Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T11:11:01.907Z Has data issue: false hasContentIssue false

5 - Measuring hormonal variation in the hypothalamic pituitary adrenal (HPA) axis: cortisol

Published online by Cambridge University Press:  11 September 2009

Gillian H. Ice
Affiliation:
Ohio University
Gary D. James
Affiliation:
State University of New York, Binghamton
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Measuring Stress in Humans
A Practical Guide for the Field
, pp. 122 - 157
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baron, R. and Kenny, D. (1986). The moderator–mediator distinction in social psychological research: conceptual, strategic, and statistical considerations. 51, 1173–82.
Baum, A. and Grunberg, N. (1995). Measurement of stress hormones. In Measuring Stress: A Guide for Health and Social Scientists, ed. Cohen, S., Kessler, R. and Gordon, L.. New York: Oxford University Press, 175–92.Google Scholar
Benjamins, C., Asschenman, H. and Schuurs, A. (1992). Increased salivary cortisol in severe dental anxiety. Psychophysiology, 29, 302–5.CrossRefGoogle ScholarPubMed
Berne, R. and Levy, M. (1993). Physiology. St Louis, Missouri: Mosby.Google Scholar
Bilbo, S. D., Dhabhar, F. S., Viswanathan, K.et al. (2002). Short day lengths augment stress-induced leukocyte trafficking and stress-induced enhancement of immune function. Proceedings of National Academy of Sciences, 99(6), 4067–72.CrossRefGoogle ScholarPubMed
Bjorntorp, P. and Rosmond, P. (2000). Obesity and cortisol. Nutrition, 16(10), 924–36.CrossRefGoogle ScholarPubMed
Born, J. and Fehm, H. L. (1998). Hypothalamus–pituitary–adrenal activity during human sleep: a coordinating role for the limbic hippocampal system. Experimental and Clinical Endocrinology and Diabetes, 106(3), 153–63.CrossRefGoogle ScholarPubMed
Born, J., Hansen, K., Marshall, L., Molle, M. and Fehm, H. (1999). Timing the end of nocturnal sleep. Nature, 397, 29–30.CrossRefGoogle ScholarPubMed
Bourne, P. G., Rose, R. M. and Mason, J. W. (1967). Urinary 17-OHCS levels. Data on seven helicopter ambulance medics in combat. Archives of General Psychiatry, 17(1), 104–10.CrossRefGoogle ScholarPubMed
Bourne, P. G.; Rose, R. M. and Mason, J. W. (1968). 17-OHCS levels in combat. Special forces “A” team under threat of attack. Archives of General Psychiatry, 19(2), 135–40.CrossRefGoogle Scholar
Broderick, J. E., Arnold, D., Kudielka, B. M. and Kirschbaum, C. (2004). Salivary cortisol compliance: comparison of patients and healthy volunteers. Psychoneuroendocrinology, 29, 636–50.CrossRefGoogle ScholarPubMed
Brown, D. (1982). Physiologial stress and culture change in a group of Filipino-Americans: a preliminary investigation. Annals of Human Biology, 9, 553–63.CrossRefGoogle Scholar
Brown, E., Varghese, F. and McEwen, B. (2004). Association of depression with medical illness: does cortisol play a role?Biological Psychiatry, 55, 1–9.CrossRefGoogle ScholarPubMed
Brown, W., Sirota, A., Niaura, R. and Engebretson, T. (1993). Endocrine correlates of sadness and elation. Psychosomatic Medicine, 55, 458–67.CrossRefGoogle ScholarPubMed
Brunner, E., Hemingway, H., Walker, B.et al. (2002). Adrenocortical, autonomic, and inflammatory causes of the metabolic syndrome. Circulation, 106, 2659–65.CrossRefGoogle ScholarPubMed
Brunner, E. and Marmot, M. (1999). Social organization, stress, and health. In Social Determinants of Health, ed. Marmot, M. and Wilkinson, R.. Oxford: Oxford University Press, 17–43.Google Scholar
Buchanan, T., al'Absi, M. and Lovallo, W. (1999). Cortisol fluctuates with increases and decreases in negative affect. Psychoneuroendocrinology, 24, 227–41.CrossRefGoogle ScholarPubMed
