The first section of this chapter is devoted to a review of basic definitions of measure theory. Among other topics, we recall basic properties of positivity preserving operators, which provide tools useful in constructive quantum field theory.
The rest of this chapter is devoted to measures on infinite-dimensional Hilbert spaces. It is well known that there are no Borel translation invariant measures on infinite-dimensional vector spaces. However, one can define useful measures on such spaces which are not translation invariant. In particular, the notion of a Gaussian measure has a natural generalization to the infinite-dimensional case.
Measures on an infinite-dimensional Hilbert space X is quite a subtle topic. A naive approach to this subject leads to the notion of a weak distribution, which is a family of measures on finite-dimensional subspaces satisfying a natural compatibility condition. It is natural to ask whether a weak distribution is generated by a measure on X. In general, the answer is negative. In order to obtain such a measure, one has to consider a larger measure space containing X. Many choices of such a larger space are possible. A class of such choices that we describe in detail are Hilbert spaces BX for a self-adjoint operator B satisfying certain conditions.
Measures on Hilbert spaces play an important role in probability theory and quantum field theory. One of them is the Wiener measure, used to describe Brownian motion.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.