields, J. Funct. Anal. 27 Google Scholar, 277–291.
Klein, A., Landau, L., 1975: Singular perturbations of positivity preserving semi-groups, J. Funct. Anal. 20 Google Scholar, 44–82.
Klein, A., Landau, L., 1981: Construction of a unique self-adjoint generator for a symmetric local semi-group, J. Funct. Anal. 44 Google Scholar, 121–137.
Klein, A., Landau, L., 1981b: Stochastic processes associated with KMS states, J. Funct. Anal. 42 Google Scholar, 368–428.
Kohn, J. J., Nirenberg, L., 1965: On the algebra of pseudo-differential operators, Comm. Pure Appl. Math. 18 Google Scholar, 269–305.
Kunze, R. A., 1958: LpFourier transforms on locally compact uni-modular groups. Trans. Amer. Math. Soc. 89 Google Scholar, 519–540.
Lawson, H. B., Michelson, M.-L., 1989: Spin Geometry, Princeton University Press, Princeton, NJ Google Scholar.
Leibfried, D., Meekhof, D. M., King, B. E., et al., 1996: Experimental determination of the motional quantum state of a trapped atom, Phys. Rev. Lett. 77, 4281–4285. Leray, J., 1978: Analyse Lagrangienne et Mécanique Quantique: Une Structure Mathématique Apparentée aux Développements Asymptotiques et à l'Indice de Maslov, Série de Mathématiques Pures et Appliquées, IRMA, Strasbourg Google Scholar.
Lundberg, L. E., 1976: Quasi-free “second-quantization”, Comm. Math. Phys. 50 Google Scholar, 103–112.
Manuceau, J., 1968: C*-algèbres de relations de commutation, Ann. Henri Poincaré Sect. A 8 Google Scholar, 139–161.
Maslov, V. P., 1972: Théorie de Perturbations et Méthodes Asymptotiques, Dunod, Paris Google Scholar.
Mattuck, R., 1967: A Guide to Feynman Diagrams in the Many-Body Problem, McGraw-Hill, New York Google Scholar.
Moyal, J. E., 1949: Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45 Google Scholar, 99–124.
Nelson, E., 1965: A quartic interaction in two dimensions. In Mathematical Theory of Elementary Particles, Martin, W. T. and Segal, I. E., eds, MIT Press, Cambridge, MA Google Scholar.
Nelson, E., 1973: The free Markoff field, J. Funct. Anal. 12 Google Scholar, 211–227.
Neretin, Y. A., 1996: Category of Symmetries and Infinite-Dimensional Groups, Clarendon Press, Oxford Google Scholar.
Osterwalder, K., Schrader, R., 1973: Axioms for euclidean Green's functions I, Comm. Math. Phys. 31 Google Scholar, 83–112.
Osterwalder, K., Schrader, R., 1975: Axioms for euclidean Green's functions II, Comm. Math. Phys. 42 Google Scholar, 281–305.
Pauli, W., 1927: Zur Quantenmechanik des magnetischen Elektrons, Z. Phys. 43 Google Scholar, 601–623.
Pauli, W., Weisskopf, V., 1934: Über die Quantisierung der skalaren relativistischen Wellengleichung, Helv. Phys. Acta 7 Google Scholar, 709–731.
Perelomov, A. M., 1972: Coherent states for arbitrary Lie groups, Comm. Math. Phys. 26 Google Scholar, 222–236.
Plymen, R. J., Robinson, P. L., 1994: Spinors in Hilbert Space, Cambridge Tracts in Mathematics 114, Cambridge University Press, Cambridge Google Scholar.
Powers, R., Stoermer, E., 1970: Free states of the canonical anti-commutation relations, Comm. Math. Phys. 16 Google Scholar, 1–33.
Racah, G., 1927: Symmetry between particles and anti-particles, Nuovo Cimento 14 Google Scholar, 322–328.
Reed, M., Simon, B., 1975: Methods of Modern Mathematical Physics, II: Fourier Analysis, Self-Adjointness, Academic Press, London Google Scholar.