Buyukyazi, G., Karamizrak, S. O. and Islegen, C. (2003). Effects of continuous and interval running training on serum growth and cortisol hormones in junior basketball players. Acta Physiologica Hungarica, 90(1), 69–79.CrossRefGoogle Scholar
Carlson, M. and Earls, F. (1997). Psychological and neuroendocrinological sequelae of early social deprivation in institutionalized children in Romania. Annals of the New York Academy of Sciences, 807, 419–28.CrossRefGoogle ScholarPubMed
Catley, D., Kaell, A. T., Kirschbaum, C. and Stone, A. A. (2000). A naturalistic evaluation of cortisol secretion in persons with fibromyalgia and rheumatoid arthritis. Arthritis Care and Research, 13(1), 51–61.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Cicchetti, D. and Rogosch, F. A. (2001). Diverse patterns of neuroendocrine activity in maltreated children. Development and Psychopathology, 13(3), 677–93.CrossRefGoogle ScholarPubMed
Clements, A. D. and Parker, C. R. (1998). The relationship between salivary cortisol concentrations in frozen versus mailed samples. Psychoneuroendocrinology, 23(6), 613–16.CrossRefGoogle ScholarPubMed
Codispoti, M., Gerra, G., Montebarocci, O.et al. (2003). Emotional perception and neuroendocrine changes. Psychophysiology, 40, 863–8.CrossRefGoogle ScholarPubMed
Collins, A. and Frankenhaeuser, M. (1978). Stress responses in male and female engineering students. Journal of Human Stress, 4, 43–8.CrossRefGoogle ScholarPubMed
Copinschi, G. and Cauter, E. (1995). Effects of ageing on modulation of hormonal secretions by sleep and circadian rhythmicity. Hormone Research, 43(1–3), 20–4.CrossRefGoogle ScholarPubMed
Decker, S. A. (2000). Salivary cortisol and social status among Dominican men. Hormones and Behavior, 38(1), 29–38.CrossRefGoogle ScholarPubMed
Dekkers, J. C., Geenen, R., Godaert, G. L., Doornen, L. J. and Bijlsma, J. W. (2000a). Diurnal rhythm of salivary cortisol levels in patients with recent-onset rheumatoid arthritis. Arthritis and Rheumatism, 43(2), 465–7.3.0.CO;2-Q>CrossRefGoogle Scholar
Dekkers, J. C.; Geenen, R.; Godaert, G. L.; Doornen, L. J. and Bijlsma, J. W. (2000b). Diurnal courses of cortisol, pain, fatigue, negative mood, and stiffness in patients with recently diagnosed rheumatoid arthritis. International Journal of Behavioral Medicine, 7(4), 353–71.CrossRefGoogle Scholar
Dettling, A. C., Gunnar, M. R. and Donzella, B. (1999). Cortisol levels of young children in full-day childcare centers: relations with age and temperament. Psychoneuroendocrinology, 24(5), 519–36.CrossRefGoogle ScholarPubMed
Dettling, A. C., Parker, S. W., Lane, S., Sebanc, A. and Gunnar, M. R. (2000). Quality of care and temperament determine changes in cortisol concentrations over the day for young children in childcare. Psychoneuroendocrinology, 25(8), 819–36.CrossRefGoogle ScholarPubMed
Deuschle, M., Gotthardt, U., Schweiger, U.et al. (1997). With aging in humans the activity of the hypothalamus–pituitary–adrenal system increases and its diurnal amplitude flattens. Life Sciences, 61(22), 2239–46.CrossRefGoogle ScholarPubMed
Dickerson, S. and Kemeny, M. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355–91.CrossRefGoogle ScholarPubMed
Edwards, S., Clow, A., Evans, P. and Hucklebridge, F. (2001a). Exploration of the awakening cortisol response in relation to diurnal cortisol secretory activity. Life Sciences, 68(18), 2093–103.CrossRefGoogle Scholar
Edwards, S., Evans, P., Hucklebridge, F. and Clow, A. (2001b). Association between time of awakening and diurnal cortisol secretory activity. Psychoneuroendocrinology, 26, 613–22.CrossRefGoogle Scholar
