Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T06:57:23.511Z Has data issue: false hasContentIssue false

8 - Introduction to Greedoids

Published online by Cambridge University Press:  19 March 2010

Neil White
Affiliation:
University of Florida
Get access

Summary

Introduction

Greedoids were invented around 1980 by B. Korte and L. Lovász. Originally, the main motivation for proposing this generalization of the matroid concept came from combinatorial optimization. Korte and Lovász had observed that the optimality of a ‘greedy’ algorithm could in several instances be traced back to an underlying combinatorial structure that was not a matroid – but (as they named it) a ‘greedoid’. In subsequent research greedoids have been shown to be interesting also from various non-algorithmic points of view.

The basic distinction between greedoids and matroids is that greedoids are modeled on the algorithmic construction of certain sets, which means that the ordering of elements in a set plays an important role. Viewing such ordered sets as words, and the collection of words as a formal language, we arrive at the general definition of a greedoid as a finite language that is closed under the operation of taking initial substrings and satisfies a matroid-type exchange axiom. It is a pleasant feature that greedoids can also be characterized in terms of set systems (the unordered version), but the language formulation (the ordered version) seems more fundamental.

Consider, for instance, the algorithmic construction of a spanning tree in a connected graph. Two simple strategies are: (1) pick one edge at a time, making sure that the current edge does not form a circuit with those already chosen; (2) pick one edge at a time, starting at some given node, so that the current edge connects a visited node with an unvisited node.

Type
Chapter
Information
Matroid Applications , pp. 284 - 357
Publisher: Cambridge University Press
Print publication year: 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×