Reed, M., Simon, B., 1978a: Methods of Modern Mathematical Physics, III: Scattering Theory, Academic Press, London Google Scholar.
Reed, M., Simon, B., 1978b: Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, London Google Scholar.
Reed, M., Simon, B., 1980: Methods of Modern Mathematical Physics, I: Functional Analysis, Academic Press, London Google Scholar.
Rieffel, M. A., van Daele, A., 1977: A bounded operator approach to Tomita-Takesaki theory, Pacific J. Math. 69 Google Scholar, 187–221.
Robert, D., 1987: Autour de l'Approximation Semiclassique, Progress in Mathematics 68, Birkhäuser, Basel Google Scholar.
Robinson, D., 1965: The ground state of the Bose gas, Comm. Math. Phys. 1 Google Scholar, 159–174.
Roepstorff, G., 1970: Coherent photon states and spectral condition, Comm. Math. Phys Google Scholar. 19, 301–314.
Rosen, L., 1970: A λϕ2n field theory without cutoffs, Comm. Math. Phys. 16 Google Scholar, 157–183.
Rosen, L., 1971: The (ϕ2n)2 quantum field theory: higher order estimates, Comm. Pure Appl. Math. 24 Google Scholar, 417–457.
Ruijsenaars, S. N. M., 1976: On Bogoliubov transformations for systems of relativistic charged particles, J. Math. Phys. 18 Google Scholar, 517–526.
Ruijsenaars, S. N. M., 1978: On Bogoliubov transformations, II: the general case. Ann. Phys. 116 Google Scholar, 105–132.
Sakai, S., 1971: G*-Algebras and W*-Algebras, Ergebnisse der Mathematik und ihrer Gren-zgebiete 60, Springer, Berlin Google Scholar.
Sakai, T., 1996: Riemannian Geometry, Translations of Mathematical Monographs 149, AMS, Providence, RI Google Scholar.
Schrödinger, E., 1926: Der stetige Übergang von der Mikro- zur Makromechanik, Naturwis-senschaften 14 Google Scholar, 664–666.
Schwartz, L., 1966: Théorie des Distributions, Hermann, Paris Google Scholar.
Schweber, S. S., 1962: Introduction to Non-Relativistic Quantum Field Theory, Harper & Row, New York Google Scholar.
Segal, I. E., 1953a: A non-commutative extension of abstract integration, Ann. Math. 57 Google Scholar, 401–457.
Segal, I. E., 1953b: Correction to “A non-commutative extension of abstract integration”, Ann. Math. 58 Google Scholar, 595–596.
Segal, I. E., 1956: Tensor algebras over Hilbert spaces, II, Ann. Math. 63 Google Scholar, 160–175.
Segal, I. E., 1959: Foundations of the theory of dynamical systems of infinitely many degrees of freedom (I), Mat. Fys. Medd. Danske Vid. Soc. 31 Google Scholar, 1–39.
Segal, I. E., 1963: Mathematical Problems of Relativistic Physics, Proceedings of summer seminar on applied mathematics, Boulder, CO, 1960, AMS, Providence, RI Google Scholar.
Segal, I. E., 1964: Quantum fields and analysis in the solution manifolds of differential equations. In Analysis in Function Space, Proceedings of a conference on the theory and applications of analysis in function space, Dedham, MA, 1963, M.I.T. Press, Cambridge, MA Google Scholar.
Segal, I. E., 1970: Construction of non-linear local quantum processes, I, Ann. Math. 92 Google Scholar, 462–481.
Segal, I. E., 1978: The complex-wave representation of the free boson field, Suppl. Studies, Adv. Math. 3 Google Scholar, 321–344.
Shale, D., 1962: Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 Google Scholar, 149–167.
Shale, D., Stinespring, W. F., 1964: States on the Clifford algebra, Ann. Math. 80 Google Scholar, 365–381.
Simon, B., 1974: The P(ϕ)2 Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, NJ Google Scholar.
Simon, B., 1979: Trace Ideals and Their Applications, London Math. Soc. Lect. Notes Series 35, Cambridge University Press, Cambridge Google Scholar.