Ellison, P. (1988). Human salivary steroids: methodological considerations and applications in physical anthropology. Yearbook of Physical Anthropology, 31, 115–42.CrossRefGoogle Scholar
Fibiger, W., Singer, G., Miller, A., Armstrong, S. and Datar, M. (1984). Cortisol and catecholamines changes as functions of time-of-day and self-reported mood. Neuroscience Behavioral Reviews, 8, 523–30.CrossRefGoogle ScholarPubMed
Filaire, E., Duche, P., Lac, G. and Robert, A. (1996). Saliva cortisol, physical exercise and training: influences of swimming and handball on cortisol concentrations in women. European Journal of Applied Physiology and Occupational Physiology, 74, 274–8.CrossRefGoogle ScholarPubMed
Flinn, M. V. (1999). Family environment, stress and health during childhood. In Hormones, Health and Behavior, ed. Panter-Brick, C. and Worthman, C.. Cambridge: Cambridge University Press.Google Scholar
Flinn, M. V. and England, B. G. (1995). Family environment and childhood stress. Current Anthropology, 36, 854–66.CrossRefGoogle Scholar
Flinn, M. V. and England, B. G. (1997). Social economics of childhood glucocorticoid stress response and health. American Journal of Physical Anthropology, 102, 33–54.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Flinn, M. V., England, B. G. and Beer, T. (1992). Health conditions and corticosteroid stress response among children in a rural Dominican village. American Journal of Physical Anthropology, 7, 122.Google Scholar
Flinn, M. V., Quinlan, M., Quinlan, R., Turner, M. and England, B. G. (1995). Glucocorticoid stress response, immune function, and illness among children in a rural Caribbean village. American Journal of Human Biology, 7, 122Google Scholar
Flinn, M. V., Turner, M., Quinlan, R., Decker, S. and England, B. G. (1996). Male--female differences in effects of parental absence on glucocorticoid stress reponses. Human Nature, 7, 125–62.CrossRefGoogle Scholar
Frankenhaeuser, M., Lundberg, U., Fredrikson, M.et al. (1989). Stress on and off the job as related to sex and occupational status in white-collar workers. Journal of Organizational Behavior, 10, 321–46.CrossRefGoogle Scholar
Frankenhaeuser, M., Wright, M., Collens, A.et al. (1978). Sex differences in psychoneuroendocrine reactions to examination stress. Psychosomatic Medicine, 47, 313–19.Google Scholar
Friedman, S. B., Mason, J. and Hamburg, D. (1963). Urinary 17-hydroxycorticosteroid levels in parents of children with neoplastic disease. A study of chronic psychological stress. Psychosomatic Medicine, 25, 364–76.CrossRefGoogle ScholarPubMed
Goh, V. H. (2000). Circadian disturbances after night-shift work onboard a naval ship. Military Medicine, 165(2), 101–5.CrossRefGoogle ScholarPubMed
Griep, E. N., Boersma, J. W. and Kloet, E. R. (1993). Altered reactivity of the hypothalamic–pituitary–adrenal axis in the primary fibromyalgia syndrome. Journal of Rheumatology, 20(3), 469–74.Google ScholarPubMed
Gunnar, M. R. (1992). Reactivity of the hypothalamic–pituitary–adrenocortical system to stressors in normal infants and children. Pediatrics, 90(3 Pt 2), 491–7.Google ScholarPubMed
Gunnar, M. R., Brodersen, L., Krueger, K. and Rigatuso, J. (1996). Dampening of adrenocortical responses during infancy: Normative changes and individual differences. Child Development, 67(3), 877–89.CrossRefGoogle ScholarPubMed
Gunnar, M. R. and Donzella, B. (2002). Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology, 27(1–2), 199–220.CrossRefGoogle ScholarPubMed
Gunnar, M. R., Malone, S., Vance, G. and Fisch, R. O. (1985). Quiet sleep and levels of plasma cortisol during recovery from circumcision in newborns. Child Development, 5, 824–34.CrossRefGoogle Scholar
Gunnar, M. R., Tout, K., Haan, M., Pierce, S. and Stansbury, K. (1997). Temperament, social competence, and adrenocortical activity in preschoolers. Developmental Psychobiology, 31(1), 65–85.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Gunnar, M. R. and Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: potential indices of risk in human development. Development and Psychopathology, 13(3), 515–38.CrossRefGoogle Scholar
Hansen, A. M., Garde, A. H., Skovgaard, L. T. and Christensen, J. M. (2001). Seasonal and biological variation in urinary epinephrine, norepinephrine, and cortisol of healthy women. Clinica Chimica Acta, 309, 25–35.CrossRefGoogle ScholarPubMed
Hanson, E. K. S., Maas, C. J. M., Meijman, T. F. and Godaert, G. L. R. (2000). Cortisol secretion throughout the day, perceptions of the work environment, and negative affect. Annals of Behavioral Medicine, 22(4), 316–24.CrossRefGoogle ScholarPubMed
Heim, C., Ehlert, U. and Hellhammer, D. H. (2000). The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology, 25(1), 1–35.CrossRefGoogle ScholarPubMed
Hennig, J. (1994). Biopsychological changes after bungee jumping: beta-endorphin immunoreactivity as a mediator of euphoria?Neuropsychobiology, 29, 28–32.CrossRefGoogle ScholarPubMed
Hennig, J., Kieferdorf, P., Moritz, C., Huwe, S. and Netter, P. (1998). Changes in cortisol secretion during shiftwork: implications for tolerance to shiftwork?Ergonomics, 41(5), 610–21.CrossRefGoogle ScholarPubMed
Henry, J. (1982). The relation of social to biological processes in disease. Social Science and Medicine, 16, 369–80.CrossRefGoogle Scholar
Hodgson, N., Freedman, V. A., Granger, D. A. and Erno, A. (2004). Biobehavioral correlates of relocation in the frail elderly: salivary cortisol, affect and cognitive function. Journal of the American Geriatrics Society, 52, 1856–62.CrossRefGoogle ScholarPubMed
Holl, R., Fehm, H. L., Voigt, K. H. and Teller, W. (1984). The “midday surge” in plasma cortisol induced by mental stress. Hormone and Metabolic Research, 16(3), 158–9.CrossRefGoogle ScholarPubMed
Hytten, K., Jensen, A. and Skauli, G. (1990). Stress inoculation training for smoke divers and free fall lifeboat passengers. Aviation Space and Environmental Medicine, 61(11), 983–8.Google ScholarPubMed
Ice, G. H. (in press). Factors influencing cortisol level and slope among community dwelling older adults in Minnesota. Journal of Cross-Cultural Gerontology, in press.Google Scholar
Ice, G., Katz-Stein, A., Himes, J. H. and Kane, R. L. (2004). Diurnal cycles of salivary cortisol in older adults. Psychoneuroendocrinology, 29(3), 355–70.CrossRefGoogle ScholarPubMed
Jacks, D. E., Sowash, J., Anning, J., McGloughlin, T. and Andres, F. (2002). Effect of exercise at three exercise intensities on salivary cortisol. Journal of Strength and Conditioning Research, 16(2), 286–9.Google ScholarPubMed
Jenner, D. (1985). Population studies of variation in catecholamine and corticosteroid variation. PhD thesis, University of Oxford.Google Scholar
Kamarck, T., Shiffman, S., Smithline, L. et al. (1998). The diary of ambulatory behavioral states: a new approach to the assessment of psychosocial influences on ambulatory cardiovascular activity. In Technology and Methods in Behavioral Medicine, ed. Krantz, D. and Baum, A.. New Jersey: Lawrence Erlbaum Associates.Google Scholar
Kindermann, W., Schnable, A., Schmitt, W.et al. (1982). Catecholamines, growth hormone, cortisol, insulin and sex hormones in anaerobic and aerobic exercise. European Journal of Applied Physiology, 49, 389–99.CrossRefGoogle ScholarPubMed
King, J. A., Rosal, M. C., Ma, Y. S.et al. (2000). Sequence and seasonal effects of salivary cortisol. Behavioral Medicine, 26(2), 67–73.CrossRefGoogle ScholarPubMed