Simon, B., Høgh-Krohn, R., 1972: Hyper-contractive semi-groups and two dimensional self-coupled Bose fields, J. Funct. Anal. 9 Google Scholar, 121–180.
Skorokhod, A. V., 1974: Integration in Hilbert Space, Springer, Berlin Google Scholar.
Slawny, J., 1971: On factor representations and the C*-algebra of canonical commutation relations, Comm. Math. Phys. 24 Google Scholar, 151–170.
Srednicki, M., 2007: Quantum Field Theory, Cambridge University Press, Cambridge Google Scholar.
Stratila, S., 1981: Modular Theory in Operator Algebras, Abacus Press, Tunbridge Wells Google Scholar.
Streater, R. F., Wightman, A. S., 1964: PCT, Spin and Statistics and All That, W. A. Benjamin, New York Google Scholar.
Symanzik, K., 1965: Application of functional integrals to Euclidean quantum field theory. In Mathematical Theory of Elementary Particles, Martin, W. T. and Segal, I. E., eds, MIT Press, Cambridge, MA Google Scholar.
Takesaki, M., 1979: Theory of Operator Algebras I, Springer, Berlin Google Scholar.
Takesaki, M., 2003: Theory of Operator Algebras II, Springer, Berlin Google Scholar.
Tao, T., 2006: Local and Global Analysis of Non-Linear Dispersive and Wave Equations, CMBS Reg. Conf. Series in Mathematics 106, AMS, Providence, RI Google Scholar.
Tomonaga, S., 1946: On the effect of the field reactions on the interaction of mesotrons and nuclear particles, I, Prog. Theor. Phys. 1 Google Scholar, 83–91.
Trautman, A., 2006: Clifford algebras and their representations. In Encyclopedia of Mathematical Physics 1, Elsevier, Amsterdam Google Scholar, pp. 518–530.
van Daele, A., 1971: Quasi-equivalence of quasi-free states on the Weyl algebra, Comm. Math. Phys. 21 Google Scholar, 171–191.
van Hove, L., 1952: Les difficultés de divergences pour un modèle particulier de champ quantifié, Physica 18 Google Scholar, 145–152.
Varilly, J. C., Gracia-Bondia, J. M., 1992: The metaplectic representation and boson fields, Mod. Phys. Lett. A7 Google Scholar, 659–673.
Varilly, J. C., Gracia-Bondia, J. M., 1994: QED in external fields from the spin representation, J. Math. Phys. 35 Google Scholar, 3340–3367.
von Neumann, J., 1931: Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. 104 Google Scholar, 570–578.
Wald, R. M., 1994: Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, University of Chicago Press, Chicago, IL Google Scholar.
Weil, A., 1964: Sur certains groupes d'operateurs unitaires, Acta Math. 111 Google Scholar, 143–211.
Weinberg, S., 1995: The Quantum Theory of Fields, Vol. I: Foundations, Cambridge University Press, Cambridge Google Scholar.
Weinless, M., 1969: Existence and uniqueness of the vacuum for linear quantized fields, J. Funct. Anal. 4 Google Scholar, 350–379.
Weyl, H., 1931: The Theory of Groups and Quantum Mechanics, Methuen, London Google Scholar.
Wick, G. C., 1950: The evaluation of the collision matrix, Phys. Rev. 80 Google Scholar, 268–272.
Widder, D., 1934: Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral, Bull. AMS 40 Google Scholar, 321-326
Wigner, E., 1932a: Über die Operation der Zeitumkehr in der Quantenmechanik, Gött. Nachr. 31 Google Scholar, 546–559.
Wigner, E., 1932b: On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 Google Scholar, 749–759.
Wilde, I. F, 1974: The free fermion field as a Markov field. J. Funct. Anal. 15 Google Scholar, 12–21.
Williamson, J., 1936: On an algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math. 58 Google Scholar, 141–163.
Yafaev, D., 1992: Mathematical Scattering Theory: General Theory, Translations of Mathematical Monographs 105, AMS, Providence, RI Google Scholar.

Metrics

Altmetric attention score

Usage data cannot currently be displayed.