Kirschbaum, C. and Hellhammer, D. (1989). Salivary research in psychobiology research: an overview. Neuropsychobiology, 22, 150–69.CrossRefGoogle Scholar
Kirschbaum, C. and Hellhammer, D. (1994). Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology, 19, 313–33.CrossRefGoogle ScholarPubMed
Kirschbaum, C. and Hellhammer, D. (2000). Salivary cortisol. In Encyclopedia of Stress, ed. Fink, G.. San Diego, CA: Academic Press, pp. 379–83.Google Scholar
Kirschbaum, C., Wuest, S. and Hellhammer, D. (1992). Consistent sex differences in cortisol responses to psychological stress. Psychosomatic Medicine, 54, 648–57.CrossRef
Kruger, C., Brueunig, U., Biskupek-Sigward, J. and Door, H. G. (1996). Problems with salivary 17-hydroxyprogesterone determinations using the Salivette device. European Journal of Clinical Biochemistry, 34(11), 926–9.Google ScholarPubMed
Kudielka, B. M., Broderick, J. E. and Kirschbaum, C. (2003). Compliance with saliva sampling protocols: electronic monitoring reveals invalid cortisol daytime profiles in noncompliant subjects. Psychosomatic Medicine, 65(2), 313–19.CrossRefGoogle ScholarPubMed
Larson, M. C., Gunnar, M. R. and Hertsgaard, L. (1991). The effects of morning naps, car trips, and maternal separation on adrenocortical activity in human infants. Child Development, 62(2), 362–72.CrossRefGoogle ScholarPubMed
Larson, M. C., White, B. P., Cochran, A., Donzella, B. and Gunnar, M. (1998). Dampening of the cortisol response to handling at 3 months in human infants and its relation to sleep, circadian cortisol activity, and behavioral distress. Developmental Psychobiology, 33(4), 327–37.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Lenander-Lumikari, M., Johansson, I., Vilja, P. and Samaranayake, L. P. (1995). Newer saliva collection methods and composition: a study of two salivette kits. Oral Disease, 1(2), 86–91.CrossRefGoogle ScholarPubMed
Levine, A., Cohen, D. and Zadik, Z. (1994). Urinary free cortisol values in children under stress. Journal of Pediatrics, 125(6 Pt 1), 853–7.CrossRefGoogle ScholarPubMed
Levine, M. E., Milliron, A. N. and Duffy, L. K. (1994). Diurnal and seasonal rhythms of melatonin, cortisol and testosterone in interior Alaska. Arctic Medical Research, 53(1), 25–34.Google ScholarPubMed
Lovallo, W. R. and Thomas, T. L. (2000). Stress hormones in psychophysiological research. In Handbook of psychophysiology, ed. Cacioppo, J. T., Tassinary, L. G. and Berntson, G. G.. Cambridge: Cambridge University Press.Google Scholar
Lucia, A., Diaz, B., Hoyos, J.et al. (2001). Hormone levels of world class cyclists during the Tour of Spain stage race. British Journal of Sports Medicine, 35, 424–30.CrossRefGoogle ScholarPubMed
Lundberg, U. and Forsman, L. (1980). Consistency in catecholamine and cortisol excretion patterns over experimental conditions. Pharmacology, Biochemistry and Behavior, 12, 449–52.CrossRef
Lundberg, U. and Frankenhaeuser, M. (1980). Pituitary-adrenal and sympathetic-adrenal correlates of distress and effort. Journal of Psychosomatic Research, 24, 125–30.CrossRef
Lupien, S., Lecours, A. R., Schwartz, G.et al. (1996). Longitudinal study of basal cortisol levels in healthy elderly subjects: evidence for subgroups. Neurobiology of Aging, 17(1), 95–105.CrossRefGoogle ScholarPubMed
Maes, M., Mommen, K., Hendrickx, D.et al. (1997). Components of biological variation, including seasonality in blood concentrations of TSH, TT3, FT4, PRL, cortisol and testosterone in healthy volunteers. Clinical Endocrinology, 46, 587–98.CrossRefGoogle ScholarPubMed
Marshall, R. D. and Garakani, A. (2002). Psychobiology of the acute stress response and its relationship to the psychobiology of post-traumatic stress disorder. Psychiatria Clinica North America, 25(2), 385–95.CrossRefGoogle ScholarPubMed
Mason, J. (1968). A review of psychoendocrine research on the pituitary corticol system. Psychosomatic Research, 30, 631–43.CrossRefGoogle Scholar
McEwen, B. S. (1988). Glucocorticoid receptors in the brain. Hospital Practice, 23(8), 107–11, 114, 119–21.CrossRefGoogle Scholar
McEwen, B. S. (2002). The End of Stress as We Know It. Washington, DC: Joseph Henry Press.Google Scholar
McEwen, B. S. and Wingfield, J. (2003). The concept of allostasis in biology and biomedicine. Hormones and Behavior, 43, 2–15.CrossRefGoogle ScholarPubMed
Miller, C. S., Dembo, J. B., Falace, D. A. and Kaplan, A. L. (1995). Salivary cortisol response to dental treatment of varying stress. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics, 79(4), 436–41.CrossRefGoogle ScholarPubMed
Miller, D. and O'Callaghan, J. (2002). Neuroendocrine aspects of the response to stress. Metabolism, 51, 5–10.CrossRefGoogle ScholarPubMed
Munck, A. (2000). Corticosteroids and stress. In Encyclopedia of Stress, ed. Fink, G.. San Diego, CA: Academic Press, 570–7.Google Scholar
Nepomnaschy, P., Welch, K., McConnell, D., Strassmann, B. and England, B. (2005). Stress and female reproductive function: a study of daily variations in cortisol, gonadotrophins, and gonadal steroids in a rural Mayan population. American Journal of Human Biology, 16, 523–32.CrossRefGoogle Scholar
Nicolson, N., Storms, C., Ponds, R. and Sulon, J. (1997). Salivary cortisol levels and stress reactivity in human aging. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 52(2), M68–75.CrossRefGoogle ScholarPubMed
Obel, C., Hedegaard, M., Hendriksen, T. B.et al. (2005). Stress and salivary cortisol during pregnancy. Psychoneuroendocrinology, 30, 647–56.CrossRefGoogle ScholarPubMed
Ockenfels, M. C., Porter, L., Smyth, J.et al. (1995). Effect of chronic stress associated with unemployment on salivary cortisol: overall cortisol levels, diurnal rhythm, and acute stress reactivity. Psychosomatic Medicine, 57(5), 460–7.CrossRefGoogle ScholarPubMed
Pearson, R., Ungpakorn, G. and Harrison, G. A. (1995). Catecholamine and cortisol levels in Oxford college rowers. British Journal of Sports Medicine, 29(3), 174–7.CrossRefGoogle ScholarPubMed
Peeters, F., Nicholson, N. A. and Berkhof, J. (2003). Cortisol responses to daily events in major depressive disorder. Psychosomatic Medicine, 65(5), 836–41.CrossRefGoogle ScholarPubMed
Peres, M. F. P., Sanchez del Rio, M., Seabra, M.et al. (2001). Hypothalamic involvement in chronic migraine. Journal of Neurology, Neurosurgery and Psychiatry, 71, 747–51.CrossRefGoogle ScholarPubMed
Peters, M., Godaert, G., Ballieux, R.et al. (1998). Cardiovascular and endocrine responses to experimental stress: effects of mental effort and controllability. Psychoneuroendocrinology, 23, 1–17.CrossRefGoogle ScholarPubMed
Pollard, T. M. (1995). Use of cortisol as a stress marker: practical and theoretical problems. American Journal of Human Biology, 7, 265–73.CrossRefGoogle ScholarPubMed
Pollard, T. M., Ungpakorn, G., Harrison, G. A. and Parkes, K. R. (1996). Epinephrine and cortisol responses to work: a test of the models of Frankenhaeuser and Karasek. Annals of Behavioral Medicine, 18, 229–37.CrossRefGoogle ScholarPubMed
Poteliakhoff, P. V. (1981). Adrenocortical activity and some clinical findings in acute and chronic fatigue. Journal of Psychosomatic Research, 25, 91–5.CrossRefGoogle ScholarPubMed
Price, D. A., Close, G. C. and Fielding, B. A. (1983). Age of appearance of circadian rhythm in salivary cortisol values in infancy. Archives of Disease in Childhood, 58(6), 454–6.CrossRefGoogle ScholarPubMed
Prinz, P. N., Roehrs, T. A., Vitaliano, P. P., Linnoila, M. and Weitzman, E. D. (1980). Effect of alcohol on sleep and nighttime plasma growth hormone and cortisol concentrations. Journal of Clinical Endocrinology and Metabolism, 51(4), 759–64.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Wolf, O. T., Hellhammer, D. H.et al. (1997). Free cortisol levels after awakening: a reliable biological marker for the assessment of adrenocortical activity. Life Sciences, 61, 2539–49.CrossRefGoogle ScholarPubMed
Raff, H., Raff, J. L., Duthie, E. H.et al. (1999). Elevated salivary cortisol in the evening in healthy elderly men and women: correlation with bone mineral density. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 54(9), M479–83.CrossRefGoogle ScholarPubMed
Ramsay, D. S. and Lewis, M. (1994). Developmental change in infant cortisol and behavioral response to inoculation. Child Development, 65(5), 1491–502.CrossRefGoogle ScholarPubMed
Rosmalen, J. G. M., Oldehinkel, A. J., Ormel, J.et al. (2005). Determinants of salivary cortisol levels in 10–12 year old children: a population based study of individual differences. Psychoneuroendocrinology, 30, 483–95.CrossRefGoogle ScholarPubMed
Sapolsky, R. (1990). The adrenocortical axis. In Handbook of the Biology of Aging, ed. Schneider, E. and Rowe, J.. San Diego, CA: Academic Press, 330–48.Google Scholar
Sapolsky, R. (1992). Stress, the Aging Brain, and the Mechanisms of Neuron Death. Cambridge, MA: MIT Press.Google Scholar
Sapolsky, R., Romero, L. and Munck, A. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21(1), 55–89.Google ScholarPubMed
Schmidt-Reinwald, A., Pruessner, J. C., Hellhammer, D. H.et al. (1999). The cortisol response to awakening in relation to different challenge tests and a 12-hour cortisol rhythm. Life Sciences, 64(18), 1653–60.CrossRefGoogle Scholar
Schwartz, J. and Stone, A. (1998). Strategies for analyzing ecological momentary assessment data. Health Psychology, 17, 6–16.CrossRefGoogle ScholarPubMed
Sephton, S. E., Sapolsky, R. M., Kraemer, H. C. and Spiegel, D. (2000). Diurnal cortisol rhythm as a predictor of breast cancer survival. Journal of the National Cancer Institute, 92(12), 994–1000.CrossRefGoogle ScholarPubMed
Sherman, B., Wysham, C. and Pfohl, B. (1985). Age-related changes in the circadian rhythm of plasma cortisol in man. Journal of Clinical Endocrinology and Metabolism, 61(3), 439–43.CrossRefGoogle ScholarPubMed
Shiffman, S. and Stone, A. (1998). Ecological momentary assessment: a new tool for behavioral medicine research. In Technology and Methods in Behavioral Medicine, ed. Krantz, D. and Baum, A.. New Jersey: Lawrence Erlbaum Associates.Google Scholar
Shirtcliff, E. A., Granger, D. A., Schwartz, E. and Curran, M. J. (2001). Use of salivary biomarkers in biobehavioral research: Cotton-based sample collection methods can interfere with salivary immunoassays. Psychoneuroendocrinology, 26, 165–73.CrossRefGoogle Scholar
Sippell, W. G., Becker, H., Versmold, H. T., Bidlingmaier, F. and Knorr, D. (1978). Longitudinal studies of plasma aldosterone, corticosterone, deoxycorticosterone, progesterone, 17-hydroxyprogesterone, cortisol, and cortisone determined simultaneously in mother and child at birth and during the early neonatal period. I. Spontaneous delivery. Journal of Clinical Endocrinology and Metabolism, 46(6), 971–85.CrossRefGoogle ScholarPubMed
Smyth, J. M., Ockenfels, M. C., Gorin, A. A.et al. (1997). Individual differences in the diurnal cycle of cortisol. Psychoneuroendocrinology, 22(2), 89–105.CrossRefGoogle ScholarPubMed
Smyth, J. M., Ockenfels, M. C., Porter, L. S.et al. (1998). Stressors and mood measured on a momentary basis are associated with salivary cortisol secretion. Psychoneuroendocrinology, 22, 353–70.CrossRefGoogle Scholar
Stewart, J. and Seeman, T. (2000). Salivary cortisol measurement. Consensus Conference Report, John D. and Catherine T. MacArthur Research Network on Socioeconomic Status and Health.Google Scholar
Stone, A., Schwartz, J., Smyth, J.et al. (2001). Individual differences in the diurnal cycle of salivary free cortisol: a replication of flattened cycles for some individuals. Psychoneuroendocrinology, 26, 295–306.CrossRefGoogle ScholarPubMed
Tout, K., Haan, M., Campbell, E. K. and gunnar, M. R. (1998). Social behavior correlates of cortisol activity in child care: gender differences and time-of-day effects. Child Development, 69(5), 1247–62.CrossRefGoogle ScholarPubMed
Tremblay, M. S., Copeland, J. L. and Helder, W. (2004). Effect of training status and exercise mode on endogenous steroid hormones in men. Journal of Applied Physiology, 96(2), 531–9.CrossRefGoogle ScholarPubMed
Cauter, E., Plat, L., Leproult, R. and Copinschi, G. (1998). Alterations of circadian rhythmicity and sleep in aging: endocrine consequences. Hormone Research, 49(3–4), 147–52.CrossRefGoogle ScholarPubMed
Eck, M., Berkhof, H., Nicolson, N. and Sulon, J. (1996). The effects of perceived stress, traits, mood states, and stressful daily events on salivary cortisol. Psychosomatic Medicine, 58(5), 447–58.Google ScholarPubMed
Walker, B. R., Best, R., Noon, J. P., Watt, G. C. M. and Webb, D. J. (1997). Seasonal variation in glucocorticoid activity in healthy men. Journal of Clinical Endocrinology and Metabolism, 82, 4015–19.Google ScholarPubMed
Watamura, S. E., Donzella, B., Alwin, J. and Gunnar, M. R. (2003). Morning-to-afternoon increases in cortisol concentrations for infants and toddlers at child care: age differences and behavioral correlates. Child Development, 74(4), 1006–20.CrossRefGoogle ScholarPubMed
Watamura, S. E., Sebanc, A. M. and Gunnar, M. R. (2002). Rising cortisol at childcare: relations with nap, rest, and temperament. Developmental Psychobiology, 40(1), 33–42.CrossRefGoogle ScholarPubMed
Weitzman, E. D., Fukushima, D., Nogeire, C.et al. (1971). Twenty-four hour pattern of the episodic secretion of cortisol in normal subjects. Journal of Clinical Endocrinology and Metabolism, 33(1), 14–22.CrossRefGoogle ScholarPubMed
White, B. P., Gunnar, M. R., Larson, M. C., Donzella, B. and Barr, R. G. (2000). Behavioral and physiological responsivity, sleep, and patterns of daily cortisol production in infants with and without colic. Child Development, 71(4), 862–77.CrossRefGoogle ScholarPubMed
Wittersheim, G., Brandenberger, G. and Follenius, M. (1985). Mental task-induced strain and its after-effect assessed through variations in plasma cortisol levels. Biological Psychology, 21(2), 123–32.CrossRefGoogle ScholarPubMed
Wüst, S., Federenko, I., Hellhammer, D. H. and Kirschbaum, C. (2000). Genetic factors, perceived chronic stress, and the free cortisol response to awakening. Psychoneuroendocrinology, 25(7), 707–20.CrossRefGoogle ScholarPubMed
Wüst, S., Kirschbaum, C. and Hellhammer, D. (1992). Smoking increases salivary cortisol. In Assessment of Hormones and Drugs in Saliva in Biobehavioral Research, ed. Kirschbaum, C., Read, G. and Hellhammer, D.. Seattle, WA: Hogrefe and Huber, 51–7.Google Scholar
Zeier, H. (1994). Workload and psychophysiological stress reactions in air traffic controllers. Ergonomics, 37(3), 525–39.CrossRefGoogle ScholarPubMed
Zeier, H., Brauchli, P. and Joller-Jemelka, H. I. (1996). Effects of work demands on immunoglobulin A and cortisol in air traffic controllers. Biological Psychology, 42(3), 413–23.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×